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Abstract

In this paper we investigate the growth ofneighborhoods ofcellular automata following
such offinitely generated groups particularly concerning the Garden ofEden theorem.

1 Introduction
A cellular automaton (CA for short) is a uniformly structured information processing system
defined on a regular discrete space $S$, which is typically presented by a Cayley graph ofa finitely
generated group. The same finite automaton (cell) is placed at every point of the space. Every
cell simultaneously changes its state following the local ffinction defined on the neighboring
cells. The neighborhood $N$ is also spatially uniform. Most studies on CA assume the standard
neighborhoods after John von Neumann and E. F. Moore.
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Figure 1: The von Neumann neighborhood $N_{V}$ Figure 2: The Moore neighborhood $N_{M}$

Changing the view point, however, we posed an algebraic theory of neighborhoods of CA for
clarifying the significance ofthe neighborhood itself, where the neighborhood $N$ can be an arbi-
trary finite subset of $S$, see Nishio, Margenstern and von Haeseler $(2004, 2005)$ $[11, 13]$ , where
the main topics is a question if an arbitrary neighborhood $N$fills or generates $S$ . Evidently the
von Neumann and the Moore neighborhoods fill $Z^{2}$ . A typical nonstandard neighborhood a
3-horse $N_{3H}=\{a^{2}b, a^{-2}b, ab^{-2}\}$ was proved to fill $\mathbb{Z}^{2}[12]$ . Note that $N_{3H}$ dose not contain
the identity 1 of the group (origin of the space).
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Figure 3: A 3-horse $N_{3H}$ .

Now in this paper, assuming that the neighborhood fills the space, we study the gmwth of
neighborhoods ofcellular automata following the growth offinitely generated groups obtained
my many authors with respect to the Garden of Eden theorem (GOE theorem for short), see
Machi and Mignosi (1993) [6] and others. We discuss the growth of neighborhoods of CA
particularly on the $n$-dimensional Euclidean space and the hyperbolic plane. For example we
will see that the GOE theorem holds for a CA with the neighborhood $N_{3H}$ in $Z^{2}$ since its growth
is polynomial, but not for a CA with a similar neighborhood in the pentagrid {5, 4} since its
growth is exponential.

2 Preliminaries

2.1 Celular Automaton CA
A CA is defined by a 4-tuple $(\Gamma(S), N, Q, f)$ .

$\bullet$ Cellular space $\Gamma(S)$ is a Cayley graph of a finitely generated group $S=\langle G|R\rangle$ with
generators $G$ and relators $R$. If $G=\{g_{1},g_{2}, \ldots,g,\}$ , every element of $S$ is presented by a
word $x\in(G\cup G^{-1})^{*}$ , where $G^{-1}=\{g^{-1}|g\cdot g^{-1}=1, g\in G\}$. The set $R$ ofrelators
is written as

$R=\{w_{i}=w_{j}’|w:,w_{1}’$. $\in(G\cup G^{-1})^{*},i=1, \ldots,n\}$ . (1)

For $x,y\in\Gamma(S)$ , if $y=xg$, where $g\in G\cup G^{-1}$ , then an edge labelled by $g$ is drawn ffom
vertex $x$ to vertex $y$ . In the sequel $\Gamma(S)$ and $S$ are not distinguished.

$\bullet$ Neighborhood $N=\{n_{1}, n_{2}, \ldots, n_{\epsilon}\}$ is a finite subset of $S$ . For any cell $x\in S$, the
information ofcell $xn$: reaches $x$ in a unit oftime. The set ofall neighborhoods is denoted
by $\mathrm{N}^{S}$ . If $N\subset N’$ , where $N$ and $N’\in \mathrm{N}^{S},$ $N$ is called a subneiborhood of $N’$ . When
$S$ is understood, the set of neighborhoods is written without superfix $S$. The cardinaality
$\#(N)$ is called the neighborhood size of $\mathrm{C}\mathrm{A}$ . The set of the neighborhoods of size $s$ is
denoted by $\mathrm{N}_{\epsilon}$ .

$\bullet$ Set ofcell states $Q=GF(q)$ where $q=p^{n}$ with prime $p$ and positive integer $n$ . $Q=$
$\mathbb{Z}/m\mathbb{Z}$ is also considered.

$\bullet$ Local map $f$ : $Q^{N}arrow Q$ , where $\mathrm{t}$ element of $Q^{N}$ is called alocal configuration.
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$\bullet$ Global map $F$ : $Carrow C$, where an element of $C=Q^{S}$ is called a global configuration.
$F$ is uniquely defined by $f$ and $N$ as follows.

