Topological Radon Transforms and Projective Duality

Yutaka Matsui (松井 優)
Graduate School of Mathematical Sciences, the University of Tokyo
(東京大学大学院数理科学研究科)1

Kiyoshi Takeuchi (竹内 潔)
Institute of Mathematics, University of Tsukuba
(筑波大学数学系) 2

30, November, 2005

Abstract

We study various topological properties of projective duality in algebraic geometry by using the microlocal theory of sheaves developed by Kashiwara-Schapira [21]. In particular, in the real algebraic case we obtain some results similar to Ernström's ones [9] obtained in the complex case. For this purpose, we use constructible functions and their topological Radon transforms. We also generalize a class formula (i.e. a formula which expresses the degrees of dual varieties) in [10] to the case of associated varieties studied by Gelfand-Kapranov-Zelevinsky [12] etc. For the detail, see [26] and [27].

1 Introduction

We denote the projective space of dimension n over \mathbb{K} ($= \mathbb{R}$ or \mathbb{C}) by \mathbb{P}_n and its dual space by \mathbb{P}^*_n. These spaces are naturally identified with the following sets.

$\mathbb{P}_n = \{ l \mid l \text{ is a line in } \mathbb{K}^{n+1} \text{ through the origin} \}$, \hspace{1cm} (1.1)

$\mathbb{P}^*_n = \{ H' \mid H' \text{ is a hyperplane in } \mathbb{K}^{n+1} \text{ through the origin} \}$. \hspace{1cm} (1.2)

Note that if we projectivize a hyperplane H' in \mathbb{K}^{n+1} we obtain a hyperplane H in \mathbb{P}_n. Therefore in what follows we identify the dual projective space \mathbb{P}_n^* with the set

$\{ H \mid H \text{ is a hyperplane in } \mathbb{P}_n \}$. \hspace{1cm} (1.3)
Definition 1.1 Let V be a projective variety in \mathbb{P}_n. We define the dual variety V^* of V by

$$V^* := \{ H \in \mathbb{P}_n^n \mid \exists x \in V_{\text{reg}} \cap H \text{ s.t. } T_x V \subset T_x H \} \subset \mathbb{P}_n^n. \quad (1.4)$$

When V is smooth, V^* is the set of hyperplanes tangent to V. As we see in the example below, even if V is smooth, V^* may be very singular in general.

Example 1.2 (i) Let $\iota_n : \mathbb{P}_1 \hookrightarrow \mathbb{P}_n$ be the Veronese embedding given by $[x : y] \mapsto [x^n : x^{n-1}y : \ldots : y^n]$ and set $V = \iota_n(\mathbb{P}_1) \subset \mathbb{P}_n$. Then the dual $V^* \subset \mathbb{P}_n^n$ is a hypersurface defined by the classical discriminant for polynomials of degree n.

(ii) For $n \geq m$, consider the Segre embedding $\iota_{n,m} : \mathbb{P}_n \times \mathbb{P}_m \twoheadrightarrow \mathbb{P}((n+1)(m+1)-1)$ given by $([x_0 : \ldots : x_n], [y_0 : \ldots : y_m]) \mapsto [\ldots : x_i y_j : \ldots]$. Set $W = \iota_{n,m}(\mathbb{P}_n \times \mathbb{P}_m) \subset \mathbb{P}((n+1)(m+1)-1)$. Then the dual variety $W^* \subset \mathbb{P}((n+1)(m+1)-1)$ has very complicated singularities and the dual defect $\delta^*(W)$ of W (see (2.2) below) is $n - m$. Indeed, let $M_{(n+1),(m+1)}$ be the space of $(n+1) \times (m+1)$ matrices and identify the dual projective space $\mathbb{P}(M_{(n+1),(m+1)})$ with its projectivization $\mathbb{P}(M_{(n+1),(m+1)})$. Then the dual $W^* \subset \mathbb{P}((n+1)(m+1)-1)$ is explicitly written by

$$W^* = \mathbb{P}(\{ A \in M_{(n+1),(m+1)} \mid \text{rank} A \leq m \}). \quad (1.5)$$

Therefore the dual W^* admits a stratification defined by the ranks of matrices.

