<table>
<thead>
<tr>
<th>Title</th>
<th>On dense subsets of boundaries of Coxeter groups (Algorithmic problems in algebra, languages and computation systems)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Hosaka, Tetsuya</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1503: 76-81</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58473</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On dense subsets of boundaries of Coxeter groups

宇都宮大学教育学部
保坂 哲也 (Tetsuya Hosaka)

The purpose of this note is to introduce some results of recent papers [7], [8] and [9] about dense subsets of boundaries of Coxeter groups.

A Coxeter group is a group W having a presentation

$\langle S \mid (st)^{m(s,t)} = 1 \text{ for } s,t \in S \rangle$,

where S is a finite set and $m : S \times S \to \mathbb{N} \cup \{\infty\}$ is a function satisfying the following conditions:

(i) $m(s,t) = m(t,s)$ for any $s,t \in S$,
(ii) $m(s,s) = 1$ for any $s \in S$, and
(iii) $m(s,t) \geq 2$ for any $s,t \in S$ such that $s \neq t$.

The pair (W, S) is called a Coxeter system. Let (W, S) be a Coxeter system. For a subset $T \subset S$, W_T is defined as the subgroup of W generated by T, and called a parabolic subgroup. A subset $T \subset S$ is called a spherical subset of S, if the parabolic subgroup W_T is finite. For each $w \in W$, we define $S(w) = \{s \in S \mid \ell(ws) < \ell(w)\}$, where $\ell(w)$ is the minimum length of word in S which represents w. For a subset $T \subset S$, we also define $W^T = \{w \in W \mid S(w) = T\}$.

Let (W, S) be a Coxeter system and let S' be the family of spherical subsets of S. We denote WS' as the set of all cosets of the form wW_T, with $w \in W$ and $T \in S'$. The sets S' and WS' are partially ordered by inclusion. Contractible simplicial complexes $K(W, S)$ and $\Sigma(W, S)$ are defined as the geometric realizations of the partially ordered sets S' and WS', respectively ([4]). The natural embedding $S' \to WS'$ defined by $T \mapsto W_T$ induces an embedding $K(W, S) \to \Sigma(W, S)$ which we regard as an inclusion. The group W acts on $\Sigma(W, S)$ via simplicial automorphism. Then $\Sigma(W, S) = WK(W, S)$.
and $\Sigma(W,S)/W \cong K(W,S)$ ([4]). For each $w \in W$, $wK(W,S)$ is called a chamber of $\Sigma(W,S)$. If W is infinite, then $\Sigma(W,S)$ is noncompact. In [10], G. Moussong proved that a natural metric on $\Sigma(W,S)$ satisfies the CAT(0) condition. Hence, if W is infinite, $\Sigma(W,S)$ can be compactified by adding its ideal boundary $\partial\Sigma(W,S)$ ([4], [3]). This boundary $\partial\Sigma(W,S)$ is called the boundary of (W,S). We note that the natural action of W on $\Sigma(W,S)$ is properly discontinuous and cocompact ([4]), and this action induces an action of W on $\partial\Sigma(W,S)$.

A subset A of a space X is said to be dense in X, if $\overline{A} = X$. A subset A of a metric space X is said to be quasi-dense, if there exists $N > 0$ such that each point of X is N-close to some point of A.

Let (W,S) be a Coxeter system. Then W has the word metric d_ℓ defined by $d_\ell(w,w') = \ell(w^{-1}w')$ for each $w, w' \in W$.

In [7], the following theorems were proved.

Theorem 1. Let (W,S) be a Coxeter system. Suppose that $W^{\{s_0\}}$ is quasi-dense in W with respect to the word metric d_ℓ and $o(s_0t_0) = \infty$ for some $s_0, t_0 \in S$, where $o(s_0t_0)$ is the order of s_0t_0 in W. Then there exists $\alpha \in \partial\Sigma(W,S)$ such that the orbit $W\alpha$ is dense in $\partial\Sigma(W,S)$.

