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1 Introduction

Let —00 < a < b< 0o. Let f be a diffeomorphism of (a, b) onto R:
E=f(z), ¢€E€R, z€(ab).

Let
f(e) =0, a<ec<b,
and set
g=f(-¢).
We deal with the following operator in L%(a, b):
(L1) p-l0 __f Nl 1

=—— R .
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Here, ¢ > —1/2 and R denotes the reflection operator given by

Ru(z) = R (f71(€)) = v (f7'(=¢)) = v(3).

The expression for our operator therefore becomes
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Remark 1.1. Our operator is a linear differential operator in a bounded or unbounded
open interval (a, b). Moreover, its coefficients are variable coefficients, and the last one is
singular since f(z) =0 at z =c.

Remark 1.2. We denote by f the multiplication by f and regard it as a linear operator
in L*(a, b). Then our operators D and f satisfy Wigner’s commutation relations [21] in
quantum mechanics:

{D, I, D]} = -2D, {£, If, D]} = —-2f,
where {A, B} = AB + BA.



We now give some examples of our operator (1.1). In fact, our operator appears in
many quantum-mechanical systems. '
Example 1. Let a = —00, b= 00, f(z) = z, and let ¢ = 0. Then, by (1.1),

0

D=5
and hence the operator —iD corresponds to the momentum operator for a quantum-
mechanical particle. Here we use the unit A = 1.
Example 2. Let a = —00, b= 00, and let ¢ = 0. In this case, each function f gives rise
to a point transformation in quauntum mechanics. We [12] first defined and discussed
a point transformation as a canonical transformation in quauntum mechanics from the
viewpoint of mathematics. Our operator —iD then corresponds to the new momentum
operator given by the point transformation. For more details, see section 2.
Example 3. Let a =0, b = oo, f(z) = Inz, and let ¢ = 0. Our operator —iD then
corresponds to the dilatation operator in quantum mechanics and also corresponds to the
generator of the dilation operator appearing in wavelets analysis (see e.g. [4, 6]). We
[13] studied the essential selfadjointmess of —iD and showed that the Mellin transform
transforms —¢D into the multiplication by y (y € R).
Example 4. Let a =0, b =, f(r) = —Intan(z/2), and let ¢ = 0. Our operator —iD in
this case corresponds to the momentum operator appesaring in quantum mechanics on S*
based on Dirac Formalism (3, 11]. Watanabe [17, 18, 19] discussed the selfadjointmess of
—iD and constructed an integral transform that transforms —:D into the multiplication
by y (y € R). For more details, see section 3. See also Soltani [15] for related material.
Example 5. Let a = —o0, b = 00, and let f(z) = x. Our operator —4D then corresponds
to the momentum operator of a bose-like oscillator governed by Wigner's commutation
relations mentioned above. See also Yang [22], and Ohnuki and Kamefuchi [9, 10] for
related material.
Example 6. Let a, band f be as in Example 5. Then the operators —D? and —D? + z?
correspond to the Hamitonians appearing in the two-body problems of the Calogero model
[1], the Calogero-Moser model [1, 7] and the Sutherland model [16]. Each model describes
a quantum-mechanical system of many identical particles in one dimension with long-
range interactions, and has attracted considerable interest because it is exactly solvable.

We denote by (-, -)13(q,5) the inner product of L?(a, b), and by || - ||z2(a,s) its norm.
We also denote by (-, - )2y the inner product of L*(R), and by || - ||z2) its norm.

2 Point transformations in quauntum mechanics

In classical mechanics the coordinate transformation

{f: $=($1,SL‘2,...,md)HX=(X1,X2,...,Xd),

(21) X, = fa(x) (a =1,2,... ,d)

is called a point transformation, where z belongs to some domain D in R%:

(2.2) zeD
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and the existence of f~! is assumed. In classical mechanics the domain D does not always
coincide with R?; it is sufficient for D to involve the trajectory of a physical system under
consideration.