$F(c)(x)=f(c(xn_{1}),c(xn_{2}),$ $\cdots,$ $c(xn_{\theta}))$ , (2)

where $c(x)$ is the state ofcell $x\in S$ for any $c\in C$ .

When starting with a configuration $c$, the behavior (trajectory) ofCA is given by

$F^{t+1}(c)=F(F^{t}(c))$ for any $t\geq 0$ , where $F^{0}(c)=c$. (3)

2.2 Neighborhood and Neighbors
Given a neighborhood $N=\{n_{1},n_{2}, \ldots,n_{\theta}\}\subset S$ for a cellular space $S=\langle G|R\rangle$ , we recur-
sively define the neighbors of $\mathrm{C}\mathrm{A}$ . Let $p\in S$ .

(1) The 1-neighbors of$p$, denoted as $pN^{1}$ , is the set

$pN^{1}=\ovalbox{\tt\small REJECT}_{1},\mathrm{p}n_{2},$ $\ldots,pn_{s}\}$ . (4)

(2) The $m$-neighbors of$p$, denoted as $pN^{m}$ , are given as

$pN^{m}=pN^{m-1}\cdot N,$ $m\geq 1$ , (5)

where $pN^{0}=\{p\}$ . Note that the computation of $pn_{i}$ has to comply with the relation $R$. We
may say that the information contained in the cells of$pN^{m}$ reaches the cell $p$ after $m$ time steps.

(3) $\infty$-neighbors of $p$, denoted as $pN^{\infty}$ , is defined by

$pN^{\infty}= \bigcup_{m=0}^{\infty}pN^{m}$ . (6)

Without loss of generality, we can concentrate on the $m$-neighbors of the identity element 1 of
$S$, which is called $m$-neighbors of$CA$ and denoted by $N^{m}$ . Then

(4) $\infty$-neighbors of1, denoted as $N^{\infty}$ and called the neighbors of$CA$ , is given by

$N^{\infty}= \bigcup_{m=0}^{\infty}N^{m}$ . (7)

In order to discuss the growth ofneighbors later, we define here the $m$-ball ofradius $m$, denoted
$\mathrm{b}\mathrm{y}\overline{N^{m}}$, as

$\overline{N^{m}}=\bigcup_{k=0}^{m}N^{k}$ . (8)

Obviously, if $1\in N,$ $\mathrm{i}\mathrm{e}\mathrm{n}\overline{N^{m}}=N^{m}$ . In Sections 3 and 4, we will discuss the difference
between the $m$-ball and the ball of radius $n$ in the group theory, $B_{n}=\{w||w|\leq n,w\in S\}$ . If
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$N=G\cup G^{-1}$ , which is the case of $N_{V},$ $\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}\overline{N^{m}}=B_{m}$ .

The inmnsic $m$-neighbors $[N^{m}]=N^{m}\backslash N^{m-1}$ are considered as the cells whose information
can reach the origin in exactly $m$ steps. Obviously, $N^{\infty}= \bigcup_{m=0}^{\infty}[N^{m}]$ .

Now we have an algebraic result, which is proved by the fact that the procedure to generate a
subsemigroup is the same as the above mentioned recursive definition of $N^{\infty}$ .
Proposition 1

$N^{\infty}=(N|R\rangle_{sg},$ $(9)$
where $\langle N|R\rangle_{sg}$ means the semigroup obtained by concatenating the wordsfrvm $N$ complying
with $R$

In general, if $\langle N|R\rangle_{sg}=S’\subseteq S,$ $N$ is said to $sg$-generates $S’$ .

We also have the following easily proved proposition.

Proposition 2
$\langle N|R\rangle_{g}=\langle N\cup N^{-1}|R\rangle_{sg}$ , (10)

where $\langle N|R\rangle_{g}$ is the smallest subgroup of $S$ which contains $N$.

If $N=G$, then we have the following lemma as a corollary to Proposition 2.

