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Abstract

Generalized eigenfunctions of the odd-dimensional (n > 3) relativestic Schrodinger
operator v—A + V(z) with |V (z)| < C(z)~7, ¢ > 1, are considered. We compute
the integral kernels of the boundary values R*¥(\) = (v=A — (A £i0))~?, and
prove that the generalized eigenfunctions ¢*(z, k) := po(z, k) — R¥(|k|)Vpo(z, k)
(ol k) := ¢**) are bounded for (z, k) € R x {kla < [kl < b}, where [a,b] C
(0,00)\op(H). This fact, together with the completeness of the wave operators,
enables us to obtain the eigenfunction expansion for the absolutely continuous
spectrum.

Introduction

This paper considers the odd-dimensional (n > 3) relativistic Schrédinger operator
H=Hy+V(z), Hy=v-4A, zeR"

with a short range potential V(z). .
Throughout the paper we assume that V'(z) is a real-valued measurable function on
R" satisfying
V(z)] < Clz)™", o>1.

When we deal with the boundness and the completeness of the generalized eigenfunctions,
o will be required to satisty the assumption o > (n + 1)/2 and n to be an odd integer
with n > 3. '

In general, the schrodinger operator is written as —~A + V(z), =z € R®. In [8],
the completeness of the generalized eigenfunctions for operator —A + V() was proved.
However, it was considered by 3-dimensional case. And, in the case of N-body, the
completeness was proved in {11, 12]. When the speed of the particles approach light, we
have to consider the relativistic case. the schrodinger operator is written by v~A + m+
V(x), z € R®, where m is the mass of the particle. In recent years, there have been
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some works on the decay of eigenfunctions associated to the discrete spectra of these
operators[4, 20). On the asymptotic behaviour of the eigenfunctions of the relativistic
N-body Schrodinger operator, some works have been done in [21].

But, like a photon, the zero mass particle exists. Then, the relativitic Schrédinger
operator is written by H = v=A + V(z), = € R*. H is essentially self adjoint on
C&(R™) [27]. And in the paper [28], T. Umeda considered the 3-dimensional case and
proved that the generalized eigenfuctions ¢*(z, k) are bounded for (z,k) € R* x {k|k €
R3, a < |k| < b}, [a,b] C (0,00)\0p(H). In the part II, T.Umeda announced that he
will deal with the completeness of the generalized eigenfunctions. But, he was too busy
to collect his result.

For the purpose of making a comparison, let us briefly recall some results done before.
For z € p(H), the resolvents of H and Hy will be written as

Ro(z) = (Ho-2)™", R(2)=(H~-2)"".

Clearly, for any A € (0,00)\o,(H) and s > 1/2, there exist the limits (see 2, Theorem
4A])

Ry(\) =lim Ro(A £ ip) in B(L™, H™),

I

Rﬂ,\):liﬁlR(A:hip) in B(L¥, HY™).
I

Following S. Agmon [1}, we define two families of generalized eigenfunctions of H by

p*(z, k) = po(z, k) = BF([K{V(-)po(-, k) }(z)

for k with |k| € (0,00)\op(H). In the paper [28, section 8], T. Umeda considered the
3-dimensional case and proved that the generalized eigenfunctions o* satisfy

o* (2, k) = po(z, k) = BT (KD{V (9™ (-, k) }z)

for (z,k) € R®x {k|k € R, a < [k| < b}, [a,b] C (0,00)\0p(H), which is called modified
Leppmann-Schwinger equations. Moreover, he showed that the generalized eigenfunctions
¢*(x, k) are bounded for (z,k) € R® x {k|k € R®, a < |k] < b}, [a,}] C (0,00)\0p(H),
(see T. Umeda [28, section 9]). T. Umeda [29] announced that he will deal with the
completeness of the generalized eigenfunctions.

