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1 Introduction

This paper is an announcement of [MaSo2] and we refer the interested reader
to the whole paper for further details and applications.

We are interested in the quantum evolution of a molecule, described by the
initial-value Schrodinger system,

{ idp = Hep; (1.1)
(P|t=0 = 0,

where o is the initial state of the molecule and H stands for the molecular
Hamiltonian involving all the interactions between the various particles of the
molecule (electron and nuclei). Typically, the interaction between two particles
of respective positions z and z’ is of Coulomb type, that is, of the form a]z—2/|~}
with o € IR constant. ‘ .

In 1927, M. Born and R. Oppenheimer [BoOp] proposed a formal method
for studying the spectrum of H, asymptotically as the mass of the nuclei tends
to infinity. This method was based in the fact that, since the nuclei are much
heavier than the electrons, their movement is slower and allows the electrons
to adapt almost instantaneously to it. As a consequence, the movement of the .
electrons is not really perceived by the nuclei, except as a surrounding electric

- field created by their total potential energy. In that way, the evolution of the
molecule reduces to that of the nuclei imbedded in an effective electric potential
created by the electrons. |

Many years later, this method has been made completely rigorous (from a
mathematical point of view) in the case of a diatomic molecule by Hagedorn
[Ha3], and then in the general case by Klein-Martinez-Seiler-Wang [KMSW].

Concerning the general problem of evolution (1.1), however, until now no
such reduction had ever been proved in the physical case of Coulomb.interac-



tions. The only rigorous results concern the non-physical case of smooth inter-
actions, and the first ones are due to Hagedorn [Ha4, Ha5, Ha6}, that provide
complete asymptotic expansions, as h := M -3 goes to 0 (M = average mass
of the nuclei), of the solution of (1.1) when the initial state is a convenient per-
turbation of a single electronic-level state. In particular, these results provide
a case where the relevant information on the initial state is directly connected
with the localization in energy of the electrons and the localization in phase
space of the nuclei. This fits very well with the semiclassical intuition of the
problem, in concomitance with the fact that the classical flow of some effective
Hamiltonian H.g (depending on the nuclei variables only) is involved.

However, from a conceptual point of view, something was missing in the
previous results. Namely, one would like to have an even closer relation between
the complete quantum evolution e~*#/* and some reduced quantum evolution of
the type e"*Het/® for some Hog close to Heg. In that way, one would be able to
use all the well developed semiclassical (microlocal) machinery on the operator
Heg(z,hD,), in order to deduce many results on its quantum evolution group
¢~ itHat(2,hDz)/h (g.g 4 representation of it as a Fourier integral operator), and,
in particular, to allow more general initial states.

The first results concerning such a reduced quantum evolution have been
- obtained recently (and independently) by H. Spohn and S. Teufel in [SpTe],
and by the present authors in [MaSol]. In both cases, it is assumed that, at
time ¢ = 0, the energy of the electrons is localized in some isolated part of the
electronic Hamiltonian He(z). In [SpTe|, the authors find an approximation
of e~H/k in terms of e~*Hent(=:hD2)/k and prove an error estimate in O(h)
(actually, it seems that such a result was already present in a much older, but
unpublished, work by A. Raphaelian [Ra]). In [MaSol] (following a procedure
of [NeSo, So], and later reproduced with further applications in [?, ?]), a whole
' perturbation H.g ~ Hog + 2 ok>1 h* H, of H.g is constructed, allowing an error
estimate in O(h*°) for the quantum evolution.

However, these two papers have the defect of assuming all the interactions
smooth, and thus of excluding the physically interesting case of Coulomb inter-
actions. Here, our goal is precisely to allow this case. More precisely, we plan to
mix the arguments of [MaSol] and those of [KMSW] in order to include possible
singularities of the potentials.

In [KMSW], the key-point consists in a refinement of the Hunziker distorsion
method, that leads to a family of z-dependent unitary operators (where, for each
operator, the nuclei-position variable z has to stay in some small open set) such
that, once conjugated by these operators, the electronic Hamiltonian becomes
smooth with respect to .