Lemma 1
$\langle g_{1},g_{2}, \ldots,g_{t}|R\rangle_{\mathit{9}}=\langle g_{1},g_{2}, \ldots,g_{r},g_{1}^{-1},g_{2}^{-1}, \ldots,g_{r}^{-1}|R\rangle_{sg}$. (11)

Example: $\mathbb{Z}^{2}=\langle a, b| ab=ba\rangle_{g}=(a,$ $b,$ $a^{-1},$ $b^{-1}|$ $ab=ba\rangle_{sg}$

3 Growth of groups
The gmwthfunction $\gamma_{S}$ of a finitely generated discrete group $S=\langle G|R\rangle$ is defined by means
ofthe cardinality of the ball of radius $n$ . That is

$\gamma_{S}(n)=\neq B_{n}=\#\{w||w|\leq n, w\in S\}$ . (12)

For a $\theta \mathrm{e}\mathrm{e}$ group $F=\langle a, b|\emptyset\rangle,$ $\gamma_{F}=2^{n}$ . For 2-dimensional Euclidean space $S=\mathbb{Z}^{2}=$

$\langle a,b|ab=ba\rangle,$ $\gamma_{S}=2n^{2}+2n+1$ .

3.1 Growth rate of groups
For most theory conceming the growth ofgroups, its asymptotic behavior called the growth rate
is of interest. Though there are several definitions of the growth rate, they are all equivalent.
The following one is due to Babai (1997) [1].

Deflnition 1 $mo$ monotone non-decreasingfunctions $f_{1},$ $f_{2}$ : $\mathrm{N}arrow \mathrm{N}$ are said to be equivalent
($f_{1}\sim f\theta$, ifthere exist constants
$\mathrm{c}_{1},$ $c_{2},$ $C_{1},$ $C_{2},$ $n_{0}>0$ such thatfor all $n\geq n_{0}$ ,

$C_{1}f_{1}(c_{1}n)\leq f_{2}(n)\leq C_{2}f_{1}(c_{2}n)$ . (13)
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The $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\sim \mathrm{i}\mathrm{s}$ evidently an equivalence relation. The equivalence class of $f$ is denoted by
$[f]$ . Let $[f_{1}]$ and $[f_{2}]$ be the equivalence classes to which $f_{1}$ and $f_{2}$ belong, respectively and
define an order $[f_{1}]_{\sim}\prec[f_{2}]$ if $Cf_{1}(cn)\leq f_{2}(n)$ for constants $C,$ $c,$ $n_{0}\geq 0$ and for all $n\geq n_{0}$ .
Example 1 $[n^{2}]_{\phi}\prec[n^{3}],$ $[a^{n}]_{\phi}\prec[n^{b}]$ , and $a^{n}\sim b^{n}$ for any positive integers $n,$ $a,$ $b\geq 1$ .

The grvwth rate $[\gamma_{S}]$ of a group $S$ is an equivalence class to which $\gamma_{S}$ belongs. For $\mathbb{Z}^{2},$ $[\gamma_{S}]\sim$

$n^{2}$ . The growth rate of groups is simply called the growth ofgrvups.

3.2 Past results on the growth of groups
1) The growth of a group is independent Rom the generators, Milnor(1968)[8].

Lemma 2 (Lemma 1 of$[\mathit{8}J$) Let $G_{1}=\{g_{1}, \ldots,g_{p}\}$ and $G_{2}=\{h_{1}, \ldots, h_{q}\}$ be two different sets
ofgenerators and let $\gamma_{1}(n)$ and $\gamma_{2}(n)$ be the corresponding growthfunctions. Then, there exist
positive constants $k_{1}$ and $k_{2}$ so that

$\gamma_{2}(n)\leq\gamma_{1}(k_{1}n)$

and
$\gamma_{1}(n)\leq\gamma_{2}(k_{2}n)$

for all $n$.
By Lemma 2 we have $[\gamma_{1}]\sim[\gamma_{2}]$ in Babai’s sense.

2) There are three classes ofthe growth ofgroups; $polynomial,,,\prec$, subexponential $\phi\prec$ exponential.
$\mathrm{G}\mathrm{r}\mathrm{i}\mathrm{g}_{\epsilon}\underline{\mathrm{o}}\mathrm{r}\mathrm{c}\mathrm{h}\mathrm{u}\mathrm{k}(1983)\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{s}\mathrm{a}y\mathrm{o}\mathrm{u}\mathrm{p}S\mathrm{w}\mathrm{h}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{b}\mathrm{e}\mathrm{x}\mathrm{p}\mathrm{o}\mathrm{n}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{i}\mathrm{a}12^{n^{1}\prec[\gamma_{S}]\prec 2^{n^{\alpha}}\mathrm{w}\mathrm{i}\mathrm{h}\epsilon>0\mathrm{a}\mathrm{n}\mathrm{d}\alpha=\log_{32}31<\mathrm{l}}\sim\sim$

.
growth $[3][4]$ ;

3) A nilpotent group $G$ has polynomial growth [14][2];
$[\gamma_{G}]\sim n^{d}$ , where $d= \sum_{k}k\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{k}(G_{k}/G_{k+1})$ and $\{G_{k}\}$ is the lower central series $\mathrm{o}\mathrm{f}\mathrm{G}$ .

