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RESIDUE OF CODIMENSION 1 SINGULAR HOLOMORPHIC
DISTRIBUTIONS

8 B (Takeshi [zawa) JLiFE AR B

1

The aim of this note is to describe the residue formula for singular holomorphic
distribution in terms of the conormal sheaf G in codimension 1 case. ,

We also prove the Baum-Bott type residue formula for singular distributions.
If we define the tangent sheaf of the distribution F by taking the annihilator of
G by the dual coupling, we will show that the residue formula for ¢ deduce the
Baum-Bott type residue formula for the top Chern class of the normal sheaf Nr.
If we assume the Frobenius integrability condition for G, we have the Baum-Bott
residue formula

/X o(NF) = Res, (N, S(F))

for n-th symmetric polinomial ¢. In this case, the Baum-Bott residue formula for
@ = cn is equivalent to the formula we will prove, which means that the Bott
vanishing theorem based on the involutivity of F is not necessary for the top Chern
class ¢, (Nr).

As an application of our results, we will give a residue formula for the non-
transversality of a holomorphic map F': X — Y to a non-singular distribution on
Y.

2. SINGULAR HOLOMORPHIC DISTRIBUTION

2.1. Singular holomorphic distribution. Let X be a complex manifold. We
define a singular holomorphic distribution F on X to be a coherent subsheaf of the
tangent sheaf ©x. we call F the tangent sheaf of the distribution. We say F is
dimension p if a generic stalk of F is rank p free Ox-module. We also define the
normal sheaf Nr of F by the exact sequence

0 —F —0x — Nr—0.

The singular set S(F) of F is defined by S(F) = {p € X | N ,is not Op—free}.

We can also give a definition of a singular holomorphic distribution G on X to
be a coherent subsheaf of the cotangent sheaf Qx. We call G the conormal sheaf of
the distribution. We also say G is codimension q if the generic rank is q. We also
define the cotangent sheaf g of G by the exact sequence

0——>g———+Qx——*Qg——+0.

The singular set S(F) of F is also defined by S(G) = {p € X | Qg , is not Op—free}.
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2.2. Codimension 1 case. we give more simple descriptions for codimension 1
singular distributions. A codimension 1 locally free singular holomorphic distri-
bution is given by a collection of 1-forms w = (wq, Uy) for an open covering
{U4} of X which has the transition relations wg = gapw. on the intersection
Uy, NUg with gog € O*(Us N Ug). Then the cocycle (gap) defines a line bun-
dle G. Generically at p, the covector w, gives an embedding of the fiber G,
into Ty X by f, € Gp ~— fywp € T;X. Thus G is regarded as a subbun-
dle of T*X without on the zero loci of w. Since the map of germs of sections
(F)p € Ox(G)p — (fw)p € Qx,p are injective for all p € X, the sheaf G = Ox(G)
gives the subsheaf of Qx in the above sense in 1.2. Since the quotient sheaf Qr is
not O-free on the zero loci of w on which we can not define the quotient bundle
T*X/G, we see the singular set of G is S(G) = {p|w(p) = 0}.

3. RESIDUE OF CODIMENSION 1 DISTRIBUTION

3.1. Localization of the top Chern class. We determine the dual homology.

class of ¢,(Qx ® G¥). Our main tool is the Cech-de Rham techniques. For gen-
eralities on the integration and the Chern-Weil theory on the Cech-de Rham co-
homology, see [S3] or [IS]. We set for an analytic set S, Uy = X \ S, U; is a
regular neighbourhood of S, and Up; = Up N U;. For a covering U = {Up, U1}
of X, the Cech-de Rham cohomology group H?"(A®(U)) is represented by the
group of cocycles of the type (o0, 01, 001) for op € Z2(Up), o1 € Z*™(U1), and
oo1 € A2~ 1(Up;) with dog; = o1 — 0p. We note that the Cech-de Rham coho-
mology can be regarded as the hypercohomology of the de Rham complex {A°®, d}.
By usual spectral sequence arguments for double complexes, we see that the Cech-
de Rham cohomology group is canonically isomorphic to the de Rham cohomology
group. If we take the subgroup H?*"(A®*(U, Up)) of cocycles of the form (0, o1, oo1),
then this is also isomorphic to the relative cohomology group H2"(X, X \ S;C).