It is known that the point transformation can be extended to a canonical transforma-
tion (see e.g. Whittaker [20, p.293])

(xly"' yZdy P1y - - - 7pd) H(XI’-” ’XdyPIa"' aPa)a

which is called an extended point transformation and is given by

Xo= fa(z)5
(2.3) d a.’l:g
Pa = pﬁ.
ﬁ:l aXa

Here the canonical momenta p, and P, are conjugate to z, and X,, respectively. Let
[A, B]a stand for the classical Poisson bracket for A(z, p) and B(z, p):

d
9A 0B OB OA
4, Bla=3_ (aw,, e Or. ap,,,)'

a=1

The canonical variables z, and p, obey the relations

[zm pﬂ]cl = 6&[3; [ma, zﬂ]cl = [pon pﬁ]cl = 0.

Then it is known that the new canonical variables X, and P, given by (2.3) also obey
the same relations

(2-4) [Xm Pﬁ]ci = 6aﬁa [Xm Xﬁ]c] = [Pa; Pﬂ]cl = 0.

An example of a point transformation in classical mechanics is the coordinate trans-
formation f : (z1, z2) — (r, 6) from cartesian to plane polar coordinates. Here, (z;, 73) €
R2. The existence of f together with f~! implies (z;, z3) € D = R?\ {(0, 0)}. We are
thus led to the extended point transformation (zi, z2, p1, p2) — (r, 6, p,, ps). Here the
canonical momenta p, and py are conjugate to r and @, respectively. In quantum mechan-
ics, however, the situation is quite different. It is known that the continuous spectrum
of each canonical variable in quantum mechanics coincides with R. Therefore, the point
transformation f : (21, z2) — (r, 8) from cartesian to plane polar coordinates is no longer
allowed within the frame work of quantum mechanics. Hence the extended point trans-
formation (z,, z3, p1, p2) — (7, 6, Dy, Dg) is not allowed any longer. In fact, if it were
allowed, then r, 8, p, and pg would satisfy the canonical commutation relations. But this
is not the case, because this clearly contradicts positivity of r and boundedness of 6.

So it is highly desirable to define point transformations both in classical mechanics
and in quantum mechanics from the viewpoint of mathematics.

Definition 2.1 (Ohnuki and Watanabe [12}).
We say that the map f is a point transformation in classical mechanics if f is a
C?-diffeomorphism and satisfies (2.1) and (2.2).
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Remark 2.2. Let (z;, z2) € R% The coordinate transformation f : (21, z2) — (r, 6) from
cartesian to plane polar coordinates is a point transformation in classical mechanics. The
domain D of the map f does not contain the origin, i.e., D = R?\ {(0, 0)}. Hence, r, 6,
pr and pyg are canonical variables in classical mechanics:

[r7 pr]cl = [6, p@]cl =1, ["'7 9]c1 = [7'1 pB]cl = [9’ pr]cl = [pra p&]cl =0.

In quantum mechanics the operators z, and p, are assumed to obey the canonical
commutation relations

[xm pﬂ] = ifsaﬂa [zm -Tﬁ] = h’m pﬁ] =0,

where [A, B] = AB — BA. Let z, be the multiplication by z,. Then it follows from the
canonical commutation relations that
0

(25) Pa = —1 6—%

Definition 2.3 (Ohnuki and Watanabe [12]). Let f : R* — R" be a bijective map
satisfying

f: x=(x1, Ty« ,zn)HX=(X1, Xz, ,Xn),

Xo = folz) (¢=1,2,...,n).

We say that the map f is a point transformation in quantum mechanics if f is a C®-
diffeomorphism.

Remark 2.4. Let (z1, 72) € R% The coordinate transformation f : (zy, z2) + (r, 6) from
cartesian to plane polar coordinates is not a point transformation in quantum mechanics.
This is because the domain of the map f does not coincide with R?. Therefore, r, 8, p,
and py are not canonical variables in quantum mechanics, and hence one can not impose
the following relations

[’I‘, pr] = [0, p0] = i’ [Ta 9] = ['I‘, p@] = [6, pr] = [pra pO] =0

The coordinate transformation from cartesian to plane polar coordinates is therefore a
point transformation in classical mechanics, but not in quantum mechanics.