Here, we settle a systematic framework of such transformations, by intro-
ducing the notion of ”"twisted pseudodifferential operators”. Roughly speaking,
we say that an operator P on L2(IR};H) (H = abstract Hilbert space) is a
twisted pseudodifferential operator, if each operator U; PU. ,.“1 (where, for any 7,
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U; = U;(z) is a given unitary operator defined for z in some open set 2; C IR")
is is a smooth pseudodifferential operator with operator-valued symbol (e.g., in
the sense of [Ba, GMS]). Then, under few general conditions on the finite family
(U;,8);, we show that these operators enjoy all the nice properties of com-
position, inversion, functional calculus and symbolic calculus, similar to those
present in the smooth case. Thanks to this, the general strategy of [MaSol] can
essentially be reproduced, and leads to the required reduction of the quantum
evolution. As an application, we consider the case of coherent initial states
(in the same spirit as in [Ha5, Ha6]) and, applying a semiclassical result of M.
Combescure and D. Robert [CoRo], we justify the expansions given in [Ha6] up
to times of order In # (at least when the geometry makes it possible).

2 Main Results

In order to simplify this presentation, here we consider the following example
only (that already contains almost all the difficulties), and we refer to [MaSo2]
for more general Hamiltonians (e.g., including an external electro-magnetic field,
etc...).

With h := M~3% (M = average mass of the nuclei), and after re-scaling
all the variables, we are interested in investigating the asymptotic behavior, as

h — 0., of the quantum evolution group e~*%/* associated to the operator,
P =—h2A, + Q(z) + W(z). (2.1)
Here, z = (z1,...,%,) € IR®™ denotes the nuclear position variables, Q(z)

stands for the electronic Hamiltonian, typically of the form,

ﬂgl
Ae) = =4y +Zly —ykl Zly — x|

Ji#k

with y = (y1,...,9) € R’ and ok, B¢ constants, and W (z) is the potential
of nuclei-nuclei interaction, tipically of the form,

W(IE) Z ’Yz £

rvy |ze — o]’
with 7, ¢ > O constant.

For L > 1 and L’ > 0, we denote by A;(z),...,Ar4+r/(x) the first L+ L'
values given by the Min-Max principle for @Q(z) on H, and we make the following
local gap assumption on the spectrum o(Q(z)) of Q(z):

(H) There exists a contractible bounded open set Q C IR*™ and L > 1 such
that,

(i) an = 0, where C := {(z1,...%Zn); To = o for some £ # £'} is the so-called
collision set of nuclei;
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(ii) For all z € Q, A1 (=), ..., AL+1/(z) are discrete eigenvalues of Q(z), and one
has, '

inf dist (GQE@NAL+1(@), s s n (@}, 1 (@), Arrar(@)}) > 0.

Then, denoting by L2(JR™)®L the space (L?(IR"))L endowed with its natural
Hilbert structure, we have,

Theorem 2.1 Assume (H) and let ' CC Q with Q' open subset of IR®".
Then, for any g € C§°(IR), there exists an orthogonal projection II = II,
on L*(IR";H), an operator W = W, : L?(R™;H) — L?*(IR™)®L, uniformly
bounded with respect to h, and a selfadjoint L x L matrix A of h-admissible
operators H2(IR™) — L?(IR™), with the following properties:

o For all X € C°(8),
. IIX = ToX + O(h);

e WW*=1and WW=II,
e For z € {¥, the symbol a(z,&; h) of A verifies,
a(w,g; h) = gzlL + M(IE) + W(x)IL + h?"(x: 5; h)

where I, stands for the L-dimensional identity. matrix, M(z) isa Lx L ma-
trix depending smoothly on z € Q' and admitting Ay 41(z), ..., A\ +1(x)
as eigenvalues, and where 8%r(z, §; h) = O((€)) for any multi-index o and
uniformly with respect to (x,¢) € €’ x IR*™ and h > 0 small enough;

e For any f € C§°(IR) with Supp f C {g = 1}, and for any ¢y € L2(IR™; H)
such that ||pol| = 1, and,

leollLa(rgiry + 1I(1 — Mol + (1 = f(P))poll = O(R*), (2.2)

for some Ko CC €, one has,
e PRy = Wrem A bWo, + O ((£)h™) (2.3)
uniformly with respect to h > 0 small enough and t € [0, Ty (o)), where,

To (o) == sup{T > 0; 3Kr CC &, e lle=**/*gollLakg.my = O(B™)}.

3

Remark 2.2 It can be shown that,

2 dist (Ko, 3Y)

Tar(po) 2 |Vew(z, hDg)g(P)||’

and, when L = 1, a much better estimate is given Theorem 2.5 below.



Remark 2.3 Actually, much more informations are obtained on the operators
II, W and A. In particular, they all admit an asymptotic expansion in powers
of h, and are indeed ”twisted h-admissible operator” (in the sense of the next
section) that can be computed by the corresponding ” twisted symbolic calculus”.

