Title
RELATIVE E-RINGS (Algorithmic problems in algebra, languages and computation systems)

Author(s)
Hirano, Yasuyuki

Citation
数理解析研究所講究録 (2006), 1503: 57-59

Issue Date
2006-07

URL
http://hdl.handle.net/2433/58477

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
RELATIVE E-RINGS

Faculty of Science, Okayama University

1. INTRODUCTION

In [4, Problem 45], L. Fuchs posed the following problem:
Which rings R satisfy $R \cong \text{End}(R^+)$? The author presents
particular, he studied commutative rings R satisfying $R \cong \text{End}(R^+)$
and he called such rings E-rings. For E-rings, see the book "Additive
Groups of Rings I ([3])" by S. Feigelstock. Recently, in [2] R. Göbel,
S. Shelah and L. Strüngmann constructed noncommutative rings R sat-
sifying $R \cong \text{End}(R^+)$.

2. RELATIVE E-RINGS

Let R be a ring with identity. By R^+ we denote the additive group
of the ring R. For an element $a \in R$, we have the mapping $a_l : R \to R$
deﬁned by $x \to ax$. a_l is called the left multiplication induced by a.
Similarly we have the right multiplication induced by a. Obviously the
sets $\{a_l \mid a \in R\}$ and $\{a_r \mid a \in R\}$ form rings. We denote these rings
by R_l and R_r, respectively.

Definition 2.1. A ring R is called an E-ring if $R_l = \text{End}(R^+)$.

The detailed version of this paper has been submitted for publication elsewhere.
This notion is generalized as follows.

Definition 2.2. Let S be a ring and let R be a ring such that R is a right S-module. A ring R is called a left E-ring relative to S if $R_l = \text{End}_S(R_S)$.

Let \mathbb{Z} denote the ring of rational integers. Then a left E-ring relative \mathbb{Z} is nothing else but an E-ring. Let S be a ring and let R be a ring such that R is a right S-module. Then $\text{End}_S(R_S)$ always contains R_l. Hence we can say that left E-rings relative to S are those rings R such that $\text{End}_S(R_S)$ is small as possible.

From the definition of a relative E-ring, the following is obvious.

Proposition 2.3. Let S be a ring and let R be a ring such that R is a right S-module. If R is a left E-ring relative to S and if $f \in \text{End}(R_S)$, then $f(R)$ is a principal right ideal of R.

Also we can easily see the following:

Proposition 2.4. Let S be a ring and let R be a ring such that R is a right S-module.

1. The ring R is a left E-ring relative to S.

2. Every element of R_r commutes with any element of $\text{End}_S(R_S)$.

As a corollary, we have the following characterizations of an E-algebra relative to a commutative ring.

Corollary 2.5. Let S be a commutative ring and R be an S-algebra. Then the following are equivalent:

1. R is an E-ring relative to S.

2. $R_r = \text{End}_S(R_S)$.

3. R is a commutative ring and $R \cong \text{End}_S(R_S)$.

4. $\text{End}_S(R_S)$ is a commutative ring.
Example 2.6. Let R be a commutative ring and let $S = R[x, y]$. Consider the ring $A = S/(x) \oplus S/(y)$. Then A is a S-algebra, but A is not a cyclic S-module. Clearly $End_S(A) \cong A$ and so $End_S(A)$ is commutative. Therefore A is a relative E-algebra over S.

Example 2.7. Let R be a commutative ring and let S be a multiplicatively closed subset of R. Then $S^{-1}R$ is a relative E-algebra over S.

Let R be a commutative ring and let $\{I_n\}_{n \geq 0}$ be a family of ideals of R satisfying the condition that $I_n \subseteq I_m$ whenever $n \geq m$. We can then define a topology on the set R with an open basis $\{a + I_n \mid a \in R, n \geq 0\}$. This topology is called the linear topology defined by a family of ideals $\{I_n\}_{n \geq 0}$. Then we can construct the completion \hat{R} of R. It is well-known that

$$\hat{R} \cong \lim_{\longleftarrow n} R/I_n.$$

Example 2.8. Let R be a commutative ring and consider the linear topology defined by a family of ideals $\{I_n\}_{n \geq 0}$. Then the completion \hat{R} of R is a relative E-algebra over R.

REFERENCES