Definition 2.5 (DeWitt [2]). The new canonical variables X, and P, in quantum me-
chanics are given by

Xa = falz),

dzy
Fa= 22(8X Pe +Ps 3, )

Combining Definition 2.5 with (2.5) yields

dzs O 0z
ZaX a:lip 22627[9( )
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The operators X, and P, act on functions of z,’s. When d = 1, the operator P, is
nothing but our operator —iD for @ = —o00, b = 0o and ¢ = 0. Our operator therefore
corresponds to the new momentum operator given by the point transformation in this
case.

Theorem 2.6 (Ohnuki and Watanabe [12]).
(a) The operator P, = P, | C3(RY) is essentially selfadjoint. .
(b) The setR coincides with the continuous spectrum of the selfadjoint operator P, = P, :

0(Pa) = 0.(Pa) =R.
(c) The operators X, and .Pa satisfy thev canonical commutation relations:
[(Xa, Polu=1i6apu, [Xa, Xglu=[P,, Pglu=0
for u € C2(R?).
Remark 2.7. The operator X, is selfadjoint, and 0(X,) = 0.(X,) = R. Combining this
fact with Theorem 2.6 we arrive at the conclusion that Definitions 2.3 and 2.5 are suitable.
3 Quauntum mechanics on S¢

In Dirac formalism (3, 11] for a classical mechanical particle constrained to move on the
d-sphere S¢ (embedded to R%+'), one imposes the relations: (o, 8=1,...,d+1)

. 1
0: {zav pﬂ} = 6013 - '1:2_-7"0193[3,

{xou Z‘p}‘

N 1
{pa,ps} = r—z(Paﬂ?ﬂ—Pﬁ%)

with
d+1 d+1
the primary constraint Z To? —1r2 =0, the secondary constraint Z TaDo = 0.
a=1 a=1

Here, r is a constant, { -, - }* denotes the Dirac bracket, and z,’s and p,’s stand for the
coordinates and the momenta of the particle, respectively.

To proceed to quantum theory, one replaces the Dirac bracket { -, - }* by the commu-
tator =1 [-, -]. But one has no knowledge of the order for z, and p, in the products ZoPg.
Ohnuki and Kitakado [11] then replaces the relations above by the following commutation
relations:

. 1
(5.1) [Za, z] =0, [za,pﬂ]=z(6a —~—r7xaa:p),
3.1

1
[Pas ps] = =1 (PaZp — PpTa)
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with
d+1 d+1
(32) Z.’L'a2 -_— T'2 = 0, Z (xapa + paxa) = 0.
’ a:l a:l

Let us deal with the case where the configuration space is S (embedded to R?).
Setting x; = rcosz and z; =rsinz (—m < z < 7), Ohnuki and Kitakado [11] derived
the expressions for the operators p; and p, satisfying (3.1) and (3.2):

1 isinz 9 + i cosz — a sinx
=7 or 2 ’

Or 2
where 0 < a < 1. For simplicity, we set r = 1 and a = 0. Then

1/. 0 i
pp=-——|1c08Z = — —sinT—acosz |,
r

or 2

=-—i{coszc —?— 1 sinz
p2 - am 2 )
where —r < z < w. The operator p; in L?(0, 7) is nothing but our operator —iD for

a=0,b=m f(z) = —Intan(z/2) and ¢ = 0. The operator p; in L*(—n/2, n/2) is
1+sinz

1-sinz

( a 1 )
p=1{sinf — + -— coszt ),
3.3)

nothing but our operator —iD for a = —7/2, b =7/2, f(z) = 5 In and ¢ = 0.

Corollary 3.1 (Watanabe [17, 18, 19]).  Let p; be as in (3.3).

(a) The operator p; is selfadjoint in L*(0, 7), and is also selfadjoint in L*(—m, 0). Con-
sequently, it is selfadjoint in L?(—m, 7), and the spectrum of the selfadjoint operator p,
in L*(—m, 7) satisfies

o(p1) = oe(p1) =R.

