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THE LEVY LAPLACIAN AND THE LEVY PROCESS
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In this paper we shall discuss the Lévy Laplacian as an operator acting on some
class of the Lévy functionals. We introduce some domain of the Laplacian as a Fock
space associated with the Laplacian and give associated semigroups and associated
stochastic processes.

Introduction

An infinite dimensional Laplacian was introduced by P. Lévy in his famous
book 2. Since then this exotic Laplacian has been studied by many au-
thors from various aspects see [1-6,9,10,13,15,16,17,20] and references cited
therein. In this paper, we discuss a stochastic process associated with the
Lévy Laplacian generalizing the methods developed in the former works
[11,14,18,22-26].

This paper is organized as follows. In Section 1 we give a necessary and
sufficient conditon for a Fock space associated with the Lévy Laplacian. By
this condition we summarize basic elements of white noise theory based on a
stochastic process given as a difference of two independent Lévy processes
in Section 2. In Section 3, following the recent works Kuo—Obata—Saitd
11 Obata-Saitd 8, Saitd 23:24 and Sait6-Tsoi 2°, we formulate the Lévy
Laplacian acting on a Hilbert space consisting of multiple Wiener integrals
by the stochastic process. In Section 4, we generalize this situation by
means of a direct integral of Hilbert spaces. In Section 5, based on infinitely



many Cauchy processes, we give an infinite dimensional stochastic process
associated with the Lévy Laplacian.

1. Background

Let X = {X(t); t € R} be a Lévy process, of which the characteristic
function is given by

E[e**®)] = exp{thx(2)}, z€R,

2 : 2
0, i1 izA \1+A
hx(z) = imz 57 + /IA|>0 (e 1-3 n )\2) 22 dB(A),

where ¢ > 0,m € R and 3 is a positive finite measure on R with ({0}) =
0? and [ |A|*dB(X) < +oo for all n € N.

Let E = S(R) be the Schwartz space of rapidly decreasing R-valued
functions on R. There exists an orthonormal basis {e,},>0 of L*(R)
contained in E such that Ade, = 2(v + l)e,, v = 0,1,2,..., with
A= ——;‘% + u? + 1. Then by the Bochner-Minlos Theorem, there exists
a probability measure u on E* such that

/. ei(z,i)du(w) = exp{/R hx (£(t))dt}, ¢ €E.

Let L2(E*, u) be the Hilbert space of C-valued square-integrable func-
tions on (E*, u). The U-transform U[ip] of ¢ € L?(E*, i) is defined by

Ulgl(e) = exp{- [ hx(€@)dt) [ e*Op()du(o), ¢ € B,
R E*
and the Wick product (-, f)°™ of (-, f) is given by

UG O™ =Ul, N", feE.

Fixing a finite interval T on R, we take an orthonormal basis {(,} C E
for L?(T) which is equally dense and uniformly bounded. Let Dom(ApL)
denote the set of all ¢ € LZ(E*, u) such that the limit

N-1
Rolel©) = Jim 5 3 )" (©)Gns o)

n=0

exists for each £ € F and a functional Az is in U[(L?)]. The Lévy Lapla-
cian Ay on Dom(Ay) is defined by

App=U'ALUp, » € Dom(AL).
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Let F, (&) = U[{, f)°"](¢) with suppf C T. Then we can calculate that

B©=[ 10 (u+i026(t)+ /]ul>0 (eisu)u_ 1 ju) L i )) t

= i€(t)u .
RO =~ j () / (1 + )€ Ov () ds;

and

ALF.(€) = nFy(&)"*ALF(€)
=~ RO" RC L u(l + u?)e O d(u)dt

With these calculations, we have the following necessary and sufficient
condition for a Fock space associated with the Lévy Laplacian.

Theorem 1.1. The functionals F,, for alln € N U {0} are eigenfunctions
of A if and only if the following holds:

e (=02

or

e 0=0,8=ad)+(a—mA)d_, for some A > 0 and a > 0 with
a > mA.

