Title
On Numerical Semigroups of Genus 9 (Algorithmic problems in algebra, languages and computation systems)

Author(s)
Komeda, Jiryo

Citation
数理解析研究所講究録 (2006), 1503: 70-75

Issue Date
2006-07

URL
http://hdl.handle.net/2433/58474

Type
Departmental Bulletin Paper

Textversion
publisher
Kyoto University
On Numerical Semigroups of Genus 9

Jiryo Komeda
Center for Basic Education and Integrated Learning
Kanagawa Institute of Technology

§1. Introduction.
Let \(\mathbb{N}_0 \) be the additive semigroup of non-negative integers. A subsemigroup \(H \) of \(\mathbb{N}_0 \) is called a numerical semigroup if the complement \(\mathbb{N}_0 \setminus H \) of \(H \) in \(\mathbb{N}_0 \) is a finite set. The cardinality \(g(H) \) of the set \(\mathbb{N}_0 \setminus H \) is called the genus of \(H \). In this paper we are interested in numerical semigroups of genus 9. For a non-singular irreducible curve \(C \) over an algebraically closed field \(k \) of characteristic 0 (which is called a curve in this paper) and its point \(P \) we set

\[H(P) = \{ n \in \mathbb{N}_0 | \exists \text{ a rational function } f \text{ on } C \text{ with } (f)_\infty = nP \}. \]

A numerical semigroup is Weierstrass if there exists a curve \(C \) with its point \(P \) such that \(H(P) = H \). We have the following results:

Fact 1. Every numerical semigroup of genus \(g \leq 8 \) is Weierstrass. (See Lax [10], Komeda [4] and Komeda-Ohbuchi [8] for the case \(g = 4, 5 \leq g \leq 7 \) and \(g = 8 \) respectively.)

We note that for any \(g \geq 16 \) there exists a non-Weierstrass numerical semigroup of genus \(g \) (see Buchweitz [1].) A numerical semigroup \(H \) is primitive if the largest positive integer not in \(H \) is less than twice the least positive integer in \(H \). Then we know the following fact:

Fact 2. Every primitive numerical semigroup of genus 9 is Weierstrass. (See Komeda [6].)

We want to study non-primitive numerical semigroups of genus 9.

An \(n \)-semigroup, i.e., a numerical semigroup in which the least positive integer is \(n \). When \(n \) is lower, we have the following result:

Fact 3. For \(1 \leq n \leq 5 \) every \(n \)-semigroup is Weierstrass. (See Maclachlan [11], Komeda [2] and [3] for the case \(n = 3, n = 4 \) and \(n = 5 \) respectively.)

Moreover, we have the following facts for two kinds of numerical semigroups:

Fact 4. Every \(g \)-semigroup of genus \(g \) is Weierstrass. (See Pinkham [12].)
Fact 5. There is a unique non-primitive \((g - 1)\)-semigroup of genus \(g\), which is Weierstrass. (See Komeda [5].)

Therefore, we are interested in non-primitive \(n\)-semigroups of genus 9 for \(n = 6, 7\).

Definition 1. A numerical semigroup \(H\) with \(\#M(H) = m\) is said to be of toric type if there are a positive integer \(l\), monomials \(g_j\)'s \((j = 1, \ldots, l + m - 1)\) in \(k[X_1, \ldots, X_m]\) and a saturated subsemigroup \(S\) of \(\mathbb{Z}^l\) generated by \(b_1, \ldots, b_{l+m-1}\) which generates \(\mathbb{Z}^l\) as a group such that

\[
\text{Spec } k[H] \xrightarrow{\square} \text{Spec } k[X_1, \ldots, X_m] \\
\text{Spec } k[S] \xrightarrow{\square} \text{Spec } k[Y_1, \ldots, Y_{l+m-1}]
\]

where the horizontal maps are the embeddings through the generators and the right vertical map is induced by the \(k\)-algebra morphism from \(k[Y_1, \ldots, Y_{l+m-1}]\) to \(k[X_1, \ldots, X_m]\) sending \(Y_j\) to \(g_j\).

Definition 2. A \(2m\)-semigroup \(H\) is of double covering type if there is a double covering \(\pi : C \rightarrow C_0\) of curves with ramification point \(P\) such that \(H(P) = H\).

We can show the following:

Theorem 1. Every non-primitive 6-semigroup of genus 9 is either of toric type or double covering type, hence Weierstrass. (See Komeda [9].)

We know that every non-primitive 7-semigroup of genus 9 is generated by 5 or 6 elements. We list up all non-primitive 7-semigroups of genus 9.

Remark 2. A non-primitive 7-semigroup of genus 9 generated by 5 elements is one of the following:

\(\langle 7, 9, 10, 11, 13 \rangle, \langle 7, 9, 10, 11, 12 \rangle, \langle 7, 9, 10, 12, 13 \rangle, \langle 7, 8, 11, 12, 13 \rangle\).

Theorem 3. Every non-primitive 7-semigroup of genus 9 generated by 5 elements is of toric type, hence Weierstrass. (See Komeda [7]).