In the above settings, the top Chern class ¢, (F) of a vector bundle E of rank n is
given by the cocycle in H?"(.A®*(U)) as follows. For ¢ =0, 1, let V; be a connection
for E on U; and ¢,(V;) the n-th Chern form of V;. We also write by ¢ (Vo, V1)
the transgression form of ¢, (V;)’s on Up;. Then ¢, (F) is represented by

(Cn(vl)) Cn(V1), Cﬂ(VO’ vl))

If E has a global section s with zero loci S, then we take V, as the s-trivial

connection such that we have ¢, (Vo) = 0. Thus we can define the localized Chern

class at p in H?*(X, X\ S;C) by a Cech-de Rham cocycle (0, ¢n(V1), cn(Vo, V1))
The integration of ¢, (E) = (0, cx(V1), en(Vo, V1)) is defined by

[ )= [ enV)= [ enl¥0,9)
X R 8R
for a tubular neighbourhood R C U; of S.

3.2. Residue of codimension 1 distributions. Now we apply the above argu-
ments to our situations. Let G be a codimension 1 locally free distribution with
the zero loci S(G) and we suppose that S(G) has connected components S;. We
set Up = X \ S(G) and Uj is a regular neighbourhood of S;. We consider the local-
ized class of cn(Q x ®GY) in the Cech-de Rham cohomology group for the covering

= {Uo,Us,--- ,U;}. Since the collection w of 1-forms wq defines the global sec-
txon of Ax ® gV we can take Vg as the w-trivial connection such that ¢,(Vo) =0
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as we discussed above. For all j = 1,--- ,k, we can also take V; as an arbitrary
connection on U;. So we have

en(Qx ®GY) = (0, {en(V5)}j=1,...6r {en(V0, V) }i=1,..6) € H™(X, X \ S(G); C).

We denote by R; a tublar neighbourhood of §; in U;. We give the following
definition of residue.

Definition 3.1. The residue of G at S; is defined by

Res(0,55) = [ en(¥3)= [ (0,9

We can describe the residue into precise form in isolated singular cases. Here we
refer the result in [S3] of Theorem 5.5.

Theorem 3.2. Let s be a.regular section of E with isolated zero {p} and s is locally
given by (f1,...,fn) near p. Then we have :

l:dfl/\"'/\dfn:l
fio fa

where Resp [df ‘f’l\:::;\ff "] is the Grothendick residue of (f1,...,fn).

‘Res(G,p) = Res,

The dual correspondence in the Alexander duality
AL : H*" (X X\ 8(G) —>®Ho S;;C

is given by
AL(cn(Qx ®GY)) = > _Res(G, S;).

Now we have the residue formula for isolated singular cases as,

Theorem 3.3 (The residue formula for isolated singularities). Let w be a codimen-

sion 1 singular holomorphic distribution with the cotangent sheaf G and (fl(j), e ,f,(Lj))
a local expression of w € H(X,Qx ® GV) near p;. .

(J) (7)

.../\dfn-

/cnﬂx®gv ZRebp,{ PO }
j=1 ! "

4, BAUM-BOTT TYPE RESIDUE FORMULA

4.1. Koszul resolution. First let us remember the definition of the Koszul com-
plex. (See [FG], Chapter 4 or [GH], Chapter 5.) Let £ be a locally free O-module of
rank n and d : £ — O an O-homomorphism. Then the Koszul complex of sheaves

0= A"TE AT S A0 -0

is defined by the boundary operator
P
dp(e1 Ao Agp) = D (1) d(Ei)er A AN Aey.
i=1
This complex is exact expect for the last term. If the i image Z, of d is regular ideal,
the complex

0= A" = AV AN ES 0> 0/T; -0
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is exact. We call this exact sequence the Koszul resolution of O/Zy.

Now let us consider our case. As observed in 2.1, w can be regarded as a homo-
morphism w : ¢ — Qx such that it defines a global section

w € H°(X, Homo (G, Qx)) ~ H(X, Qx ®GY).