2. Preliminaries

For p € R define a norm | - |, by |f|, = |APf|L2(r) for f € E and let E,
be the completion of E with respect to the norm |- |,. Then E, becomes
a real separable Hilbert space with the norm |- |, and the dual space E;
is identified with E_, by extending the inner product (-,-) of L*(R) to a
bilinear form on E_, x E,. It is known that E = projlim,_,., E,, and
E* = indlim,,o E_,.

The canonical bilinear form on E* X E is also denoted by (-,-). We
denote the complexifications of L?(R), E and E, by L%(R), Ec and Ec,
respectively.

Let {L , »(t)}:>0 and {L2 , \(¢)}:>0 be independent Lévy processes of
which the characteristic functions are given by

E[eiZLi,a.A(t)] = eth(z), t 2 01 j = 1’ 2’
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h(z) = imz — fz2 ta(1+— (€7 —1)
4 hY: ’
where m € R,0 > 0,a > 0, and A > 0.
Set Agaa(t) = L%, \(t) — L2 , 5(t) for all £ > 0. Then we have

E[e""A"‘W\(t)] = et(h(2)+h(~2))

2 1 . )
= exp {—-t%—-z:’ + ta (1 + ﬁ) (€7 4 7% — 2)} , t>0.

This characteristic function of A, . (t) is corresponding to the form in
Theorem 1.1 in the case of m = 0.
Set

C(€) = exp { [ s + h(—ez(u»)du} €= (61,6) €EXE.

Then by the Bochner-Minlos Theorem, there exists a probability measure
Ls,a,x On E* X E* such that

/E . ex{i(e, O} dhnan(@) = C©), €= (61.60) €ExE,

where (zaé.) = (zlaél) + (172’52)5 T = (1715‘7:2) € E* X E*7 5 = (51,62) €
ExE.

Let (L?)y0x = L*(E* X E*, s 0,x) be the Hilbert space of C-valued
square-integrable functions on E* x E* with L2-norm || ||s,a,» With respect
t0 Lo,q,x. We call an element of (L?), ,  the Lévy functional. The Wiener—
It6 decomposition theorem says that:

o0
(Lz)a,a,A = @Hn,
n=0
where H,, is the space of multiple Wiener integrals of order n € N and
Hy = C. The U-transform of ¢ € (L?),,,,» is defined by

Up(€) = C(&)™ / (@) expi(z, &)} dpo.ar(@), € € E x E.

E*x E*

Theorem 2.1. !° (see also 7%16) Let F be a complez-valued function de-
fined on E x E. Then F is a U-transform of some Lévy functional in
(L?)g,a,x if and only if there exists a complez-valued function G defined
on Ec x Ec such that

17



1) for any € and 1 in Ec x Ec, the function G(2€ + 1) is an entire
function of z € C,
2) there ezist nonnegative constants K and vy such that

IG(6)] < Kexp [vI€l3], V& € Ec x Ec,
3)

F¢) =G (ig;& + i%z‘fz +a (1 + %) A& — e'i'\€2)>

for all € = (£1,62) € E x E.

3. The Lévy Laplacian acting on the Lévy functionals

e Definition of the Lévy Laplacian

Consider F' = Uy with ¢ € (L?)s,4,x. By Theorem 2.1, for any &,7 €
E x E the functions z — F(§ + z7) admits the Taylor series expansions:
o0 zn
FE+am) = S F™Q(m...,n);
n=0
where F(™(¢) : E x --- x E — C is a continuous n-linear functional.
Fixing a finite interval T of R, we take an orthonormal basis {(,}52, C
E x E for L*(T) which is equally dense and uniformly bounded (see e.g.
9,10) Let Dy denote the set of all ¢ € (L2?),,4,1 such that the limit

N-1
Ro@e)(®) = Jim w3~ )" (€)Gns o),
n=0

exists for any £ € ExE and A p(Up) isinld [(L?)s,4,2). The Lévy Laplacian
Ay is defined by App =UT AUy, ¢ € Dr.

e Multiple Wiener integrals by the Lévy process

Given 0 > 0,A > 0,a > 0,n € N and f € L%(R)@’", we consider
@ € (L?)g,0,x of the form:

o= / Fu1y - yun)dhoan(us) - dAgon (). 2.1)
Tn
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The U-transform Uy of ¢ is given by

U(,D(f) = T f(ula oo )un) H Ev,a,z\(g)(uj)dul .. -d'U'na 5 € E x E:
n j:l
where

o0 (€) (us) = i% £1 (u;)+ie 52(u1)+a (1 + 53 ) (M () _ g=iMea(us)),

For any ¢ > 0, A > 0,a > 0, and n € N let E,4,»,» denote the space
of ¢ which admits an expression as in (2.1), where f belongs to L2 (R)®"
and supp f C T™.