Many mathematicians were interested in the mysterious relations between projective varieties and their duals. Above all, they observed that the tangency of a hyperplane $H \in V^*$ with V is related to the singularity of the dual V^* at H. For example, consider the case of a plane curve $C \subset \mathbb{P}_2$ over \mathbb{C}. Then a tangent line l at an inflection point of C corresponds to a cusp of the dual curve C^*, and a bitangent (double tangent) line l of C corresponds to an ordinary double point of C^*. The most general results for complex plane curves were found in the 19th century by Klein, Plücker and Clebsch etc. (see for example, [34, Theorem 1.6] and [38, Chapter 7] etc.).

In the last two decades, this beautiful correspondence was extended to higher-dimensional complex projective varieties from the viewpoint of the geometry of hyperplane sections. In particular, after some important contributions by Viro [37] and Dimca [8] etc., Ernström proved the following remarkable result in 1994.
Theorem 1.3 [9, Corollary 3.9] Let $V \subset \mathbb{P}_n$ be a smooth projective variety over \mathbb{C}. Take a generic hyperplane H in \mathbb{P}_n such that $H \notin V^*$. Then for any hyperplane $L \in V^*$, we have
\[
\chi(V \cap L) - \chi(V \cap H) = (-1)^{n-1+\dim V^*-\dim V^*} \text{Eul}_{V^*}(L),
\]
where χ stands for the topological Euler characteristic and $\text{Eul}_{V^*} : V^* \to \mathbb{Z}$ is the Euler obstruction of V^* (introduced by Kashiwara [17] and MacPherson [24] independently).

Recall that the Euler obstruction Eul_{V^*} of V^* is a \mathbb{Z}-valued function on V^* which measures the singularity of V^* at each point of V^*. For example, Eul_{V^*} takes the value 1 on the regular part of V^*. Moreover, if we take a Whitney stratification $\bigcup_{\alpha \in A} V^*_\alpha$ of V^* consisting of connected strata, then Eul_{V^*} is constant on each stratum V^*_α. The values of Eul_{V^*} on a stratum V^*_α is determined by those on V^*_β's satisfying the condition $V^*_\alpha \subset \overline{V^*_\beta}$ (for more detail, see e.g. [18]).

Hence Ernström's result says that the jumping number of the topological Euler characteristics of hyperplane sections of V at L is expressed by $\text{Eul}_{V^*}(L)$, that is, the singularity of the dual variety V^* at L.

The aim of this article is to introduce our results in the real algebraic case similar to this Ernström's one and to survey its theoretical background.

2 Main results

Consider a real projective space $X = \mathbb{R} \mathbb{P}_n$ of dimension n and its dual $Y = \mathbb{R} \mathbb{P}_n^*$. Let $M \subset X$ be a smooth real projective variety and $M^* \subset Y$ its dual variety.

We fix a μ-stratification $Y = \bigsqcup_{\alpha \in A} Y_\alpha$ of $Y = \mathbb{R} \mathbb{P}_n^*$ consisting of connected strata and adapted to M^*. Note that Trotman [35] proved that this μ-condition is equivalent to famous Verdier's w-regularity condition.

Definition 2.1 We define a \mathbb{Z}-valued function $\varphi_M : Y \to \mathbb{Z}$ on $Y = \mathbb{R} \mathbb{P}_n^*$ by
\[
\varphi_M(H) = \chi(M \cap H) \quad (H \in Y).
\]

Since the function φ_M is defined by the topological Euler characteristics of hyperplane sections $M \cap H$ of M, to obtain results similar to Ernström's formula (1.6) it suffices to describe the function φ_M in terms of the singularities of M^*. We will show that the whole function φ_M can be reconstructed
from one value $\varphi_M(y)$ at a point $y \in Y \setminus M^*$ and the singularities of M^*. First of all, for the above μ-stratification $Y = \bigsqcup_{\alpha \in A} Y_{\alpha}$ of $Y = \mathbb{R}\mathbb{P}_n^*$ we can prove the following basic result.

Proposition 2.2 The function φ_M is constant on each stratum Y_α.

We denote the value of φ_M on Y_α by φ_α. Our main results are reconstruction theorems of φ_M. Namely, we can determine all the values φ_α's of φ_M from only one value $\varphi_M(y)$ at a point $y \in Y \setminus M^*$ and the topology of M^*.

To state the first theorem, we introduce two notations concerning dual varieties. Recall that the dual variety M^* is usually a hypersurface in $Y = \mathbb{R}\mathbb{P}_n^*$.