Locally on Uy, w is given by wa® sy = Y, fi(dz; ® s)) for some local coordinates of
X and a local frame sy for GV. In the other words, w acts on (2x ®GY)Y ~ Ox ®G
as a contraction operator w : © x®G — . We denote by Z,, the ideal sheaf defined
by Im(w : ©x ® G — 0). We assume that S(G) = {p € X |wp = 0} consists
only of isolated points such that the local coefficients (fi,---, fn) of w is regular
sequence on S(G). Then the complex of sheaves ‘

0 AMOx ®G) > A" (Ox8G) — -~ A(Bx®F) -0 - 0/T, =0

is exact with the boundary operator
P
d,,(el A "~/\€p) = Z(—l)i"lf,-el A ~'/\éi/\---/\ep
=1 '
where we set ¢; = 5‘2—; ® s. Therefore this gives the Koszul resolution of O/Z,.
By using this projective resolution, we can defines the Chern character of the
coherent sheaf O/Z,, by '

Proposition 4.1.
ch(O/Z,) = cn(Qx ® GY).

Proof. We use [H] of Theorem 10.1.1 and we have
ch(O/T,) = ch(D (-1)' A' (0x ®G))
=0
=td"H(Qx ® GY)en(x ®GY)
= Cn(QX ® gV)
4.2. Baum-Bott type residue formula. Now we translate the above results in
terms of differential system in the tangent sheaf © x: Let F = {v € Ox | < v,w >=

0} be the annihilator of G. Then F defines a n — 1 dimensional (possibly) singular
distribution. Since G is locally free, by applying ®G to the exact sequence

(1) 0 — F — 0x — Nz —0,
the following sequence |
0 —F®G—06x8G —Nr®G—0.

is also exact. Since the kernel of w: ©x ® G — Ox is equals to F ® G, we have
(2) _ 7.~ (Ox®G)/(F®G) ~Nr®G.
We take Homo( ,O) of the dual exact sequence

0—G—Qx — Qg —0
of (1), we obtain the exact sequence '
0 — Homop(Qg, 0) — Home(Qx,0) — Home(G,0) — Exty(Qg, O) — 0,
which implies '

0 — F — Ox — G — Ext}(Qg,0) — 0.
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We use F = Homp (g, 0) and ©x = Homp(2x, O) in the above. Thus we obtain
(3) 0 — Ny — G¥ — Exth(Qg, 0) — 0.
By taking the Chern characters of (3), we have
(4) ch(Nr) = ch(GY) — ch(Extp (g, O)).
By tensoring G for each term of (3), we also have the exact sequence
0 — 7T, — O — Exth(Q,0)0G — 0

and which gives the isomorphism O/Z, =~ Exzt}(Qg,0) ® G. Thus the Chern
characters of those sheaves satisfy

(5) ch(Exth (g, 0)) = ch(O/T.,)ch(GY).

Therefore by combining the two equalities (4) and (5) for the Chern characters, we
obtain

Proposition 4.2.
ch(NF) = (1~ ch(0/Z,))ch(G")
= (1= ca(Qx ®GY))ch(G").
Now we find the top Chern class of Nx.

Proposition 4.3.

en(NF) = (=1)"(n = Dlca(Qx ® GY).

Proof. Let {¢;} be the formal Chern roots of ¢(Nr) and ch; the terms of i-th
degree in ch. Then from proposition 3.1, we have
chilN7) = 7 (@)

fori <n-—1and

cha(NF) = 201(G")" = eal@x ).
éhl(N F) = c1(GY) is obvious. we also see that

1 ,
S51(6")? = eha(N)

1
=&+ + &)

1
= 5{E + o+ ) —2) 65}
1
= 50 (G¥)? = c2(NF),
which implies c2(NF) = 0. We continue the same computations for fundamental
symmetric polynomials, we have

Cz(./\/j:) == Cn_l(N]-') = 0.
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Thus for n-th term, we have

L e(@Y)" ~ en(2x ® ) = chn(N)

:%(§?+---+§Z)
- ;%{(61+---+€n)”—(—1)"nél“'€n}

Zar(0V)" - e (W),

from which the result follows.
We combin the results in (2.3), we can derive the formula for the normal sheaf
Nz, which is the Baum-Bott type residue formula. '

Theorem 4.4 (Baum-Bott type residue formula). Let w be a codimension 1 dis-
tribution with conormal sheaf G, and F the anthilator of G. We suppose that

G) ={p1, - ,pk} and we write w = Zfi(j)(dzi ® sV) near p;. Then we have

d (J) /\d ()
/ Cn(N]-‘) ( Tl - 1 ZReb[ f f(J) f,,(i,')f ]

proof. This is simply given by

/ eaNz) = (~1)*(n —1)! / e(Qx ®GY)
JX X

d (j)/\.v../\d,,(lj)
=(--1)”(n—1)!}__:151(‘35[f1 ) (j)f ]
- fl f'n,

Remarks. If we assume the integrability condition on G, the above formula im-
plies the Baum-Bott residue formula for singular holomorphic foliations. Since the
Baum-Bott residue for ¢, (Nx) is given by

(—D)™(n — 1)! dim Ezty, (Qg,p, Op) = (=1)"(n — 1)! dim Op/Lup,
the right hand side of 3.4 coincides the Baum-Bott residue.