Remark 4. A non-primitive 7-semigroup of genus 9 generated by 6 elements is one of the following:

\(\langle 7, 9, 11, 12, 13, 17 \rangle, \langle 7, 9, 11, 12, 13, 15 \rangle, \langle 7, 10, 11, 12, 13, 16 \rangle, \langle 7, 10, 11, 12, 13, 15 \rangle\).

First, we shall show that \(\langle 7, 9, 11, 12, 13, 17 \rangle\) is of toric type. We set \(a_1 = 7, a_2 = 9, a_3 = 11, a_4 = 12, a_5 = 13, a_6 = 17\). Then we have a generating system of
relations among a_1, a_2, a_3, a_4, a_5 and a_6 as follows:

\[3a_1 = a_2 + a_4, 2a_2 = a_1 + a_3, 2a_3 = a_2 + a_5, 2a_4 = a_1 + a_6, 2a_5 = a_2 + a_6,\]

\[2a_6 = a_2 + a_4 + a_5, a_1 + a_5 = a_2 + a_3, a_1 + a_6 = a_3 + a_5, 2a_1 + a_3 = a_4 + a_5,\]

\[a_3 + a_6 = a_1 + a_2 + a_4, a_5 + a_6 = a_1 + a_3 + a_4, 2a_1 + a_2 = a_3 + a_4,\]

\[2a_1 + a_4 = a_2 + a_6, a_4 + a_6 = a_1 + a_2 + a_5.\]

We set

\[b_i = e_i \in \mathbb{Z}^6, i = 1, \ldots, 6, b_7 = (1, 1, -1, 0, 0, 0), b_8 = (1, 0, -1, 1, 0, 0),\]

\[b_9 = (1, 0, 1, -1, 1, 0), b_{10} = (-1, 0, -1, 1, 0, 1), b_{11} = (0, 0, 2, -1, 0, 0).\]

Let S be the subsemigroup of \mathbb{Z}^6 generated by b_1, \ldots, b_{11}. Then Spec $k[S]$ is a 6-dimensional affine toric variety. We have a fiber product

\[
\begin{array}{cccc}
\text{Spec } k[H] & \downarrow & \text{Spec } k[X_1, \ldots, X_6] = \mathbb{A}^6 \\
\downarrow & \square & \downarrow^\eta \\
\text{Spec } k[S] & \leftarrow & \text{Spec } k[Y_1, \ldots, Y_{11}] = \mathbb{A}^{11}
\end{array}
\]

where $\eta : k[Y_1, \ldots, Y_{11}] \rightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \leq i \leq 11$ where

\[\xi_1 = X_1, \xi_2 = X_6, \xi_3 = X_3, \xi_4 = X_5, \xi_5 = X_1, \xi_6 = X_6,\]

\[\xi_7 = X_5, \xi_8 = X_2, \xi_9 = X_4, \xi_{10} = X_4, \xi_{11} = X_2.\]

Hence, the numerical semigroup $\langle 7, 9, 11, 12, 13, 17 \rangle$ is Weierstrass.

Second, we shall show that $\langle 7, 9, 11, 12, 13, 15 \rangle$ is of toric type. We set $a_1 = 7, a_2 = 9, a_3 = 11, a_4 = 12, a_5 = 13, a_6 = 15$. Then we have a generating system of relations among a_1, a_2, a_3, a_4, a_5 and a_6 as follows:

\[3a_1 = a_2 + a_4, 2a_2 = a_1 + a_3, 2a_3 = a_1 + a_6, 2a_4 = a_3 + a_5, 2a_5 = a_3 + a_6,\]

\[2a_6 = a_1 + a_3 + a_4, a_1 + a_5 = a_2 + a_3, a_1 + a_6 = a_2 + a_5,\]

\[2a_1 + a_3 = a_4 + a_5, a_3 + a_6 = 2a_1 + a_4, a_5 + a_6 = a_1 + a_2 + a_4,\]

\[2a_1 + a_2 = a_3 + a_4, 2a_1 + a_5 = a_4 + a_6, a_2 + a_6 = a_3 + a_4.\]

We set

\[b_i = e_i \in \mathbb{Z}^4, i = 1, \ldots, 4, b_5 = (1, 1, -1, 0), b_6 = (-1, 1, 1, 0),\]

\[b_7 = (-1, 0, 2, 0), b_8 = (2, 0, -1, 1), b_9 = (-1, 2, 0, -1).\]
Let S be the subsemigroup of \mathbb{Z}^4 generated by b_1, \ldots, b_9. Then Spec $k[S]$ is a 4-dimensional affine toric variety. We have a fiber product

$$
\begin{array}{c}
\text{Spec } k[H] \leftarrow \text{Spec } k[X_1, \ldots, X_6] = A^6 \\
\downarrow \quad \Box \quad \downarrow^{\eta} \\
\text{Spec } k[S] \leftarrow \text{Spec } k[Y_1, \ldots, Y_9] = A^9
\end{array}
$$

where $\eta : k[Y_1, \ldots, Y_9] \rightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \leq i \leq 9$ where

$\xi_1 = X_1, \xi_2 = X_5, \xi_3 = X_2, \xi_4 = X_3, \xi_5 = X_6, \xi_7 = X_3, \xi_8 = X_4, \xi_9 = X_4$.