Remark 2.4 The three terms in condition (2.2) respectively correspond to a
localization in energy for the electrons, a localization in energy for the whole
molecule, and a localization in space for the nuclei.

In the case L = 1 we also obtain the following geometric lower bound on .

Ta/ (o), that relates it with the underlying classical Hamilton flow of the oper-
ator A:

Theorem 2.5 Assume moreover that L = 1, and set,
ao(z,€) == & + Apq1(z) + W(z)  (z€9).

Also, denote by H,, := 0;a00, — 0,a00¢ the Hamilton field of ag. Then, for any
f € C§°(IR) with Supp f C {g = 1}, and for any ¢g € L*(IR";H) verifying
(2.2) with ||o|| = 1, one has,

T (o) = sup{T > 0; mz(Usepo,1) exp tHao (K(f))) € '}, (2.4)

where T, stands for the projection (z,£) + z, and K(f) is the compact subset
of IR?*" defined by,

K(f)i={(z,€); = € Ko, €+ inf inf o(Q(s')) < Max| Supp f1}-

Remark 2.6 An even better estimate (somehow optimal) can be obtained in
the case where g is a coherent state: see Section 7.

3 Twisted Pseudodifferential Calculus

Definition 3.1 We call “regular covering” of IR" any finite family (€;);=0,-.,»
of open subsets of IR™ such that U}_, §); = IR™ and such that there exists a
family of functions X; € C°(IR™) ( the space of smooth functions on IR™ with
uniformly bounded denvatwes of all order) with 3°7_oX;=1,0<X; <1, and
- dist ( Supp (X;), R™\;) >0 (5=0,---,7r). Moreover if U; (ac) (z € Q,, 0<
j <) is a family of unitary operators on H, the family (U,, ;) )0, . » (where
U; denotes the unitary operator on L?(Q;;H) ~ L%(§);) ® H induced by the
action of Uj(z) on H) will be called a “regular unitary covering” of L(IR™; H).

Then, we denote by C3(;) the space of functions X € Cg°(IR™) such that
dist ( Supp (X), R™\;) > 0.

Definition 3.2 (Twisted h-admissible Operator) LetU := (U;, ;)
be a regular unitary covering (in the previous sense) of L2(IR";H). We say that

7=0,,r
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an operator A : L2(IR"; H) — L*(IR";H) is a U-twisted h-admissible operator,
if there exists a family of functions X; € C3(2;) such that, forany N > 1, A
can be written in the form,

A=) U ANUX; + O(RY), (3.1)

T
=0

where, for any j = 0,..,r, AY is a bounded h-admissible operator on L*(R"™; H)
(in the sense of [Ba, GMS]) with symbol a} (z,£) € C°(T*IR"; L(H)), and, for
any @; € CP(Q) (£=0,..,7), the operator

Uz(perT'-lXjA;-VXjUjU[l(pg,

is still an h-admissible operator on L?(IR™; H).

" An equivalent definition is given by the following proposition:

Proposition 3.3 An operator A : L*(IR"*;H) — L?(IR™ H) is a U-twisted
h-admissible operator if and only if the two following properties are verified:

1. For any N > 1 and any functions X1, -+ ,Xn € C°(IR"), one has,
ady, o---oady,(A4) = OGY) : L2(R™;H) — L*(IR"; H)
where we have used the notation ady(4) := [X, 4] = XA - AX.

2. For any ¢; € C3(Q;), the operator U;p; AU j"l<p,~ is 2 bounded h-admissible
operator on L*(IR™; H).

One also has at disposal a notion of (full) symbol for such operators. Indeed, one
can show that, for all j, there exists an operator-valued symbol a;, unique up to
O(h™), such that, for any X; = X;(z) € C3(£;), the symbol of the h-admissible
operator UjX,-AUj"lxj is X;#la;#X; (where § stands for the standard symbolic
composition). Then, the symbol of A is defined as the family o(A) := (a;)o<;<r-

We also clearly have a notion of ellipticity, and, defining the Moyal product
# of two such symbols by the formula,

(a5)o<i<rH(b5)ogicr = (ailbi)o<i<rs

it can be shown that all the usual symbolic calculus can be extended to this
situation (in particular: construction of parametrices for elliptic operators; func-
tional calculus; ...). Moreover, a similar definition can be done for unbounded
operators, at least in the case of differential operators (which is enough for our

purposes).