Definition 2.3

(i) We denote the dual defect of M by

$$\delta^*(M) = (n - 1) - \dim M^*.$$ \hfill (2.2)

(ii) For a conormal vector $\vec{p} \in T^*_{M^*Y}$ at $y \in M^*_{\text{reg}}$, consider the second fundamental form

$$h_{M^*,\vec{p}}: T_y M^* \times T_y M^* \rightarrow \mathbb{R},$$ \hfill (2.3)

with respect to the canonical (Fubini-Study) metric of $Y = \mathbb{R}\mathbb{P}_n^*$ and set

$$J_{\vec{p}} := \#\{\text{positive eigenvalues of } h_{M^*,\vec{p}}\} + \delta^*(M).$$ \hfill (2.4)

Now, let us state our first main theorem which describes the values of φ_M on $Y \setminus M^*_{\text{sing}}$.

Theorem 2.4 ([26])

(i) Assume that $\delta^*(M) > 0$. Then on $Y \setminus M^*$ the function φ_M is constant. Moreover for any $y \in M^*_{\text{reg}}$ there exists an neighborhood U of y such that we have

$$\varphi_M = d \cdot 1_U + (-1)^{J_{\vec{p}}} 1_{M^*_{\text{reg}}},$$ \hfill (2.5)

on U, where d is the value of φ_M on $Y \setminus M^*$ and $\vec{p} \in T^*_{M^*Y}$ is a conormal vector at $y \in M^*_{\text{reg}}$.

(ii) Assume that $\delta^*(M) = 0$, that is M^* is a hypersurface in $Y = \mathbb{RP}^n$, and consider the following local situation. Let Y_{α_1} and Y_{α_2} be two strata in $Y \setminus M^*$, Y_β an open stratum in M^*_reg such that $Y_\beta \subset Y_{\alpha_i}$ for $i = 1, 2$ and $\vec{p} \in T_{M^*_\text{reg}} Y$ a conormal vector at a point $y \in Y_\beta$ pointing from Y_{α_1} to Y_{α_2} (see Figure 2.4.1 below). Then we have

\[
\varphi_{\alpha_2} - \varphi_{\alpha_1} = (-1)^{J_\vec{p}} - (-1)^{J_{-\vec{p}}} = 0, \pm 2)
\]

(2.6)

\[
\varphi_\beta = \begin{cases}
\frac{1}{2}(\varphi_{\alpha_1} + \varphi_{\alpha_2}) & \text{if } \varphi_{\alpha_1} \neq \varphi_{\alpha_2}, \\
\varphi_{\alpha_1} + (-1)^{J_\vec{p}} & \text{if } \varphi_{\alpha_1} = \varphi_{\alpha_2}.
\end{cases}
\]

(2.7)

\[\begin{array}{c}
Y_\beta \\
\vec{p}
\end{array}\]

\[\begin{array}{c}
\vec{-p}
\end{array}\]

\[\begin{array}{c}
\rightarrow
\end{array}\]

\[\begin{array}{c}
Y_{\alpha_2}
\end{array}\]

\[\begin{array}{c}
Y_{\alpha_1}
\end{array}\]

\[\begin{array}{c}
M^*
\end{array}\]

Figure 2.4.1

Remark 2.5

(i) If we rewrite (2.5) by Euler characteristics, we obtain an equality analogous to Ernström's formula (1.6). Namely, we have

\[
\chi(M \cap L) - \chi(M \cap H) = (-1)^{J_\vec{p}}
\]

(2.8)

for any $L \in M^*_\text{reg}$, where $H \in Y \setminus M^*$ is a generic hyperplane in $Y = \mathbb{RP}^n$.

(ii) In the case where M^* is a hypersurface, the complement of M^* is divided into several connected components in general. So when we cross the hypersurface M^*, the value of the function φ_M may jump. Our formula (2.6) describes this jumping number in terms of the principal curvature $J_\vec{p}$ of M^*_reg.

Next, we state our second main theorem which reconstructs the values of φ_M on M^*_sing.