Set E; 4,50 = C for any ¢ > 0,A > 0,a > 0. Then E, ;5 » is a closed
linear subspace of (L?),,4 1. Using a similar method as in [25], we get the
following

Theorem 3.1. For each 0 > 0, n € N, A > 0 and a > 0 the Lévy
Laplacian Ap becomes a scalar operator on E; o s n U Eggqn such that
Arp =0 forall p € Eqoan and App = —ﬁ“—%—?— @ for all ¢ € Eg o n-

For N € N and A > 0 let D%** be the space of ¢ € (L?)o,an
which admits an expression ¢ = 5 o0 ¥n, ¥n € Eggan, such that

2¢
Az
Hl‘P“l?v,o,a,A =Y =i aN(”)“‘Pn“o a,x < 00, where ay(n) = Ze——o (n ) .

By the Schwartz inequality we see tha.t D?v" A is a subspace of (L?)o,q,» and
becomes a Hilbert space equipped with the new norm ||| - |||~5,0,a,2-
Moreover, in view of the inclusion relations:

(Lz)O,G,A ) D']:_)’a"\ DD D?\}Q,A ») D(])v:.i 5.

we define

DOaA_prthmDOaA mDOaA
N—

. A 0,a,A
Then Ay becomes a continuous linear operator defined on D?v11 into D*

satisfying |||ALo|l|n0,e0 < Hl@lIN+1,0,a,0 @ € DY®*, N € N. Therefore
Ay is a continuous linear operator on D%2*. Moreover the operator Ap is
a self-adjoint operator densely defined in D?\}“’)‘ foreach N € N and A > 0.

For each t > 0,A > 0 and a > 0 we consider an operator G} on D%2:
defined by

[o o] o0
—tn)2 a
G;\tp = E g tnA /lTlcpn, Q= E Pn € D?,’o ol

n=1 n=1
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We also define G? on (L?),,» as an identity operator by
G = ¢, 9 € (L*)g0,-

Theorem 3.2. 1123 Let A > 0 and a > 0. Then the family of operators
{G};t > 0} on D% is an equi-continuous semigroup of class (Co) of
which the infinitesimal generator is Ay.

4. Extensions of the Lévy Laplacian

Let dv()) be a finite Borel measure on R satisfying

/ dv())
e <0
(0,00)

Fix N € N and a > 0. Let D% be the space of (equivalent classes of)
measurable vector functions ¢ = (p*) with @* = .22, ¢} € DY*? for all
A > 0, and ¢° € (L?),0,x, such that

el =l on+ 3 /( kB <o @D

n=1

Then D% becomes a Hilbert space with the norm given in (3.1).
In view of the natural inclusion D%, C D for N € N, which is
obvious from construction, we define D%, = projlimy_,. D% = Ny<1 D2%-
The Lévy Laplacian Ay is defined on the space DZ, by

App = (ALp*), ¢ = (¢*) € DL,.

Then A is a continuous linear operator from 7 into itself. Similarly, for
t > 0 we define

Gip = (GY¢?), ¢ = (¢") € DL,
Then by Theorem 3.2 we have the following:

Theorem 4.1. The family {G;t > 0} is an equi-continuous semigroup of
class (Cop) on DI, whose generator is given by Ap,.