Then, concerning our operator P under study, we first modify it outside &’

in the following way: We choose a function ¢ € C§°(; [0, 1]) such that { =1
near ', and we set,

Q(2) = ¢(=)Q(=) + (1 = ¢@NTI (2)QolIF () — (1 = {(2))II5 (=),
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where Qo = —A, + 1, and ﬂoi(a:) are convenient extensions (smooth with re-
spect to z outside Q) of the spectral projections IIF (z) of Q(z) associated with
o(Q(z)) N (Ap 41(z), +o0) and o(Q(z)) N (—o0, AL (z)] respectively. Then, we
replace P by the operator,

P:=—h2A, + Q(z) + {(2)W (z), (3.2)

which is equal to P for z in £/, and has smooth coefficients with respect to «
outside (2. Moreover, the local gap in the spectrum of Q(x) becomes a global
gap in that of Q(z), and we denote by Ilp(z) the corresponding extension of

o(z).

Then, following [KMSW], one can construct a family (£2;, U;(z))1<;<- such
that @ C UI_,Q; and U;(z)PU;(z)~! is a differential operator depending
smoothly on z in ;. Then, completing this family by adding some §2¢ such that
Uio Q5 = IR*" *and by taking Uy = I, we obtain a regular unitary covering
U of L*(IR*; L*(IR®*")), and we see that (P +i)~1 is a U-twisted h-admissible
operator.

Let us briefly recall the construction of [KMSW]. For any fixed zo =
(29,...,22) € IR3™\C, we choose n functions fi,...,fr € C(IR3;IR), such
that,

fi(@R) = &k (L <4k <n),
and, forz € R*, s€ IR%, and y = (31, ... ,Yp) € IR%, we set,

Fyo(z,8) := s+ Z(xk — 2 fk(s) € IR,
k=1

Gzo(way) = (Fwo(m’yl))'--7on(x>y1’)) € 'ZRSP'

Then, for z in a sufficiently small‘ neighborhood ,, of zq, the application
y — Gy, (z,y) is a diffeormophism of IR, and we have,

Tk = Fwo(x’xg)’
Gy (z,y) =y for |y| large enough.
Now, for v € L2(IR%) and z € Q,,, we define,

Uso (2)0(y) := |detd, Gao (, y) | F0(Cao (2, )],

and we see that U, (z) is a unitary operator on L2(JR*F) that preserves both
Dq = H?(IR*) and C3°(IR%"). Moreover, denoting by U,, the operator on
L?(Q, x IR*) induced by U,,(z), we have the following identities:

Uz, hD,,U;o1 = hD, + hJy(z,y) Dy + hJ2(z,y),

UwoDyUa-:;)l = J3(:B,y)Dy + J4(a:, y))

1 o1 1
o ka - y;cl re ’Fmo(m: yk) - Fmo(xvy;c))‘

U 1 -1 _ 1
e 'IE,‘ ~yk| % | Fao (-’ﬂ,mg) — Fyo(z, yk)l ,

(3.3)
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where the (matrix or operator-valued) functions J,’s (1 < v < 4) are all smooth
on €, x IR*. The key-point in (3.3) is that the (z- dependent) singularity at
yx = z; has been replaced by the (fix) smgulanty at yr = m , and one can easily
deduce that the map z = U, ,Q(z)U,! is in C®(Qg,; [.(H 2(IR%®), L2(IR%")).
To complete the argument, one just observes that the previous construction can
be made around any point zq of Q, and since this set is compact, one can cover
it by a finite family Q1,...,8, of open sets such that each one corresponds to
some §);, as before.

4 Construction of a Quasi-Invariant Subspace

Here, we adopt the general strategy of [Nel, Ne2, NeSo, So], consisting in con-
structing a projector close to Iy, and that approximately commutes with P,
up to O(h*). It is precisely for this construction that we need the twisted
pseudodifferential calculus.

Theorem 4.1 Assume (H), and denote by U := (U;,8;);=o0,...,» the regular
unitary covering of L(IR®™; L?(IR*)) constructed at the end of the previous
section. Then, for any g € C§°(IR), there exists a U-twisted h-admissible oper-
ator I, on L2(IR"; H), such that I1, is an orthogonal projection that verifies,

I, = IIp + O(h) (4.1)
and, for any f € C°(IR) with Supp f C {g = 1}, and any £ > 0,
PAf(P), ) = O(h™). (4.2)

Moreover, I, is uniformly bounded as an operator: L?(IR*™; Lz(Bsp)) —
L2(IR%™; H2(IR*)) and, forany £ > 0, any N > 1, and any functions Xy, - -+, Xy €
Cy°(IR™), one has,

Ptady, o---oady, (II,) = ORN). (4.3)

Sketch of Proof: We first perform a formal construction, by essentially fol-
lowing a procedure taken from [Nel] (see also [BrNo] in the case L = 1). Since
Q= Q(x) + {(z)W(z) commutes with IIy, we have,

[P, 11o) = [~h%A,, o).