4 Growth of neighborhoods
The growthfunction $\delta_{(N,S)}$ ofneighborhood $N$ in $S=\langle G|R\rangle$ is defined by

$\delta_{(N,S)}(m)=\#\{w|w\in\overline{N^{m}}\}$ , (14)

$\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}\overline{N^{m}}$ is the $m$-ball ofradius $m$ defined by Equation (8). Note $\mathrm{t}\mathrm{h}\mathrm{a}\mathrm{t}\overline{N^{m}}$ is generally different
from $B_{m}$ . For example, in case ofa 3-horse $N_{3H}$ , the word $a$ oflength 1 is included by $N^{3}$ (and
$\overline{N^{3}})$ but not by $N^{1}$ . Moreover the identity 1 of length $0$ first appears in $N^{12}[12]$ .

The grvwth rate $[\delta_{(N,S)}]$ of a neighborhood $N\subseteq S$ is similarly defined to be an equivalence
class to which $\delta_{(N,S)}$ belongs.

We discuss here the difference between the growth Mctiondrates of the neighborhood $N$ and
ofthe group $S$ itself. The problem is not ffivial even though we have Lemma 2 by Milnor. First,
it is seen that if $N=G\cup G^{-1}$ which is the case of $N_{V}$ , then $\delta_{(N,S)}=\gamma_{S}$.
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Example 2 For the von Neumann and the Moone neighborhoods in $S=\mathbb{Z}^{2}$ , we have $\delta_{(N_{V},S)}(m)=$

$2m^{2}+2m+1=\gamma_{S}(m)$ and $\delta_{(N_{M},S)}(m)=4m^{2}+4m+1>\gamma_{S}(m)$ , respectively. Both neigh-
borhoods have the same growth rate $m^{2}$ , which is equal to the growth rate of$S=\mathbb{Z}^{2}$ .

We show below a numerical computation ofthe growthfunction of$N_{3H}$ comparedwith the von
Neumann neighborhood $N_{V}$ . The 3-horse seems to growfaster than the von Neumann, but both
growth rates are equal to $n^{2}$ .

4.1 Basic properties of the growth of neighborhoods
First we notice some basic properties ofthe growth ofneighborhoods.

Lemma 3 If$N’\subseteq N$ then
$\delta_{(N’,S)}\leq\delta_{(N,S)}$

From this lemma and Proposition 2, we have

Lemma 4 For any $N\subseteq S$,

$\delta_{(N,S)}\leq\delta_{(N\cup N^{-1},S)}$ and $[\delta_{(N,S)}]_{\sim}\prec[\gamma_{N}]$ , (15)

where $\gamma_{N}$ is the grvwthfunction ofthe group $\langle N|R\rangle_{g}$ .

Then we have the following theorem.

Theorem 1 For a cellular space $S=\langle G|R\rangle_{g}anda’\nu$ neighborhood $N\subset S$,

$[\delta_{(N,S)}]\prec[\sim\gamma_{S}]$ , (16)

where the equivalence holds ifand only if$N$fills $S$.

Proof. By Lemmas 3 and 4 we have the theorem. $\blacksquare$

4.2 Growth of the hyperbolic horse
The CA on the hyperbolic space has been investigated by M.Margenstern and other authors,
see [7] for his latest literature. Generally, the hyperbolic space does not allow a Cayley graph
presentation of a group. However, the pentagrid {5, 4} can be treated by means of its dual
hyperbolic grid {4, 5}, which is seen to be a Cayley graph of the group $H_{\{4,5\}}$ as is shown
below.

$H_{\{4,5\}}=\langle 1,2,3,4,5|12=21,23=32,34=43,45=54,51=15, i=i^{-1},1\leq i\leq 5\rangle$ ,
where {1, 2, 3, 4, 5} is the symbol set of generators.

First, as for the gowth ofthe $\Psi^{\mathrm{o}\mathrm{u}}\mathrm{P}^{H_{\{4,5\}}}$ , the following proposition holds.
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Proposition 3 The gmwth rate ofthepentagrid {4, 5} is exponential.

Next, we investigate the horse power problem on the hyperbolic plane: for a neighborhood $N$ ,
decide if $N$ fills the space $S$ or not. If $N$ consists of $s$ elements, it is called an s-horse.

First we give the following Theorem 3.8 of [13], which has been rewritten in my formulation.