Suppose that a group Γ acts properly and cocompactly by isometries on a CAT(0) space X. Every element $\gamma \in \Gamma$ such that $o(\gamma) = \infty$ is a hyperbolic transformation of X, i.e., there exists a geodesic axis $c : \mathbb{R} \to X$ and a real number $a > 0$ such that $\gamma \cdot c(t) = c(t + a)$ for each $t \in \mathbb{R}$ ([3]). Then, for all $x \in X$, the sequence $\{\gamma^t x\}$ converges to $c(\infty)$ in $X \cup \partial X$. We denote $\gamma^\infty = c(\infty)$.

Theorem 2. Let (W,S) be a Coxeter system. If the set

$$\bigcup \{W^{\{s\}} \mid s \in S \text{ such that } o(st) = \infty \text{ for some } t \in S\}$$

is quasi-dense in W, then $\{w^\infty \mid w \in W \text{ such that } o(w) = \infty\}$ is dense in $\partial\Sigma(W,S)$.

Remark. For a negatively curved group G and the boundary ∂G of G,

1. we can show that $G\alpha$ is dense in ∂G for each $\alpha \in \partial G$ by an easy argument, and
(2) it is known that \(\{ g^\infty \mid g \in G \text{ such that } o(g) = \infty \} \) is dense in \(\partial G \) ([2]).

As an application of Theorems 1 and 2, we obtained the following theorem in [7].

Theorem 3. Let \((W, S)\) be a Coxeter system. Suppose that there exist a maximal spherical subset \(T \) of \(S \) and an element \(s_0 \in S \) such that \(o(s_0t) \geq 3 \) for each \(t \in T \) and \(o(s_0t_0) = \infty \) for some \(t_0 \in T \). Then

1. \(W\alpha \) is dense in \(\partial\Sigma(W, S) \) for some \(\alpha \in \partial\Sigma(W, S) \), and
2. \(\{ w^\infty \mid w \in W \text{ such that } o(w) = \infty \} \) is dense in \(\partial\Sigma(W, S) \).

Example. The Coxeter system defined by the diagram in Figure 1 is not hyperbolic in Gromov sense, since it contains a copy of \(\mathbb{Z}^2 \), and it satisfies the condition of Theorem 3.

\[
\begin{array}{c}
\text{s}_0 \\
3 \\
3 \\
3 \\
T \\
t_0
\end{array}
\]

FIGURE 1

Suppose that a group \(G \) acts on a compact metric space \(X \) by homeomorphisms. Then \(X \) is said to be minimal, if every orbit \(Gx \) is dense in \(X \).

For a negatively curved group \(G \) and the boundary \(\partial G \) of \(G \), \(G\alpha \) is dense in \(\partial G \) for each \(\alpha \in \partial G \), that is, \(\partial G \) is minimal.

We note that Coxeter groups are non-positive curved groups and not negatively curved groups in general. There exist examples of Coxeter systems whose boundaries are not minimal as follows.

Example. Let \(S = \{ s, t, u \} \) and let

\[
W = \langle S \mid s^2 = t^2 = u^2 = (st)^3 = (tu)^3 = (us)^3 = 1 \rangle.
\]

Then \((W, S)\) is a Coxeter system and \(\Sigma(W, S) \) is the flat Euclidean plane. For any \(\alpha \in \partial\Sigma(W, S) \), \(W\alpha \) is a finite-points set and not dense in \(\partial\Sigma(W, S) \) which is a circle. This example implies that we can not omit the assumption "\(m(s_0, t_0) = \infty \)" in Theorem 3.
Example. Let $S = \{s_1, s_2, s_3, s_4\}$ and let

\[W = \langle S \mid s_1^2 = s_2^2 = s_3^2 = s_4^2 = (s_1s_2)^2 = (s_2s_3)^2 = (s_3s_4)^2 = (s_4s_1)^2 = 1 \rangle. \]

Then (W, S) is a Coxeter system and $\Sigma(W, S)$ is the Euclidean plane. For any $\alpha \in \partial \Sigma(W, S)$, $W\alpha$ is a finite-points set and not dense in $\partial \Sigma(W, S)$ which is a circle. Here we note that $\{s_1, s_2\}$ is a maximal spherical subset of S, $m(s_1, s_3) = \infty$ and $m(s_2, s_3) = 2$. This example implies that we can not omit the assumption "$m(s_0, t) \geq 3$" in Theorem 3.