Under the condition of the odd-dimension (n > 3), the present paper shows that the
same equation is valid,

o™ (2, k) = po(, k) = BT (KD{V ()™ (- k) He)

for (z, k) € R™ x {k|a < [k| < b}, [2,8] C (0,00)\0p(H), but when n > 3, the resolvent is

defferent from the case n = 3. The computations show that there exists some polynomials
a;(2), b;(2), ¢;j(2) of z in C such that the integral kernel of the resolvent of v'—A is given
by

Ra(u(e) = [ ou(e ~ sputu)ay
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for z € C\[0, oc), where

c . e
g:(x) = — -2—1;;;{;1:]‘2'" + b1 (2) M, ()] 2]~ 1)
2m—~1

+ 3 (332) +55()Ma(2) + ()N (2) )l 7,

j=m

and
M, (z) =Ti71{ci(—{x|z) snalz) ~ si(-z]z) cos(jz]2) }.
N (z) ={ ci(~lol2) cos(la]z) +si(~]z]2) sin(jz}z) }.

For the definitions of the cosine and sine integral functions ci(z) and si(z), see section 5.
We compute the limit g5 (z) := lim,}o gaxiu(x) as follows,

02 (2) = {Gam(A) + bam (23! + my(2)) } || 2™

2m—1 2m—1
+ Y gzl + X0 b (¥ + ma () ol
j=m j=m
2m—1
+ 2 ¢;(N) (eX X7/ oy (2)) |z] 7,
j=m

where

m,\(:c) =ci(A|z|) sin(A|z]) + si(A|z]) cos(Alz]),
na(z) =ci(A|z|) cos(A|z|) — si(Alz]) sin(Alz]).

We then prove that the generalized eigenfunctions p*(z,k) are bounded for (r,k) €
R* x {k] a < |k]| < b}, [a,b] C (0,00)\0,(H), with

Ri V(o) = [ gt - puts)as

H = Hy+V defines a selfadjoint operator in L?(R"), whose domain is H!(R") (see section
2, or T. Umeda {27, Theorem 5.8]). Moreover, H is essentially selfadjoint on C3°(R")
(see T. Umeda [27]). It follows from Reed-Simon [22, P113, Corollary 2] that

o.(H) = 0.(Hp) = [0, 00).

The fact that o,(H) N (0,00) is a discrete set was first proved by B. Simon [23, Theorem
2.1]. He also proved that each eigenvalue in the set o,(H) N (0, oc) has finite multiplicity
[23, Theorem 2.1}. From V. Enss’s idea (see V. Enss [3]), we obtain that the wave
operators W defined by

Wy = lim ¥
t—o0



are complete. Finally, by the idea of H. Kitada [12] and S.T. Kuroda [15], we obtain the
completeness of the generalized eigenfunctions as follows.

Theorem Assume the dimension n (n > 3) is an odd integer, ¢ > (n+1)/2, s > n/2
and [a,d] C (0,00)\op(H). For u € L»*(R"), let F. be defined by

Fru(k) := (2m)™™/2 fpﬂ u(z)p*(z, k)de.

Then for an arbitrary L*»*(R")-function f(x),

Ea(lo,8)f(2) = (2n) [ _ Faf(Bpte bk

a<|k|<b

where Epy is the spectral measure on H.

The plan of the paper In section 1, we construct generalized eigenfunctions of
vV=A 4+ V(z) on R*. We compute the resolvent kernel of v/—A on R” in the integral
form in section 2. Section 3 prove the generalized eigenfunctions are bounded in the
case of odd-dimension n > 3. We studies the asymptotic completeness of wave operators
in section 4. In the last section 5, we deal with the completeness of the generalized
eigenfunctions. We explained about the theorems without proving in this paper for the
limitation of the number of pages.

Notation We introduce the notation which will be used in the present paper.

For € R", || denotes the Euclidean norm of « and (z) = /1 + |z[*. The Fourier
transform of a function u is denoted by Fu or @, and is defined by

Fu(€) = i(€) = (2m)" f e tu(z)dz
For s and [ in R, we define the weighted L?—space and the weighted Sobolev space by

IR = {f(z)'f € ®™)}, H"(R")={f|(z)"(D)'f € L*[R™)}

respectively, where D stands for —i8/dz and (D) = \/ 1+ |DJ]2 = v/1 - A. The inner
products and the norm in L*»*(R") and H"*(R") are given by

(rg)ne = [ @ f@)g@e, (f.g)ame = [ (@D () DVae)ee
1Fllzne = {CF s ¥ WSl = LS. £) e},

respectively. For s = 0 we write

(7:9) = (90w = [ 1)@z, Il = Wl

For a pair of f € L»*(R") and g € L**(R"), we also define (£, g) = [5. f( z)g(z)dz
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By C°(R™) we mean the space of C™-functions of compact support. By S(R") we
mean the Schwartz space of rapidly decreasing functions, and by S'(R") the space of
tempered distributions.