Remark: Let G, bean operator defined on U[DZ ] by Gy =UGU™, t >
0. Then by the above theorem, {G¢; t > 0~} is an equi-continuous semigroup
of class (Cp) generated by the operator Ap.
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5. Associated infinite dimensional stochastic processes

e Space El0:)

For p € R let E,[,°’°°) be the linear space of all functions A — &) €
E, x E,, X\ > 0, which are strongly measurable. An element of E,[,°’°°) is
denoted by £ = (€x)a>0- Equipped with the metric given by

_ 16 — 77A|p » - —
bem= [ pEeEE a0, €= 6) n=m)

the space EI[DO’°°) becomes a complete metric space.
In view of d, < d, for p > g, we introduce the projective limit space

E%*) = projlim EL°’°°).

p—ro0

e Space Cl0:*)

Similarly, let CI%>) denote the linear space of all measurable function
A — z) € C equipped with the metric defined by

_ |22 — ua| _ _
p(z,u) = /[‘O’oo) md’/(/\), z=(21), u=(ux)

Then CI2) is also a complete metric space.

e Extension of the U-transform

The U-transform can be extended to a continuous linear operator on
D% by

Up(€) = UL E\))az0, €= (Ea)azo € B,

for any ¢ = (¢*)a>0 € DL.

The space U[D7,] is endowed with the topology induced from DZ, by
the U-transform. Then the U-transform becomes a homeomorphism from
D7, onto U[D7,]. The transform Uy of ¢ € DI, is a continuous operator
from E[%°) into C[®*), We denote the operator by the same notation Uep.

e Associated stochastic process




Let {Xf}, j = 1,2, be independent Cauchy processes with ¢ running -

over [0, 00), of which the characteristic functions are given by
E[eizxtj] =e t?l 2eR, j=1,2

Take a smooth function nr € E with nr = 1/|T| on T
Set

Yt)\ = (XitnT, "XitﬂT) A 2> 0.

Define an infinite dimensional stochastic process {Y:;t > 0} starting at
€= (&)ax0 € B"™) by

Y: = (& + Y)ano, t > 0.

Then this is an E%*)-valued stochastic process and we have the following

Theorem 5.1. If F is the U-transform of an element in D7, we have

G.F(€) = E[F(Y.)|Yo =€, t > 0. (4.1)

Proof. We first consider the case when F' € U[DZ ] is given by
F(€) = (F}(6\)a20,

FO € u[(L2)a,0,)\]>

FA(EA) —_ (aA (1 + %)) /7-_'" f(u) . II {ei)xfl,x(uj) _ e—iAEQ,A(uJ')} du,

i=1

with f € ch(R)én. Then we have

E[F(Y¢)|Yo =€) = (E[F*& + Y))axo

22

1\\" ‘ no. -
= [ F° = H iAE1 A (u5) i TR XEe10,00) (M)
( (£o)Br0 + (aA <1 * )\2)) /.;m fwE [ {e Ade o

Jj=1
_e—i,\g“(u,-)eiﬁer§,1(o,w)(z\)}] du)

= (e-tnA/ IT| A (51\))

A0

150 = (G @)x20 = CLF ().
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Next let F = (FOy o+ 0 i F),so € UIDL]. Then for v-almost all
A >0 and for any n € N, F is expregsed in the following form:

1 n n ) ' . .
P = im0 (14 55))" [ AV T {e96r) — emianten
n j=1

Since F° € U[(L?)s,0,5) and F) € U[DY*], there exist ¢° € (L?)s,0,» and
@2 € D2%X such that FO = U[p°] and F) = U[p)] for v-almost all A and
each n. By the Schwarz inequality, we see that

Y EIRXE+ Y <Y lledlloesEllleg +vp llo,an]

n=1 n=0
00 1/2 o 1/2

s{zawrl} {zamnnwznaa,A} Bl sxplloas] < oo
n=1 n=1

where ¢, = C(£)) 14> for v-almost all A > 0 and each N € N.
Therefore by the continuity of G, A > 0, we get that

n=1

E[F(E+Y))] = (f: B[R (& +Yt*>]) - (i c?*E‘F:(eA))
A>0 n=1 A>0

= (5* S Fé(@)) = G.F(€).
A>0

n=1

Thus we obtain the assertion. O

For any n € E!°) we define a translation operator T;, on DT, by

UTp)(€) = Up)(E +m).

Theorem 5.2. For all ¢ in D7 we have

G’tcp = E[T(Y‘A)A>o(p], 1] Z 0. (42)
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