As an extension of Theorem 3, we have obtained the following theorem in [9].

Theorem 4. Let (W, S) be a Coxeter system which satisfies the condition in Theorem 3. Then every orbit $W\alpha$ is dense in $\partial \Sigma(W, S)$, that is, $\partial \Sigma(W, S)$ is minimal.

Here the following problems are open.

Problem. Does there exist a Coxeter system (W, S) such that some orbit $W\alpha$ is dense in $\partial \Sigma(W, S)$ and $\partial \Sigma(W, S)$ is not minimal?

Problem. Suppose that a group G acts geometrically on two CAT(0) spaces X and X'. Is it the case that ∂X is minimal if and only if $\partial X'$ is minimal?

Problem (Ruane). Suppose that a group G acts geometrically on a CAT(0) space X. Is it always the case that the set $\{g^\infty \mid g \in G, o(g) = \infty\}$ is dense in ∂X?

In [8], we also have obtained the following theorem.

Theorem 5. Let (W, S) be a Coxeter system and let T be a subset of S such that W_T is infinite. If the set

\[\bigcup \{ W^{(s)} \mid s \in S \text{ such that } o(ss_0) = \infty \text{ and } s_0t \neq ts_0 \text{ for some } s_0 \in S \setminus T \text{ and } t \in \tilde{T} \} \]

is quasi-dense in W with respect to the word metric, then $W\partial \Sigma(W_T, T)$ is dense in $\partial \Sigma(W, S)$, where W_T is the essential parabolic subgroup of (W_T, T).
If W is a hyperbolic Coxeter group, then $W\partial\Sigma(W_T, T)$ is dense in $\partial\Sigma(W, S)$ for any $T \subset S$ such that W_T is infinite.

As an application of Theorem 5, we have obtained the following corollary in [8].

Corollary 6. Let (W, S) be a Coxeter system and let T be a subset of S such that W_T is infinite. Suppose that there exist a maximal spherical subset U of S and an element $s \in S$ such that $o(su) \geq 3$ for every $u \in U$ and $o(su_0) = \infty$ for some $u_0 \in U$. If

1. $s \not\in T$ and $u_0 \in \tilde{T}$, or
2. $u_0 \not\in T$ and $s \in \tilde{T}$,

then $W\partial\Sigma(W_T, T)$ is dense in $\partial\Sigma(W, S)$.

Concerning W-invariantness of $\partial\Sigma(W_T, T)$, the following theorem is known.

Theorem 7 ([6]).

1. Let (W, S) be a Coxeter system and $T \subset S$. Then $\partial\Sigma(W_T, T)$ is W-invariant if and only if $W = W_T \times W_{S \setminus \tilde{T}}$.
2. Let (W, S) be an irreducible Coxeter system and let T be a proper subset of S such that W_T is infinite. Then $\partial\Sigma(W_T, T)$ is not W-invariant.

Here the following problem is open.

Problem. Let (W, S) be a Coxeter system and let T be a subset of S such that W_T is infinite. Is it the case that if $\partial\Sigma(W_T, T)$ is not W-invariant then $W\partial\Sigma(W_T, T)$ is dense in $\partial\Sigma(W, S)$? Particularly, is it the case that if (W, S) is an irreducible Coxeter system then $W\partial\Sigma(W_T, T)$ is dense in $\partial\Sigma(W, S)$ for any subset T of S such that W_T is infinite?

References

appear.

DEPARTMENT OF MATHEMATICS, UTSUNOMIYA UNIVERSITY, UTSUNOMIYA, 321-8505, JAPAN

E-mail address: hosaka@cc.utsunomiya-u.ac.jp