Hence, the numerical semigroup $(7, 9, 11, 12, 13, 15)$ is Weierstrass.

Third, we consider the semigroup $(7, 10, 11, 12, 13, 16)$. We set

$a_1 = 7, a_2 = 10, a_3 = 11, a_4 = 12, a_5 = 13, a_6 = 16$.

Then we have a generating system of relations among a_1, a_2, a_3, a_4, a_5 and a_6 as follows:

$3a_1 = a_2 + a_3, 2a_2 = a_1 + a_5, 2a_3 = a_2 + a_4, 2a_4 = a_3 + a_5, 2a_5 = a_2 + a_6, 2a_6 = a_1 + a_5, a_1 + a_6 = a_2 + a_5, a_1 + a_6 = a_3 + a_4,$

$2a_1 + a_2 = a_3 + a_5, 2a_1 + a_3 = a_4 + a_5, 2a_1 + a_4 = a_2 + a_6,$

$2a_1 + a_5 = a_3 + a_6, a_4 + a_6 = a_1 + a_2 + a_3, a_5 + a_6 = a_1 + a_2 + a_4.$

Let S be the subsemigroup of \mathbb{Z}^4 generated by

$b_i = e_i \in \mathbb{Z}^4, i = 1, \ldots, 4, b_5 = (2, -1, 0, 0), b_6 = (3, -2, 0, 0),

b_7 = (-1, 2, 1, 0), b_8 = (-2, 2, 1, 1), b_9 = (4, -3, -1, 0).

Then Spec $k[S]$ is a 4-dimensional non-normal variety such that we have a fiber product

$$
\begin{array}{c}
\text{Spec } k[H] \leftarrow \text{Spec } k[X_1, \ldots, X_6] = A^6 \\
\downarrow \quad \Box \quad \downarrow^{\eta} \\
\text{Spec } k[S] \leftarrow \text{Spec } k[Y_1, \ldots, Y_9] = A^9
\end{array}
$$

Here $\eta : k[Y_1, \ldots, Y_9] \rightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \leq i \leq 9$ where

$\xi_1 = X_2, \xi_2 = X_1, \xi_3 = X_1, \xi_4 = X_3, \xi_5 = X_5, \xi_6 = X_6, \xi_7 = X_3, \xi_8 = X_4, \xi_9 = X_4$.

Lastly we investigate the semigroup $(7, 10, 11, 12, 13, 15)$. We set

$a_1 = 7, a_2 = 10, a_3 = 11, a_4 = 12, a_5 = 13, a_6 = 15.$
Then we have a generating system of relations among a_1, a_2, a_3, a_4, a_5 and a_6 as follows:

\begin{align*}
3a_1 &= a_2 + a_3, \quad 2a_2 = a_1 + a_5, \quad 2a_3 = a_1 + a_6, \quad 2a_4 = 2a_1 + a_2, \\
2a_5 &= 2a_1 + a_4, \quad 2a_6 = a_1 + a_3, \quad a_1 + a_6 = a_2 + a_4, \quad 2a_4 = 2a_1 + a_2, \\
2a_1 + a_2 &= a_3 + a_5, \quad 2a_1 + a_3 = a_4 + a_5, \quad 2a_1 + a_4 = a_3 + a_6, \\
2a_1 + a_5 &= a_4 + a_6, \quad a_1 + a_6 = a_2 + a_4, \quad a_2 + a_6 = a_4 + a_5.
\end{align*}

Let S be the subsemigroup of \mathbb{Z}^3 generated by

$b_i = e_i \in \mathbb{Z}^3$, $i = 1, \ldots, 3$, $b_4 = (1, 1, -1)$, $b_5 = (1, -1, 1)$, $b_6 = (2, -2, 1)$, $b_7 = (-2, 1, 1)$, $b_8 = (-1, 3, -1)$.

Then $\text{Spec } k[S]$ is a 3-dimensional non-normal variety where we have a fiber product

$$
\begin{array}{ccc}
\text{Spec } k[H] & \hookrightarrow & \text{Spec } k[X_1, \ldots, X_6] = \mathbb{A}^6 \\
\downarrow & & \downarrow^{\eta} \\
\text{Spec } k[S] & \hookrightarrow & \text{Spec } k[Y_1, \ldots, Y_8] = \mathbb{A}^8
\end{array}
$$

Here $\eta : k[Y_1, \ldots, Y_8] \rightarrow k[X_1, \ldots, X_6]$ is the k-algebra homomorphism sending Y_i to ξ_i for $1 \leq i \leq 8$ where

$$
\xi_1 = X_2, \ \xi_2 = X_4, \ \xi_3 = X_6, \ \xi_4 = X_1, \ \xi_5 = X_5, \ \xi_6 = X_3, \ \xi_7 = X_1, \ \xi_8 = X_3.
$$

References