The operator v—~Ae™* is formally defined by

| e=slelote - b,

where 8(z) is the Dirac’s delta function. As the symbol |¢] of /=A is singular at the
origin £ = 0, making sense of the expression /—Ae®™* is one of the main tasks in the
present paper.

For a pair of Hilbert spaces # and X, B(H,K) denotes the Banach space of all
bounded linear operators from H to K.

For a selfadjoint operator H in a Hilbert space, ¢(H) and p(H) denote the spec-
trum of H and the resolvent set of H, respectively. The essential spectrum, the con-
tinuous spectrum and the absolutely continuous spectrum of H will be denoted by
o.(H), 0.(H), and o4.(H) respectively. Eg denotes the spectral measure on 7', and
Eu()) = Ea((~o0,N)), Eul((a,t]) = Ea(b) - En(e).

The continous subspace and the absolutely continuous subspace of H will be denoted
by He, Haes respectively.

1 Generalized eigenfuction

We construct in this section generalized eigenfunctions of v—A + V(z) on R*, and show
that the generalized eigenfunctions satisfy the equation

¢ (2, k) = po(z, k) — R (K)V¢* (=, k),
where Ry(z) is the resolvent of Hyp = /= A defined by
Ro(z) := (Hy — 2)™' = F(|¢] — 2) 7 F,

and @o(z, k) is definded by _
wolz, k) = e=*.

Similarly R(z) is the resolvent of H = v/—A + V(z) on R™ and we assume that V(z)
is a real-valued measurable function on R™ satistying |V (z)| < C{z)™” for some o > 1.
~ To show the above equation for eigenfunctions, we uese two theorems demonstrated by
Ben-Artzi and Nemirovki. (see [2, Section 2 and Theorem 4A])

Theorem 1.1 (Ben-Artzi and Nemirovki) Let s >1/2. Then
(1) For any X > 0, there exist the limits RE()\) = lim,yo Ro(A £ ip) in B(L?*, HV™*).
(2) The operator-valued functions R3(z) defined by

4+ _ Ro(z) Zf zGC*
R°(z)“{Rg=(,\) if z=A>0
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are B(L**, H“~*)-valued continuous functions, where C* and C~ are the upper and the
lower half-planes respectively: C* = {z € (Cl +Imz > 0}.

Theorem 1.2 (Ben-Artzi and Nemirovki) Let s >1/2 and ¢ > 1. Then
(1) The continuous spectrum o.(H) = [0,00) is absolutely continuous, except possibly
for a discrete set of embedded eigenvalues o,(H) N (0, 00), which can accumulate only at
0 and oo.
(2) For any A € (0,00)\0,(H), there exist the limits

R*(\) =limR(\+ip) in B(IL* H'™).

ni0
(3) The operator-valued functions R¥(z) defined by

)={R(z) if zeC*

il RE(N) if z=X>0\o,(H)

L]

are B(L**, HY~*)-valued continuous functions.
The main results of this section are
Theorem 1.3 Let 0 > (n+1)/2, if |k] € (0,0c)\o,(H), then generalized eigenfunc-

tions
p*(, k) = po(z, k) = B (JE{V ()po(, k) }()
satisfy the equation ‘
(V-2 +V(z))u=klu in S'(R])
where @o(z, k) is definded by po(z, k) = e=*,

Theorem 1.4 Let 0 > (n+1)/2. If |k| € (0,00)\0,(H), and n/2 < s < 0 — 1/
then we have

o*(2, k) = ¢o(2,k) = BT (KD{V()p*(.k)}(=z) in LP*(R™).