Theorem 2 (Theorem 3.8 of [13]) $N_{5HH}$fills $H_{\{4,5\}}$ . where $N_{5HH}=\{n_{1},n_{2},n_{3}, n_{4},n_{5}\}$,

$n_{1}$

$=\Delta$ $145\cdot 412\cdot 254=4$

$n_{2}=\Delta 251\cdot 523\cdot 315=5$

$n_{3}=\Delta 312\cdot 134\cdot 421=1$

$n_{4}=\Delta 423\cdot 245\cdot 532=2$

$n_{5}=\Delta 534\cdot 351\cdot 143=3$,

wherefor instance 145 $\cdot 412\cdot 254=4$ means that a concatenation ofwor&145. 412 and 254
makes 4.

Proof: The above 5 elements $n_{1}=4,$ $\ldots,n_{5}=3$ constitute the generators of $H_{\{4,6\}}$ . $\blacksquare$

Finally, conbary to a 3-horse $N_{3H}$ in 2-dimensional Euclidean space, we see that a 2-horse
$N_{2HH}$ is enough to fill $H_{\{4,5\}}$ by Theorem 3.9 of [13]. Then by Theorem 1, we have

Proposition 4 The growth rate of$N_{2HH}$ is exponential; $[\delta_{N_{2HH}}]\sim 2^{n}$ .

5 Garden of Eden theorem
The Garden ofEden $(GOE)$ theorem was originally proved for $\mathbb{Z}^{2}$ by E.Moore(1962) [9] and
J.Myhi11(1963)[10].

Definition 2 Afinite configuration (pattern) is called a Garden ofEden $(GOE)$, ifit is not in the
image ofF (A $GOE$ has not an ancestor). Two distinctpattenzs $p_{1}andp_{2}$ are called mutually
erasable iftwo configurations $\mathrm{c}_{1},c_{2}$ , which contain $p_{1}andp_{2}$, respectively andcoincide outside
ofthe supports $ofp_{1}$ and $p_{2}$, are mapped to the same configuration.

Theorem 3 (Moore) Ifthere are mutually erasable patterns, then there are GOEpatterns.

Theorem 4 (Myhill) Ifthere are GOEpatterns, then there are mutually erasablepattems.

If there is no GOE patterns then $F$ is surjective and if there is no mutually erasable patterns
then $F$ is injective when it is restricted to the finite configurations. Therefore these theorems
together claim the following theorem, which is called the $GOE$ theorem today.

Theorem 5 (GOE theorem) $F$ is $su\dot{\eta}ective$ ifand only if$F$ is injective when it is nestricted to
thefinite $co\prime fi\mathrm{g}\mathrm{I}rations$ .
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Idea of Moore’s proof of Theorem 3: Let $\#(c(N^{m}))$ be the cardinality of different pattems
contained by cells in $m$-neighbors $N^{m}$ . For $S=\mathbb{Z}^{2}$ and Moore neighborhood, if there are mu-
tually erasable patterns, then $\#(c(N^{m-1}))$ becomes greater than $\#(c(N^{m}))$ when $m$ becomes
large enough, which implies the existence ofGOE patterns. This proof is bas$e\mathrm{d}$ on the fact that
the growth ofneighbors is not too fast (polynomial).

After the seminal papers by Moore and Myhill, group theorists have revealed that the GOE
theorem holds for groups ofpolynomial and subexponential growth, but does not for exponential
growth, see Machi&Mignosi(1993) [6] and Gromov(1999) [5]. The group theorists usually
discuss the GOE theorem assuming the generators of the group as the neighborhood. This fact
is one of the reasons why we are interested in the growth ofneighborhoods.

5.1 GOE theorem for general neighborhoods
We discuss here the problem ifthe GOE theorem holds for CAs having the neighborhood which
is not necessarily the generator set of the group.

Theorem 6 The $GOE$ theorem holdsfor a $CA$ which has a neighborhoodofpolynomialgrowth.

Proof. The Moore’s proof shown above generally applies to such a $\mathrm{C}\mathrm{A}$. $\blacksquare$

We conjecture that the GOE theorem does not hold for CAs having the neighborhoods of expo-
nential growth.

6 Concluding remarks
In this paper, we have defined and analyzed the growth of neighborhoods of $\mathrm{C}\mathrm{A}$ . A problem
for $\mathrm{f}\mathrm{i}\iota \mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}$ research is to consider other gmwth-specific properties than the GOE theorem. Many
thanks are due to Maurice Margenstem and Thomas Worsch.
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