Theorem 2.6 ([26]) Let $k \geq \text{codim}_YM^*$. Suppose that the values φ_α's on Y_α's satisfying $\text{codim}_YM_\alpha \leq k$ are already determined. Then the value φ_β on Y_β satisfying $\text{codim}_YM_\beta = k + 1$ is given by

\[
\varphi_\beta = \sum_{\alpha: Y_\alpha \cap B \neq \emptyset} \varphi_\alpha \cdot \{\chi(Y_\alpha \cap B) - \chi(\partial Y_\alpha \cap B)\}.
\]

(2.9)
Here we set $B = B(y, \varepsilon) \cap \{\psi < 0\}$ by taking a small enough open ball $B(y, \varepsilon)$ centered at a point $y \in Y_\beta$ and and a real-valued real analytic function ψ defined in a neighborhood of y satisfying $\psi^{-1}(0) \supset Y_\beta$ and

\[
(y; \text{grad}\psi(y)) \in \overset{\circ}{T}_{Y_\beta}Y \setminus \bigcup_{\alpha \neq \beta} \overline{T}_{Y_\alpha}Y \tag{2.10}
\]

(see Figure 2.5.1 below).

By Theorem 2.6, we can recursively determine the values φ_α's of φ_M by induction on the codimensions of strata Y_α's. Note that this representation of the function φ_M is completely analogous to that of the Euler obstructions in [18].

Example 2.7 Consider a smooth projective curve M defined by the homogeneous equation $x^4 + x^3 z + x^4 - y^3 z = 0$ in \mathbb{RP}_2 (see Figure 2.6.1 below).

![Figure 2.6.1](image)

Then the dual curve $M^* \subset \mathbb{RP}_2$ has a shape as in Figure 2.6.2 below. More precisely, as a μ-stratification of $Y = \mathbb{RP}_\infty^*$ adapted to M^*, we can take $Y = \bigcup_{i=0}^{11} Y_i$ in Figure 2.6.2. Since the last strata Y_{11} is contained in the line at infinity ($\simeq \mathbb{RP}_1$) of \mathbb{RP}_2^* it does not appear in the figure.
Now let us apply our two main theorems to this case. Denote by φ_i the value of the function φ_M on Y_i. Then we can easily see that φ_0 is 0. Starting from this value $\varphi_0 = 0$, we can recursively determine all the values φ_i's of φ_M as follows.

For example, by Theorem 2.4 the values φ_1 and φ_3 on Y_1 and Y_3 respectively can be calculated in the following way.

$$
\varphi_1 = \varphi_0 + (-1)^2 - (-1)^1 = 2, \quad (2.11)
$$
$$
\varphi_3 = \frac{1}{2}(\varphi_0 + \varphi_1) = 1. \quad (2.12)
$$

Moreover, by Theorem 2.6 the value φ_{10} on Y_{10} is determined by φ_1, φ_2, φ_5 and φ_6 as follows.

$$
\varphi_{10} = \varphi_1 \cdot 0 + \varphi_5 \cdot 1 + \varphi_2 \cdot (-1) + \varphi_6 \cdot 1 + \varphi_1 \cdot 0 = 2. \quad (2.13)
$$
In this case, we can easily check these results simply by counting the intersection numbers of M and lines in \(\mathbb{RP}_2 \). Namely, our results are the generalization of this very simple example to higher dimensional cases.

3 Theoretical background

Since the function \(\varphi_M \) in our main theorems is constant on each stratum of Y, we consider a class of such functions to study \(\varphi_M \), which are called constructible functions.

Definition 3.1 Let \(X \) be a real analytic manifold. We say that a function \(\varphi: X \to \mathbb{Z} \) is constructible if there exists a locally finite family \(\{X_i\} \) of compact subanalytic subsets \(X_i \) of \(X \) such that \(\varphi \) is expressed by

\[
\varphi = \sum_i c_i 1_{X_i}, \quad (c_i \in \mathbb{Z}).
\]

We denote the abelian group of constructible functions on \(X \) by \(CF(X) \).

We define the operations of constructible functions in the following way.

Definition 3.2 ([21] and [37]) Let \(f: Y \to X \) be a morphism of real analytic manifolds.