(b) The selfadjoint operator p; in L*(—m, m) is unitarily equivalent to the selfadjoint
operator {—i(8/0y)} ® {—i(8/0y)} in LE(R) ® L3(R), where y € R.

Remark 3.2. Similar results hold for the operator ps.

4 An integral transform associated with our operator

In this section we construct an integral transform associated with our operator D based
on the Hankel transform.
For n € {0} NN, let (cf. [9, (4.31)] and [10, (23.80)])

un(e) = KETHVIF@) |£(@)I7 L84 (F(2)) exp (“‘f‘(‘gi) ’
uma(2) = K54 /TF@)] £(@) |£(@) L8 (f()") exp (‘f(?z) '

Here K% = (-~1)*y/n!/T'(n +v) with ' the gamma function, and L}, is a generalized
Laguerre polynomial. Note that u, € L?(a, b).




Remark 4.1. Ohnuki and Kamefuchi [9, 10] obtained the functions u, when a = —oo,
b=o00 and f(z) =z.

Let V be the set of finite linear combinations of u,’s. A straightforward calculation
gives the following.

Lemma 4.2 (Ohnuki and Watanabe [14]). The set {u,}%2, is a complete orthonor-
mal set of L*(a, b). Consequently, V is dense in L%(a, b).

Using Nelson’s analytic vector theorem [8] we can show the following.

Proposition 4.3 (Ohnuki and Watanabe [14]). The operator (—iD) | V is essen-
tially selfadjoint, and so is the multiplication operator f | V

Set
oy, ) = LETOL (1 (@) + isenf @) ersalluf @) ),

where z € (a, b), y€R and J, denotes the Bessel function of the first kind.

Remark 4.4. Ohnuki and Kamefuchi [9, 10] obtained the function ¢(y, z) when a = —oo,
b=o00 and f(z) = z.

We consider the following integral transform:

b—_—_
vu) = [ ol Dule)ds,  ue,
« a
where y € R. Note that Uu € L?(R). The operator U satisfies
(UUI, U'U'Z)Lz(n) = (ula uz)m(a,b), uy, ug € V.
Combining this fact with Lemma 4.2 gives the following.

Theorem 4.5 (Ohnuki and Watanabe [14]). The transform U becomes a unitary op-
erator from L?(a, b) to L*(R).

A straightforward calculation gives that our transform U transforms our operator —iD
into the multiplication by y:

Proposition 4.6 (Ohnuki and Watanabe [14]).
U(-iD)U* =y.
This proposition immediately implies the following.

Corollary 4.7 (Ohnuki and Watanabe [14]).
Let —iD be the selfadjoint operator in L?*(a, b) given above. Then the operator D?
generates an analytic semigroup {exp(tD?) : ¢t > 0} on L*(a, b).

Remark 4.8. If a = —00, b = 00, f(z) = = and ¢ = 0, then

D= %, ey, z) = \/% exp (iyz) .

Here, (z, y) € R x R. Our transform U reduces to the Fourier transform in this case, and
hence can be regarded as a generalized Fourier transform.

Remark 4.9. We constructed our transform on the basis of the study of the Hankel trans-

form. Kilbas and Borovco [5] considered a more general integral transform including the
Hankel transform.
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5 An embedding theorem of Sobolev type

We define spaces of Sobolev type using our transform, and show an embedding theorem
for each space. While the Sobolev space contains information about differentiability of
each element, our space contains information both about differentiability of each element
and about continuity of each element divided by some functions. Therefore, our embed-
ding theorem provides information both about smoothness of each element and about
continuity of each element divided by some functions. So our embedding theorem is a
generalization of the Sobolev embedding theorem.
We now define spaces of Sobolev type.

Definition 5.1 (Ohnuki and Watanabe [14]). For v > 0,

H*(a, b) = {u € L*(a, b) : L (1+ ly]2)u [Uu(y)]? dy < oo} .

A straightforward calculation gives that each H"(a, b) is a Hilbert space with inner
product

ummh%@=AU+Wﬂ%MwwM@ah ui, uz € H¥(a, b)

and norm lu lHu(a,b) =4/ (u, u’)'H"(a,b) .