Moreover, denoting by v(z) a complex oriented single loop surrounding the set
{Dr+1(z),..., p11(x)} and leaving the rest of the spectrum of Q(z) in its:
exterior, we have,

flo(a) = - / (= Q@) (4.4)

and we see that Qollo(z) is a U-twisted Partial Differential Operator (in short:
PDO) of degree 0. Applying the twisted symbolic calculus, we deduce,

[P, Tlo] = —iRSh, (4.5)
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where Sy is a twisted PDO, too, and satisfies Sp = HOSOII& -+ Ho S’oHo, where
I§ := 1 —IIp. Then, we set,

o B}
]
|

(2= Q(=)) " [113 () Sollo(=) — lo(@)Solld (2) | (z—Q(e)) ez,

(4.6)
which is a U-twisted PDO, too. Applying again the twisted symbolic calculus,
we obtain, o 3

[P, II1] = [Q,II1] + hB,

where B is a twisted PDO. A direct computation also gives,

[P,11;] = S — ihS), (4.7)
where S, is a twisted PDO, and thus,
[P, 11y + AII;] = —ih%8;. (4.8)

Moreover,
(OW)? — I = h(TIpM, + M1l — ) + K202 = R?M} =: RT3,

where T; is a twisted PDO. This procedure can be iterated, and one finally
obtain a whole formal series IT = Y5, A*II;, where the II,’s are twisted PDO’s,
and such that, formally,

m=1 (4.9)

[P,11] = 0. (4.10)

However, it appears that the degree of I, increases with k, and that makes
the re-summation of such a formal series far from being straightforward. How-
ever, follow an idea of [So|, we observe that, for g € C§°(IR), the operators
g(P)II, (k > 0) are all twisted h-admissible operators. In particular, they are

all bounded uniformly with respect to h, and thus one can re-sum in a standard
way the series Y ;. o h*g(P)II. Denoting by II(g) such a resummation, we set,

I := H(g)+ﬂ(9)*-%(Q(P))U(g)'+ﬂ(g)9(f’))+(1—9(P))ﬁo(1—g(f’))- (4.11)

Then, I, is a selfadjoint twisted h-admissible operator, and since II(g) =
g(P)Ily + O(h), we have,

111y = Mollzz2(rmsryy + 2 — Tglleqracrmiyy = OCh). (4.12)

Finally, following the arguments of [Nel, Ne2, NeSo, So], for h small enough we
can define the following orthogonal projection:

1 -
= —— - (I, — 2)7 ! dz, (4.13)
() N |z-—1t.—_% ( g ) |
and one can prove that it verifies all the assertions of the Theorem. °

Remark 4.2 Our proof also provides a way of computing the full symbol of
11, (and thus of I, too) up to O(hM), for any M > 1.
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5 Decomposition of the Evolution for the Mod-
ified Operator

In this section we restrict our attention to the quantum evolution of P, for which
a very complete result can be proved, in the same spirit as in [MaSol}.

Theorem 5.1 Under the same assumtions as for Theorem 4.1, let g € C§°(IR).
Then, one has the following results:
1) Let ¢y € L?(IR™;'H) verifying,

o= f(P)po, (5.1)

for some f € C$(IR) such that Supp f C {g = 1}. Then, with the projection
I, constructed in Theorem 4.1, one has,

e P M pg = PO Mg + e HFPIM(L— L)oo + O(tIR=[lpoll)  (5:2)
uniformly with respect to h small enough, t € IR and ¢ verifying (5.1), with,
PV =1 P, ; P®:=(1-1,)P(1-1I,).

2) Let gy € L2(IR™;'H) (possibly h-dependent) verifying ||po|| = 1, and,
| @0 = f(P)po + O(h™), - (63
for some f € C§°(IR) such that Supp f C {g = 1}. Then, one has,
e it Ihgy = e PO g + PP/~ T )po + O((HR®)  (5.4)

uniformly with respect to h small enough and t € R.
3) There exists a bounded operator W : L*(R";H) — L%(IR™)®L with the
following properties:

o For any j € {0,1,...,7}, and any ¢; € C3(f;), the operator W; :=
WU/ g; is an h-admissible operator from L*(IR"™; H) to L*(IR™)®L;

e WW* =1and W'W = Ilg;

o The operator A := WPW* = WPOW* is an h-admissible operator on
L2(IR™®L with domain H™(IR™)®L and its symbol a(z,&; k) verifies,

a2, & k) = w(z, & W)L + M(3) + (@)W (@)L + hr(z,€; )

where M(z) is a L x L matrix depending smoothly on z, with spectrum
{Ar (), ..., A +1(z)}, and r(z,§ : h) verifies,

8%r(z,& h) = O((E)™ 1)

for any multi-index o and uniformly with respect to (:L',f) € T*IR" and
h > 0 small enough.
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In particular, W |ranni, : Ranlly — L2(IR™)®L is unitary, and g~ itPV/ b1, =
Wre H#A/PWIT, = W*e=#A/MW for all t € IR.