(i) (The inverse image) For \(\varphi \in CF(X) \), we define a function \(f^*\varphi \in CF(Y) \) by

\[
f^*\varphi(y) := \varphi(f(y)).
\]

(ii) (The integral) Let \(\varphi = \sum_i c_i 1_{X_i} \in CF(X) \) such that \(\text{supp}(\varphi) \) is compact. Then we define a topological (Euler) integral \(\int_X \varphi \in \mathbb{Z} \) of \(\varphi \) by

\[
\int_X \varphi := \sum_i c_i \cdot \chi(X_i).
\]

(iii) (The direct image) Let \(\psi \in CF(Y) \) such that \(f|_{\text{supp}(\psi)}: \text{supp}(\psi) \to X \) is proper. Then we define a function \(\int_f \psi \in CF(X) \) by

\[
\left(\int_f \psi \right)(x) := \int_Y (\psi \cdot 1_{f^{-1}(x)}).
\]
From now on, we shall use various notions concerning derived categories of constructible sheaves. For the detail of these notions, see [21] etc. We denote by $D^b(X)$ the derived category of bounded complexes of \mathbb{C}_X-modules on X. Its full subcategory consisting of complexes whose cohomology sheaves are \mathbb{R}-constructible is denoted by $D^b_{\mathbb{R}-c}(X)$.

Recall also that the Grothendieck group $K_{\mathbb{R}-c}(X)$ of $D^b_{\mathbb{R}-c}(X)$ is a quotient group of the free abelian group generated by objects of $D^b_{\mathbb{R}-c}(X)$ by the subgroup generated by

$$[F] - [F'] - [F''] \quad (F' \rightarrow F \rightarrow F'' \rightarrow 1 \text{ is a distinguished triangle}).$$

(3.5)

Then the natural morphism

$$\chi: K_{\mathbb{R}-c}(X) \rightarrow CF(X)$$

defined by $\chi([F])(x) = \sum_{j \in \mathbb{Z}} (-1)^j \dim H^j(F)_x \ (x \in X)$ is an isomorphism. Moreover, by the isomorphism $\chi: K_{\mathbb{R}-c}(X) \rightarrow CF(X)$ the operations of constructible functions that we introduced in Definition 3.2 correspond to those for \mathbb{R}-constructible sheaves. For example, let $f: Y \rightarrow X$ be a morphism of real analytic manifolds and for $\psi \in CF(Y)$ take an object $G \in D^b_{\mathbb{R}-c}(Y)$ such that $\psi = \chi(G)$. Then we have $\chi(Rf_*G) = \int_Y \psi \in CF(X)$. In the same way, we can slightly generalize the notion of topological integrals of constructible functions as follows.

Definition 3.3 ([26]) Let U be a relatively compact subanalytic open subset of X and $\varphi \in CF(X)$. Take an object $F \in D^b_{\mathbb{R}-c}(X)$ such that $\varphi = \chi(F)$ and set

$$\int_U \varphi := \chi(R\Gamma(U; F)).$$

(3.7)

We can easily check that the definition above does not depend on the choice of F such that $\varphi = \chi(F)$. Note that we do not have to assume that the support of φ is compact in U as in the usual definition (Definition 3.2 (ii)). Using this slight modification of the notion of topological integrals, we can express the R.H.S of (2.9) simply by $\int_B \varphi_M$. In fact, we used this fact in the proof of Theorem 2.6.

Now, let X be a real analytic manifold and denote by \mathcal{L}_X the sheaf of conic ($\mathbb{R}_{>0}$-invariant) subanalytic Lagrangian cycles in the cotangent bundle T^*X of X. Its global section $H^0(T^*X; \mathcal{L}_X)$ is the abelian group of conic
group homomorphism $CC: K_{R-c}(X) \rightarrow H^0(T^*X; \mathcal{L}_X)$ and associated with
each $[F] \in K_{R-c}(X)$ a Lagrangian cycle $CC([F])$ in T^*X. This Lagrangian
cycle $CC([F])$ is called the characteristic cycle of $[F] \in K_{R-c}(X)$. The
following very important theorem was proved also in [19] (see [21] for the
detail).

Theorem 3.4 [21, Theorem 9.7.11] There exists a commutative diagram

\[
\begin{array}{ccc}
H^0(T^*X; \mathcal{L}_X) & \xrightarrow{\sim} & CF(X) \\
\sim & & \sim \\
K_{R-c}(X) & \xrightarrow{\sim} & CF(X)
\end{array}
\]

in which all arrows are isomorphisms.

By this theorem, we can reduce the problem of constructible functions
(sheaves) to that of Lagrangian cycles.