Remark 5.2. . If a = —00, b = 00, f(z) = z and ¢ = 0, then our transform U reduces to

the Fourier transform as mentioned above, and hence H"(a, b) to the usual Sobolev space
H"(R) in this case.

Definition 5.1 together with Proposition 4.6 immediately implies the following.

Corollary 5.3 (Ohnuki and Watanabe [14]).
(a) H°a, b) = L¥(a, b).
(b) HY(a, b) C H¥(a, b), V>,
(© lubo@n <lubpery, vEH (ad), V2v
(d) Let |y|” be the selfadjoint multiplication operator and D(|y|*) its domain. Then
UM (a, b) = D(lyl").
Definition 5.4 (Ohnuki and Watanabe [14]). Let f be as above. For 8 € {0} NN,
we define
M

Sff(a, b) = {u(w) Py, 75 € C(a, b)}

Remark 5.5. Ifu € S? (a, b), then u/f? is continuous on (a, b).
The following is our embedding theorem.
Theorem 5.6 (Ohnuki and Watanabe [14]).

Let ¢ > 0. Suppose v > 2 anduaém-lné— (m € N). Then

H(a, b) C C%(a, b) N S(a, b),
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where o and 8 are nonnegative integers satisfying (k € {0} NN)

V- 2] (g = 2k),
a=¢ mn([v—1],¢-1) (¢=2k+1),
min ([v — ], [q]) (otherwise)
and
min ([v - 3], g) (g = 2k),
8= min([v——;—],q—l) (g =2k +1),
min ([v - 1], [g]) (otherwise).

Remark 5.7. If a = —00, b = 00, f(x) = z and q = 0, then our transform U and our space
H¥(a, b) reduce to the Fourier transform and to the Sobolev space H"(R), respectively.
Moreover, oo = [v — 3] and § = 0 in this case. Our embedding theorem thus reduces to
the usual Sobolev embedding theorem:

HY(R) c CP-Y4(R).

So our embedding theorem is a generalization of the Sobolev embedding theorem.

6 An application

We apply our results to the following problem in L?(0, 7) with a singular variable coeffi-
cient. We look for u(t,-) € H?(0, ) of the the problem.

Ou .5 Oy , ou
?ﬁ(t’ z) = sin x—a?z(t, z) + 2sinz cos x%(t, z)
(6.1) + 1———'—?:;m—wu(t, z) - —9%’::)2, t>0, ze€(0,),
(ln tan E)

u(0,z) = up(z), =z € (0, m).
Here, uo € L?(0, 7) satisfies
to(m — ) = up(z).

Note that the coefficient 90/(In tan £)? is singular at z = 7/2. Since there is such a
singular coefficient, at first sight, it cannot be expected that the solution u(%, -) is infinitely
differentiable on (0, =), nor that the functions: z +— u(t, z)/{In tan(z/2)}# are continuous
on (0, 7). Here, 8 are nonnegative integers. But, as is shown just below, this is not the
case.

fa=0,b=m, f(z) = —Intan(z/2) and ¢ = 10, then

— 24in2
D2=sin2xi2+2sinwcosz—a—+ 1-3sin’z %0 3
Oz Oz 4 (Intan Z)




Hence the problem becomes

du 9
d—t—DU, t>0,
u(0) =up.

By Corollary 4.7, D? generates an analytic semigroup {exp(tD?) : t > 0} on L2(0, «).
Theorem 5.6 thus implies the following,.

Corollary 6.1. Let ug be as above, and let m € N. Then there is a unique solution
u € C ([0, 00); L*(0, 7)) N C* (0, 00); H*™(0, 7))

of the problem (6.1) satisfying
u(t, ) = exp(tD*)ug € C=(0, 7) N S’lomm(mm(O, ).

Remark 6.2. From Corollary 6.1 we see that the solution u(t,-) is infinitely differentiable
on (0, 7) and that the function: z — u(t, z)/{Intan(z/2)}° is continuous on (0, ).
Remark 6.3. We can write the solution above in an explicit form.

See Ohnuki and Watanabe [14] for more applications.
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