<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Endomorphisms of a Module over a Local Ring(Algorithmic problems in algebra, languages and computation systems)</td>
</tr>
<tr>
<td>Author(s)</td>
<td>Ishibashi, Hiroyuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1503: 92-94</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58471</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Endomorphisms of a Module over a Local Ring1

城西大学理学部数学科 石橋 宏行 (Hiroyuki Ishibashi)2
Department of Mathematics,
Josai University,
Sakado, Saitama 350-02, Japan

The matrix A of an endomorphism σ of a module M over a ring R is completely determined by the choice of a basis X for M, where A is called the matrix of σ relative to X.

Therefore, it will be natural to seek X giving a simple A, which is our primitive motivation.

Now, let R be a field. Then we have a good example of such A expressed in a nice form for a suitable X. Indeed, we know the following fact (see Lang[7,p557,Theorem 2.1] or Herstein[4,p307,Theorem 6.7.1]):

\textbf{Theorem.} Let R be a field. Then there are m elements $\{x_1, x_2, \cdots, x_m\}$ in M and m polynomials $\{g_1(t), g_2(t), \cdots, g_m(t)\}$ in the polynomial ring $R[t]$ over R in one indeterminate t such that A is a direct sum of m companion matrices of $\{g_1(t), g_2(t), \cdots, g_m(t)\}$.

What can we say about this result, if R is a local ring? Is it possible to get a concise form of A as above? To analyze this problem is the purpose of this note.

So, let R be a local ring with the identity 1 and the unique maximal ideal \mathfrak{m}, M a free module of rank n over R, and $\text{End}_R M$ the endomorphism ring of M.

Then we have two canonical maps

$$\pi_R : R \to \overline{R} = R/\mathfrak{m} \quad \text{defined by} \quad a \mapsto \overline{a} = a + \mathfrak{m}$$

and

$$\pi_M : M \to \overline{M} = M/\mathfrak{m}M \quad \text{defined by} \quad x \mapsto \overline{x} = x + \mathfrak{m}M.$$
Since \overline{R} is a field, \overline{M} is a vector space over \overline{R} by the scalar multiplication $\overline{a}\overline{x} = \overline{ax}$ for $a \in R$ and $x \in M$. Clearly the ring homomorphism π_R is an R-module homomorphism if we define $\overline{ab} = \overline{ab}$ for $a, b \in R$. Also π_M is an R-module homomorphism.

Further, for $x \in M$ and $\sigma \in \text{End}_R M$, if we define $\overline{\sigma x} = \overline{\sigma x}$, we obtain an endomorphism $\overline{\sigma}$ of \overline{M}, that is, $\overline{\sigma} \in \text{End}_{\overline{R}} \overline{M}$. Thus we have the third canonical map

$$\pi_E : \text{End}_R M \to \text{End}_{\overline{R}} \overline{M} \quad \text{by} \quad \sigma \mapsto \overline{\sigma},$$

which is a ring homomorphism.

An element $\rho \in \text{End}_R M$ is called a permutation if it is a permutation on some basis for M. Also $\delta \in \text{End}_R M$ is diagonal if the matrix of δ is diagonal relative to some basis for M.

Also we denote the ring of $r \times s$ matrices over R by $M_{r,s}(R)$, and by $M_r(R)$ if $r = s$. Then, our results are as follows:

Theorem A. For any $\sigma \in \text{End}_R M$ there is a new basis X and a permutation ρ on X such that the matrix of $\rho^{-1} \sigma$ relative to X is expressed as

$$\begin{pmatrix}
I_{n-m} & O_{n-m,m} \\
B_{m,n-m} & D_m
\end{pmatrix},$$

where

(i) m is the number of the invariant factors of $\overline{\sigma}$,

(ii) $I_{n-m} \in M_{n-m}(R)$ is the identity matrix,

(iii) $O_{n-m,m} \in M_{n-m,m}(R)$ is the zero matrix,

(iv) $D_m \in (d_{ij}) \in M_m(R)$ is a matrix with $d_{ij} \equiv 0 \mod m$ if $i \neq j$, i.e., diagonal modulo m,

and

(v) $B_{m,n-m} = (b_{ij}) \in M_{m,n-m}(R)$ is a matrix such that for any $i = 1, 2, \ldots, m$ we have

$$b_{ij} \equiv 0 \mod m$$

for $j \leq \Pi_{\lambda=1}^{i-1}(n_{\lambda} - 1)$ or $\Pi_{\mu=1}^{i}(n_{\mu} - 1) < j$.

References