4 Outline of the proof of main theorems

In this section, we give an outline of the proof of our main theorems. Let
$X = \mathbb{R}P^n$ and $Y = \mathbb{R}P^n$ as before. Consider the incidence submanifold
$S = \{(x, H) \in X \times Y \mid x \in H\}$ of $X \times Y$ and the diagram

\[
\begin{array}{ccc}
X \times Y & \xrightarrow{f} & Y \\
\downarrow{p_2} & & \downarrow{g} \\
X & \xrightarrow{f} & Y,
\end{array}
\]

where p_1 and p_2 are natural projections and f and g are restrictions of p_1
and p_2 to X and Y respectively.

Definition 4.1 Let $\varphi \in CF(X)$. We define the topological Radon transform
$\mathcal{R}_S(\varphi) \in CF(Y)$ of φ by

\[
\mathcal{R}_S(\varphi) := \int_g f^* \varphi.
\]

In particular, for a real analytic submanifold M of $X = \mathbb{R}P^n$ and a
hyperplane H in $X = \mathbb{R}P^n \iff H \in Y = \mathbb{R}P^n$ we have

\[
\mathcal{R}_S(1_M)(H) = \chi(M \cap H) \quad (= \varphi_M(H)).
\]
Therefore for the study of the function \(\varphi_M \in \text{CF}(Y) \) it suffices to study the topological Radon transform \(\mathcal{R}_S(1_M) \). Using the isomorphisms in Theorem 3.4, instead of the topological Radon transform \(\mathcal{R}_S: \text{CF}(X) \rightarrow \text{CF}(Y) \) itself, we studied the corresponding operation for Lagrangian cycles (characteristic cycles). Then we found an isomorphism
\[
\Psi: H^0(\dot{T}^*X; \mathscr{L}_X) \sim H^0(\dot{T}^*Y; \mathscr{L}_Y),
\]
where we set \(\dot{T}^*X = T^*X \setminus T_X^*X \) and \(\dot{T}^*Y = T^*Y \setminus T_Y^*Y \) (the zero-sections are removed). Moreover this operation \(\Psi \) is (up to some sign \(\epsilon = \pm 1 \)) the isomorphism of Lagrangian cycles induced by the canonical diffeomorphism \(\Phi: \dot{T}^*X \rightarrow \dot{T}^*Y \) which coincides with the classical Legendre transform in the standard affine charts of \(X = \mathbb{R}P^n \) and \(Y = \mathbb{R}P^n \). Since the characteristic cycle \(\text{CC}(1_M) \) of \(1_M \in \text{CF}(X) \) is the conormal cycle \(T_M^*X \) in \(\dot{T}^*X \), the characteristic cycle \(\text{CC}(\mathcal{R}_S(1_M)) \) of the topological Radon transform \(\mathcal{R}_S(1_M) = \varphi_M \) is \(\epsilon(\Phi(T_M^*X)) \). Set \(\pi_Y: \dot{T}^*Y \twoheadrightarrow Y \) and \(N = (\pi_Y \circ \Phi)(T_M^*X) \subset Y \). Then we can easily prove that \(N \) coincides with the dual variety \(M^* \) of \(M \), which is a closed subanalytic subset of \(Y = \mathbb{R}P^n \) (in classical terminology we call it a caustic or Legendre singularity). Moreover it turns out that the closure \(\overline{\dot{T}_{N_{\text{reg}}}^*Y} \) of the conormal bundle \(\dot{T}_{N_{\text{reg}}}^*Y \) in \(\dot{T}^*Y \) is nothing but \(\Phi(T_M^*X) \) (see [16] for a similar argument). Then by using this very nice property of the characteristic cycle \(\text{CC}(\varphi_M) \) we can reconstruct the function \(\varphi_M \) from the geometry of the dual variety \(M^* = N \). Theorem 2.6 was proved in this way. To prove Theorem 2.4, we have to determine the sign \(\epsilon = \pm 1 \), which is the most difficult part of our study. We could determine it by employing the theory of pure sheaves in [21]. More precisely, we expressed the Maslov indices of the Lagrangian submanifolds \(\dot{T}_M^*X \) and \(\dot{T}_{N_{\text{reg}}}^*Y \) by the principal curvatures of \(M \) and \(N_{\text{reg}} \) respectively with the help of results in [11].

Remark 4.2 By the same argument as above, we can give a more transparent proof to the main results of Ernström [9] in the complex case.

5 Grassmann cases and class formulas

5.1 \(k \)-dual varieties

We shall generalize the situation considered in the previous sections to Grassmann cases and obtain similar results. Let \(0 \leq k \leq n - 1 \) be an integer.