Proof 1) Setting ¢ := e~t#/¢, we have f(P)p = ¢, and thus
- ihdIlyp = N Pf(P)p = 2P f(P)e. (5.5)

Moreover, writing [I1,, P)f(P) = [11,, Pf(P)] + P[f(P),1,], Theorem 4.1 tells
us that ||[II,, P]f(P)|| = O(h*®). Therefore, we obtain from (5.5),

ihdiTLyp = 1P, (P)p + O(h|lel) = POTLep + O(R=|4oll),
uniformly with respect to h and ¢. This equation can be re-written as,
ihdy (7 M Typ) = O™ poll)
and thus, integratihg from 0 to ¢, we obtain,
My = e M Lp0 + O(t|h™llpoll),

uniformly with respect to h, t and .
Reasoning in the same way with 1 — II, instead of II,, we also obtain,

—itP® oo
(1 - Mp)p = e 7 /R(1 ~ Ty)po + O(JtIR>[lwol)),
and (5.2) follows.

2) Formula (5.4) follows exactly in the same way.

3) Since II, — [Io = O(h), for h small enough we can consider the operator
V defined by the Nagy formula,

v = (fioll, + (1 - ) -10,)) (1- (0, - )?) . (56)

Then, V is a twisted h-admissible operator, it differs from the identity by O(h),
and standard computations (using that (II; — IIg)? commutes with both IIoIl,

and (1 —p)(1 —II,): see, e.g., [Ka] Chap.1.4) show that,
VV=VV'=1 and IV = VI,
Then, we define Z1, : L2(IR™; H) — L?(IR™)®¥ by,

L
Z19(z) = P (Y (a), dr(@))n,
k=1

where the iz (z)’s generate the range of {Io(z) and are such that, for all j > 0,

Uk j(z) = Uj(a)ug(z) € C=(Qy; Hz(le”)).
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Finally, we set,
' W:=Z1poV =721+ O(h). (5.7)

Thanks to the properties of V, we see that WII, = W, and, since Z;7 71, = Iy
and Z1Z] =1, we also obtain:

WW=VIV=0, ; WV* =1

Moreover, for any ¢;,X; € C§°(£2;) such that X; = 1 near Supp ¢;, and for
any ¥ € L2(IR*;H), we have,

A L
WU; p59(z) = P Viv (@), .5 ())n,
k=1

with V, = Uj X,VU“ @; and i ;(z) = Uj(z)ir(z) € C=(Q;, H). Therefore,
WU, p; is an h-admissible operator from L2(R";H) to L?(IR")®%, and the
ﬁrst two properties stated on W are proved. (Actually, one can easily see that
W also verifies a property analog to the first one in Proposition 3.3, and thus,
with an obvious extension of the notion of twisted operator, that W is, indeed,
a twisted h-admissible operator from L2(IR™;H) to L*(IR™)®L.)

Then, we define
A= WPW* = WPDIWw*,

and it remains to prove that A in a matrix of h-admissible operators (in the
sense of [Rol]). Taking a partition of unity (X;);=o,...» on IR*" adapted to the
£1,’s, we have, and choosing ¢; € C§°(£2;) such that ¢; = 1 in a neighborhood
of SuppX;, we write,

A= ZWX,PW* Z%wx PoIW*o; + R(h),

3=0 j=0
with ’IR(h)llﬁ(Lz(R")) = O(hoo) Thus,

A= oWU;X;PU;0,W*p; + R(R),
§=0
where P; = U; PU ; is an h-admissible (dlfferentlal) operator from

H2(IRB" H 2(1R3"’)) to L2(IR3("*P)), while, by construction, U;p;W*y; is an
h-admissible operator from H? (IR?‘")@L to H 2(IR*"; H*(IR*")) and ;WU 'X;

is an h-admissible operator from L2(JR3("*P)) to L2(IR3")®L, Therefore, Ais
an h-admissible operator from H2(JR*")®L to L2(JR*")®L, and, if we set,

Pi(z, & h) = £+ Qi(z) +{(@)W(z), Qj(z):=U;(z)Qz)Uj(z)™*
and if we denote by v;(z,£) (resp. v}(z,£)) the symbol of U;VU; ) (resp.
U;VU; '), then, the (matrix) symbol a = (ax ¢)1<k,e<L of A, is given by,

r

are(z, & k) = ) (X;(x)v; (@, EF; (=, )0} (2, )itk 5 (), e, ().