5. APPLICATIONS

5.1. Residue for the non-transversal loci of a holomorphic map. Let F :
X™ — Y™ be a holomorphic map between n and m dimensional compact complex
manifolds. If Y has a non-singular distribution G = Oy (G), then the inverse image
G = F-1§ gives a distribution of X which is possibly singular. In codimension 1
case, if a distribution g on Y is given by a collection of 1-forms & = (&), then
the inverse image ¢ = F~1G of the invertible sheaf G is given by the collection
of 1-forms w = (F*&,). If the image of the differential DF, dose not contain the
normal space G, we see that covector wy is zero. Thus the non-transversal loci of
F to G is given by :
S(G)={pe X : F'u(p) =0}

Now we give the residue formula for the non-transversality of F' to G. We assume
that S(G) consists of isolated points {p1,--- ,px }. We set that, near pj, (’)
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the coefficients of F*w(j ) such that we write F*w flj )dx +- ot fa G )dwn. Then

we have

/X en(Qx ®GY) = 2_: /X en1(Ox)c1(G)

k () A ' (5)
d - N dfn
= ZRGSPJ [ & (:) (j)f ]
f ) fn

Now we have the result.

Theorem 5.1 (Residue formula for non-transversality). Let F': X™ — Y™ be a
-holomorphic map of generic rankr and G a codimension I non-singular distribution
of Y. We assume that the non-transversal points of F to G are {py,- ,px}, then

we have
df(.?) A df (©))]

T k |
X(X)+;/ ZRBPJ[ f(]) . fJ)

Proof. We denote by X* the set of generic points where F' has rank k. By using
projection formula,

/ ent(8x)c1 () = / ent(Ox)F*(c1()")
X X

- / a1 (G).
Fo(en—i1(X)~[X])

It is obvious that the above terms are zero for £k <.
Here let F: X? — Y™ be a map from compact complex surface. In this case
we write down the above general form of the formula into geometric forms. We set

that y,, = F(’ (z1,z3) is the m-th entry of a local representation of F near p; and
also write dFY) = (J Vdz; + f} () dx,. Then the above formula is.

| ") i fl( f(J)
X(X)+/ c1(G +/ Res [ ]
Fu (o1 (X)~[X)) Fu(X] =3 Res, 9,

J=l

* (cﬂ—l (X)A[X])

We remark that if the generic rank of F is 1, the last term in the left-hand side of
the above vanishes and we have

_ k f(J) f(.'l)
x(X) + x(MF) X 01(9)*—‘;1%%[ £9), $0) }

In the above, My is the generic fiber of F.

As an other example let us consider the case that F : X™ — C is a map for a
curve C and G = Q¢ is the point distribution. Then the above formula implies the
multiplicity formula. (See [IS], [F].)

Theorem 5.2 (The multiplicity formula). Let F : X™ — C be a holomorphic
function for a compact complex curve C with the generic fiber Mp. If F has finite
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number of isolated critical points {p1,--- ,px}, then we have
k
X(X) = x(Mp)x(C) = (-1)* Y _ u(F, p;)
j=1 v

where u(F, p;) is the Milnor number of F at p;.

Remarks. The one dimensional cases of theorem 4.1 is the classical Riemann-
Hurwitz formula for a morphism of Riemann surfaces F.: C — C. We note
that it cannot be deduced from the Baum-Bott type formula for ¢;(Nx) in the
above settings, however we can still apply the residue formula for G in theorem
2.4. By taking the anihilator of the inverse image G of Q, the given tangent sheéaf
F of the lifted foliation turn out to be reduced. Since 1 dimensional manifolds
only admits point foliations, the zero schemes of singularities are the points with
multiplicities. Thus those kinds of singularities become non-singular by taking
reduction. Therefore in our pull-back situation, the normal sheaf AMx is always
locally free and only G itself keeps the informations of singularities of F.
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