Recall that the Grassmann manifold consisting of \(k \)-dimensional planes in \(\mathbb{P}^n \) is defined by

\[
\mathbb{G}_{n,k} = \{ L' | L' \text{ is a } (k + 1)\text{-dimensional linear subspace in } \mathbb{K}^{n+1} \} \quad (5.1)
\]

\[
= \{ L | L \text{ is a } k\text{-dimensional linear subspace in } \mathbb{P}_n \}. \quad (5.2)
\]
Note that $G_{n,0} = \mathbb{P}_n$ and $G_{n,n-1} = \mathbb{P}_n^*$. Then the notion of dual varieties is generalized to Grassmann cases as follows.

Definition 5.1 Let $V \subset \mathbb{P}_n$ be a projective variety. We define the k-dual variety $V^{(k)}$ of V by

$$V^{(k)} := \{ L \in G_{n,k} \mid \exists x \in V_{\text{reg}} \cap L \text{ s.t. } V \not\ni L \text{ at } x \} \subset G_{n,k}. \quad (5.3)$$

If $k = n - 1$ the k-dual $V^{(k)} \subset G_{n,k} \simeq \mathbb{P}_n^*$ is nothing but the classical dual variety of V. In [12], Gelfand-Kapranov-Zelevinsky called $V^{(k)}$ the associated variety of V and showed that $V^{(n - \dim V - 1)}$ is a hypersurface.

5.2 Topological class formulas

From now on, we always assume that the ground field \mathbb{K} is \mathbb{C}. Let $V \subset \mathbb{P}_n$ be a projective variety over \mathbb{C} and $0 \leq k \leq n - 1$ an integer. Assume that $V^{(k)}$ is a hypersurface in $G_{n,k}$.

Definition 5.2 [12, Proposition 2.1 of Chapter 3] Consider the Plücker embedding:

$$V^{(k)} \subset G_{n,k} \subset \mathbb{P}_{\binom{n+1}{k+1}}. \quad (5.4)$$

We call the degree of the defining polynomial of $V^{(k)}$ in $\mathbb{P}_{\binom{n+1}{k+1}}$ the degree of $V^{(k)}$ and denote it by $\deg V^{(k)}$.

In [27], we proved the following topological class formula (i.e., a formula which expresses the degrees of dual varieties) for k-dual varieties by using Ernström's result [9] and some elementary formulas on constructible functions.

Theorem 5.3 ([27]) In the situation as above, for generic linear subspaces $L_1 \simeq \mathbb{P}_{k-1}$, $L_2 \simeq \mathbb{P}_k$ and $L_3 \simeq \mathbb{P}_{k+1}$ of \mathbb{P}_n we have

$$\deg V^{(k)} = (-1)^{(n-k)+\dim V + 1} \left\{ \int_{L_1} \text{Eu}_V - 2 \int_{L_2} \text{Eu}_V + \int_{L_3} \text{Eu}_V \right\}. \quad (5.5)$$

Corollary 5.4 Let $L \simeq \mathbb{P}_{k+1}$ be a generic $(k+1)$-dimensional linear subspace of \mathbb{P}_n and consider the usual dual variety $(V \cap L)^* \subset \mathbb{P}_{k+1}^*$ of $V \cap L \subset L \simeq \mathbb{P}_{k+1}$. Then we have

$$\deg V^{(k)} = \deg (V \cap L)^*. \quad (5.6)$$
The formula in Theorem 5.3 expresses the algebraic invariant $\deg V^{(k)}$ of $V^{(k)}$ by the topological data of V. In the case where $k = n - 1$, we thus reobtain the topological class formulas obtained by Ernström [10], Parusinski and Kleiman [22] etc. See [34, Section 10.1] for an excellent review on this subject. In a forthcoming paper [28], from these topological class formulas we derive various more computable class formulas which extend the previous results obtained by Teissier and Kleiman [23] etc.

References

[26] Y. Matsui and K. Takeuchi, Microlocal study of topological Radon transforms and real projective duality, submitting

[27] Y. Matsui and K. Takeuchi, Topological Radon transforms and degree formulas for dual varieties, submitting

[34] E. Tevelev, Projective duality and homogeneous spaces, Encyclopaedia of mathematical sciences 133, Springer, 2005