2 The integral kernel of the resolvents of Hj

This section is devoted to computing the resolvent kernel of Hy = v—A on R", where
n=2m+1, m>1and m € N. Then we compute the limit of g,(z) as p | 0, where
z = A+ip and A > 0, and study the properties of the integral operator GE. In this
section we suppose that (cf. [6, p. 269, Formula (46) and (47)])

(1) n=2m+1, m>landmeN,
@ Mo)= [ gt = r{eillels) sinllels) - si(-lele)cos(lzl2)}

Ny(z) = ‘/:o e”;—fm-idt = ci(—|z|2) cos{|x|z) + si(—|z|2) sin(|z|2),
(3)  ma(x) =ci(A|z]) sin(Alz]) + si(A|z]) cos(Alz]),

na(z) =ci(A|z]) cos(A|z]) — si(A|z]) sin(A]z]).
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Where ci(z) and si{z) are definded by

* cost > sint

ci(z) = f i | si(z) = — / B, w>o0

We see that si(x) has an analytic continuation si(z) (see [6, P145]),

: __r - (—1)m m+1 '
siz) =-3+ ,; @m+ 1)1(2m + 1)z2 (2.1)

The cosine integral function ci(z) has an analytic continuation ci(z), which is a many-
valued function with a logarithmic branch-point at z = 0 (see [6, P145]). In this paper,
we choose the principal branch '

ci(z) = =~ — Logz — Z éf%!);ﬁzzm, z € C\(~00,0], (2.2)

m=1
where + is the Euler’s constant. The main theorems are
Theorem 2.1 Let n > 3, Rez < 0, then
Ro(z)u = G,u

for all u € C§°(R"), where

N _ (% Cal
Geute) = [ osle = w0, 0te) = [

=" T (2-;1) , T(z) = f s le™*ds. (2.3)
0 .

r9

Theorem 2.2 Let n =2m+1, m > 1 (m € N) and s > 1/2, u € L**(R"). Let
[a,b] C (0,00) and X € [a, }].

(1) There exist some functions a;()), b;j(A), ¢;(A) which are polynomials of A for
j=mam+1a"' ,2m,

RE(Wu(e) = Ghu(e) = | e - vuay

(@) = lim Orzin(z) = {aam(N) + bom (52! + my(2)) } |22

2m~1 2m—1
+ 3 aWNlel™ + Y 6N (€ 4+ ma(2)) f2f~
j=m j=m
2m-1 '
+ Z cj(A) (XN 4y (2)) ||,
j=m

where RE()) := lim, o Ro(X £ ip).
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(2) There exist some positive constants Cop; for j = m,m +1,--- ,2m such that

RS V()] = IGu()] < Y Dju(2)],

j=m

DiN)u(e) 1= Cus [ _la = 4l uls)dy

3 Boundness of the generalized eigenfunctions
In this section, we assume that n, V(z) and k satisfy the next inequalitys:
(1) n=2m+1(meN)andm>1
o n+1
(2) WV@I<C@)7, 0>—
(3) ke {kla < [kl < b} and [a,8] € (0,00)\o,(H).

Applying Theorem 1.4, we see that generalized eigenfuction ¢*(z, k) defined by

p* (2, k) = po(2,y) = RT(IRD{V ()po (-, B) }(2), (3.1)
satisfies the equation
¢*(x,k) = po(z, k) = RF([ED{V () (-, k) }2), (3.2)

where pq(z, k) = e**. :
In this section, we let {D;V ()% (-, k)}(z). be denoted by D;V (z)p*(x, k). Moreover,
let V(2)D;,V(z)D;,_, -+ V(2)D;,V(z)p*(z,k), be denoted by

(H V(x.)Djp) {V(z)ga*(:c,k)}.
p=1

This section proves boundness of the generalized eigenfunctions. And the main theo-
rem is

Theorem 3.1 Let n=2m+1, m > 1 (m,n € N), and [a,b] C (0,00)\0,(H). Then
there exists a constant Cy such that generalized eigenfunctions defined by ¢*(z,k) =

@o(2,y) = RF(RD{V()po (" k)}(2) satisty
lo* (2, k)| < Cas,
for all (z,k) € R® x {a < |k| < b}, where po(z, k) = e=*.