=0
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In particular, since 0%(v; — 1) and 8% (v} — 1) are O(h), we obtain,

ake(z, &, B) =Y (X;(2)(€% + Qi (=) + {(2)W (@) )itk (), e 5 (@)1 + Th,e(R)

r
=0

with 0%y ¢(h) = O(h(€)), and thus, using the fact that
» (Qs(2)iin 5(2), 5 (2)) = 03 (2)(Q=)ir(2), e(2)),
this finally gives,

bl h) = 3 X @) ESue + mae(®) + W (2)b0e) + roelh)
i=0

= (€24 {(2)W(2))0k.e + mr o) + Tk 2(h),

with my ¢(x) := (Q(x)iix (), % (z)), and Theorem 5.1 follows. o

6 Proo_f of the Main Theorem

We give a sketch of proof of Theorem 2.1. In view of Theorem 5.1, it is enough
to prove,

Theorem 6.1 Let @o € L?(IR™; H) such that ||| = 1, and,
llpollzaxgirg + 11 — g)eoll + [|(1 = F(P))eoll = O(R™), (6.1)

for some Ko CC ¥ CC 9, f,g € C3°(IR), gf = f, and let P be the operatof'
constructed in Section 2 with K = ¥, and I, be the projection constructed in
Theorem 4.1. Then, with the notations of Theorem 5.1, we have,

e itFIhpy = =P /hpy + O ((H)h), (6.2)
uniformly with respect to h > 0 small enough and t € [0, Tay (¢0))-

Sketch of Proof : Denote by X € C§°(f2) a cutoff function such that X =1
on § and ¢ = 1 near SuppX. Then, the twisted pseudodifferential functional
calculus tells us

I(F(P) = F(P)Xl|gizacroemimy = O(B®). (6.3)
Now, by (6.1), we have,
| wo = f(P)po + O(h™) = f(P)Xpo + O(R™),
and thus, by (6.3),

0o = F(P)Xpo + O(h™) = f(P)po + O(h*).



This means that (5.3) is satisfied, and thus, by Theorem 5.1, the decomposition
(5.4) is true. Using (6.1) again, this gives,
e #P/h gy = =PV o) + O(|th™) = Wre™ A MW, + O((H)h™), (6.4)

uniformly with respect to h and ¢.

On the other hand, if we set ¢(t) := e~®*F/hpq, then, by assumption, ¢(t) =
F(P)p(t) + O(h™) and ¢(t) = Xp(t) + O(h*) uniformly for ¢ € [0, T (po)]-
Therefore, applying (6.3) again, we obtain as before, ¢(t) = f(P)p(t) + O(h®),
and thus also, 5

e(t) = f(P)Xep(t) + O(R™), (6.5)

“uniformly with respect to h and ¢ € [0,Tq(w0)]. Moreover, since P and P
- coincide on the support of X, we can write,

ihd,f(P)Xp(t) = f(P)XPop(t) = f(P)PXep(t) + f(P)X, Plp(2),
and thus, since f(P)[X, ] = f(P)[X,—h2A,] is bounded, and [X,~h2A,] is
a differential operator with coefficients supported in Supp VX (where ¢ is
O(h*)), we obtain, :
hBf(PYXp(t) = F(PYXPo(t) = PF(PYXp(t) + O(h).

As a consequence,

~

F(PYXp(t) = e *F/hf(PYXepo + O(|t]h™),
and therefore, by (6.5),
o(t) = e~*F/hpy + O((t)A), (6.6)

uniformly with respect to k and ¢ € [0, Tar (¢0))- .