To prove the main theorem, we gave the lemmas as follows.
Lemma 3.1 Let m+1 < j < 2m (j € N) and p > n/(n - j). If u(z,k) €
L*(R?) N LP(R?), and |ju(z,k)||l2 < Cl, llu(z, k)|l < Cl, (Coy and C) are positive
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constants) for all (z,k) € R™ x {a < |k| < b}, then there exists a positive constant Cos,
such that

Dju(z,k)| < Ca,

for all (z,k) € R® x {a < |k| < b}.
Lemma 3.2 Letr, j,eNands>1/2. lf m+1<j, <2mfor1 < p < r, then

Qﬂ V(“")Dir) {V(l’)vi(x, k)} € L**(R7)

for all » € N. Moreover, there exits a positive constant Cgp, such that

(ﬁ »’(w)D,-,) Vet h}

for all (x,k) € R* x {a < |k| < b}.

Lemma 3.3 Let0 <a<n,1<p<gqg<ooand f € LP(R"). Let I, f(z) be
definded by I, f(z) := [pa [t — y|™ *f(y)dy. If 1/qg = 1/p — a/n, there exists a positive
constant Cpq, such that

S Cab

L3

Hafllze < Cogliflize-
For the proof of the theorem, see [24, P119].

9
Lemma 3.4 LetreN. fm+1<j,<2m (1 <¢<r), and 22]’,) (2¢ - )n

=1
for all ¢ < r, then

l:I V(:E)Djp) {V(;r)cp’h(a:, k)} € L:E,’ =1 jzp”:(lr-ﬂn (]R:)
=1

for all r < n — 1. Moreover, there exits a positive constant Cj,;, such that

‘ @[V(ij,) {Vi@)e* b}

for all (z,k) € R* x {e < |k| < b}.
Lemma 3.5 Let r € Nand r < n. If m < j, < 2m for all 1 < p < r, then there
exist a positive constant Cy, such that

2

2301 p<(2r-1)n

S Cab

L!n/{? ):;___1 ip—(3r-1)n}

.<_ C’aby

D;, ﬁwx)u,»,) {V@@)e*@. )}

for all (z,k) € R* x {a < |k| < b}
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4 Asymptotic completeness

We investigate the asymptotic completeness of wave operators in this section. We assum
that the potential V'(z) is a real-valued measurable function on R" satisfying

V(z)| <C{z)y™ o>1 (4.1)

Under this assumption, it is obvious that V" is a bounded selfadjoint operator in L*(R"),
and that H = Hy + V defines a selfadjoint operator in L?(R™), whose domain is H'(R™)
(see T. Umeda [27, Theorem 5.8]). Moreover H is essentially selfadjoint on Cg°(R")
(see T. Umeda [27]). Since V' is relatively compact with respect to Ho, it follows from
Reed-Simon [22, P113, Corollary 2] that :

0(H) = 0.(Hy) = [0,0).

In this section, we prove the next main theorem with V. Enss’s idea (see V. Enss [5] and

H. Isozaki [9]).

Theorem 4.1 Let Hy = vV—-A, H = Hy + V(z) and V(z) satisfying (4.1). Then
there exists the limits :
Wy = lim e*He "o
t—zoo

and the asymptotic completeness hold:

R(W.) = Hae(H).

5 Eigenfunction expansions

In this section, we assum that the dimension n is an odd integer, n > 3, and ¢ > (n+1)/2.
We consider the completeness of the generalized eigenfunction in this section. The main
idea is the same as the idea in H. Kitada [12] and S.T. Kuroda [15], besides, in this
section, we use the method in T. Ikebe [8, section 11]. It is known that

o.(H) = 0.(Hp) = [0, 0).

We need to remark that o,(H) N (0,00) is a discrete set. This fact was first proved by
B. Simon [23, Theorem 2.1]. Moreover, B. Simon (23, Theorem 2.1} proved that each
eigenvalue in the set 0,(H) N (0, 00) has finite multiplicity.

The main theorem is
Theorem 5.1 Assume the dimension n (n > 3) is an odd integer, ¢ > (n +1)/2,
s > n/2 and [a,b] C (0,00)\op(H). For u € L**(R"), let F be defined by

Fiu(k) := (2#)""/2/ u(z)e*(z, k)dz. (5.1)
B
For an arbitrary L**(R™)-function f(z),

Eul(oH)f(a) = (m)"

a<[ki<

F f (k)™ (x, k)dk,
b
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where Ey is the spectral measure on H, and ¢*(z, k) are defined in Theorem 1.3.
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