7 Application: Propagation of Wave Packets

Here, we assume L = 1 and, in a similar spirit as in [Ha6], we investigate the
evolution of an initial state of the form,

po(w) = (wh)™"/4 f(P)Ty ¢80/ h=(e=20)"/2hy, (g), (7.1)

where (zp,£0) € T*Q is fixed, f,g € C§°(IR) are such that f = 1 near ag(xo, éo)
(here, ag(x, ) is the same as in Theorem 2.5), g = 1 near Supp f, and II, is

the projector constructed in Theorem 2.1. In particular, since e~ (@=20)*/2h jg
exponentially small for = outside any neighborhood of zq, by (6.3), we have,

po(z) = (wh)~™/4 f(P)IL, (¢¥50/h=(a=20)"/2h5;, (2)) + O(R),
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in L2(IR™;'H). Moreover, due to the properties of II,, and the fact that the
coherent state ¢p := (wh)~"/4eivbo/h—(2=20)*/2h is normalized in L2(IR™), we
also obtain,

po(w) = (mh) ™4 f(P)eieto/h= =22 () + O(h),

and thus, in particular, |l@o|| = 1+ O(h). Actually, one can even show a better
_ result, namely:

Proposition 7.1 The function o admits, in L2(IR™;H), an asymptotic ex-
pansion of the form,

o0
wo(z) ~ (7Th)""/4eiw€°/h_(z'“°)2/2h Z h'“'uk(w) + O(h™), (7.2)
' k=0

with vx, € L (IR™;H) (k > 0), and vo(z) = @1 (z) + O(|z — zo|) in H, uniformly
with respect to xz € IR™.

In particular, defining the Frequency Set of a (here, L2 (B3”)-valﬁed) function
of z in a way similar to that of [GuSt], one also has,

FS(Ujpo) = {(z0, &)} N T4y,
forj=1,...,r.
Now, applying Theorem 2.5, we obtain,
etF/h gy = Wre™#A/MWp0 + O((H)A™), (73)

uniformly for ¢ € [0, T (o)), where ' CC € is the same as the one used to
define P. In that case, one also obtain the following better estimate on Tq/(po):

Tar (o) = sup{T > 0; Wm(ute[O,T] exptH,,(zo,&0)) C Q’}. (7.4)

Moreover, by a stationary phése expansion, we see that,

Weo(z; h) ~ (7rh)'"/4ei”€°/"‘(””°)2/2h Z hFwi(z) + O(h™), (7.5)
k=0

with wi € Cp°(R™), wo(z) = (@1(2), %1(2)) + O(|z — zo|) = 1 + O(|z — 20l),
and where the asymptotic expansion takes place in Cg°(IR™).

This means that Wy is a coherent state in L2(JR"), centered at (zo,&o),
and from this point we can apply all the known results of semiclassical analysis
for scalar operators, in order to compute e~ *4/*Wy, (see, e.g., [CoRo, Hal,
Rol, Ro2| and references therein). In particular, we learn from [CoRo] Theorem
3.1 (see also [Ro2]), that, for any N > 1,

3(N-1)
e 1AMy = ¢ifi/h Z ck(t; h)®p s + O(eNcotthz): (7.6)
k=0
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where @, ; is a (generalized) coherent state centered at (s, &:) := exp tHao (0, €0),

O = fot(isgs — ag(zs,&s))ds + (zo€o — x:€:)/2, Co > 0 is a constant, the coeffi-
cients ¢ (¢; h)’s are of the form,

Ni
ck(t; h) = Z heck,g(t), (7.7)
£=0 ‘

with ¢ ¢ universal polynomial with respect to (87ao(zt,&¢))|yj<M,» and where
the estimate is uniform with respect to (¢,h) such that 0 < t < Ta:(z0,40)
and he®°t remains bounded (h > 0 small enough). In particular, (7.6) supplies
an asymptotic expansion of e~*4/AWqy, if one restricts to the values of ¢ such
that 0 < t << In+. Applying W* to (7.6), and observing that W*®;; =
V*(®r 1) = UJ-‘IV;(CI)k,tul,j), where j = j(t) is chosen in such a way that
exptH,,(zo,&0) € §2;, and where V; := UjV"UJ-"1 is an h-admissible operator
on L*(€;;H) (that is, becomes an h-admissible operator on L?(IR"; H) once
sandwiched by cutoff functions supported in ), we deduce from (7.3),

3(N-1)

et F/hgy = e/ N gt )i, Usih B s (@) + O(BM),
k=0

where ®; , is a coherent state centered at (z:,§:) = exptH,,(zo,%0), j(t) €
{1,...,7} is such that exptHa,(z0,&) € Qj(ty, Vkjt) € CP(Qj(ey; H), ck(t; h)
is as in (7.7), & = fot(a'csﬁs — ap(zs,€s))ds + (zolo — z:£:)/2, and where the
estimate is uniform with respect to (¢,k) such that A > 0 is small enough and
te [07 min(Tﬂ’(mOa 50)’ C-'ln %))
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