<table>
<thead>
<tr>
<th>Title</th>
<th>Hankel determinants and substitutions: some results and problems (Analytic Number Theory and Surrounding Areas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>TAMURA, Jun-ichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録: 1511: 179-187</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58596</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hankel determinants and substitutions – some results and problems

Jun-ichi TAMURA

3-3-7-307 Azamino Aoba-ku Yokohama 225-0011 Japan

1. Introduction. Let A^* be a free monoid generated by a non-empty set A, i.e., A^* is the set of finite words over A with the empty word λ. We put $A^*: = A^* \cup A^*$, where N is the set of non-negative integers, so that A^* is the set of infinite words over A. Any monoid morphism $\sigma : A^* \rightarrow A^*$ can be extended to a map $\sigma : A^* \rightarrow A^*$ by $\sigma(a_0a_1a_2 \cdots) = \sigma(a_0)\sigma(a_1)\sigma(a_2) \cdots (a_i \in A)$, which is a so-called substitution (over A). We say that σ is of constant length k iff $\sigma(x)$ is a finite word of length k for all $x \in A$. A fixed point of a substitution σ is an infinite word $\nu \in A^*$ satisfying $\sigma(\nu) = \nu$.

The fixed point of a substitution σ over $\{a, b\}$ defined by

$\sigma(a) = ab, \sigma(b) = ba$ (resp., $\sigma(a) = ab, \sigma(b) = a$)

prefixed by a is referred to as the Thue-Morse word (resp., the Fibonacci word).

Let $q \geq 1$ be an integer. We denote by $\text{ord}_q(n)$ the largest integer $e \geq 0$ such that n is divisible by q^e. We say a word $w = w_1w_2w_3 \cdots$ is a q-adic Toeplitz word iff $w_m = w_n$ holds for any positive integers m, n satisfying $\text{ord}_q(m) = \text{ord}_q(n)$. Let σ be a substitution over an infinite alphabet $A_\infty = \{a_0, a_1, a_2, \ldots \}$ defined by

$\sigma(a_n) = a_0a_{n+1}$ ($n = 0, 1, 2, \ldots$).

For some of the symbols a_0, a_1, a_2, \ldots, we also write $a_0 = a, a_1 = b, a_2 = c$, etc. The substitution σ has a unique fixed point

$\omega = abacabacabacaba \ldots$, which is a 2-adic Toeplitz word. Any 2-adic Toeplitz word over a finite or an infinite alphabet B can be written by

$\tau(\omega) = \tau(\omega_1)\tau(\omega_2)\tau(\omega_3) \ldots$,

where τ is a map from A_∞ to B, and $\omega = \omega_1\omega_2\omega_3 \ldots (\omega_i \in A_\infty)$. In this sense the word ω
is a universal 2-adic Toeplitz word.

Our objective is to get something interesting related to determinants

\[H_n^{(m)} = H_n^{(m)}[\varphi] := \det(\varphi_{m+i+1}^n)_{0 \leq i \leq n-1, 0 \leq j \leq n-1}, \]

\[H_n = H_n[\varphi] := H_n^{(0)}[\varphi] \]

for a given infinite word \(\varphi = \varphi_0 \varphi_1 \varphi_2 \ldots \) \((\varphi \in A)\) over a finite, or an infinite alphabet \(A \), where \(H_n^{(m)} \) is considered to be an element of \(Z[A] \), i.e., a polynomial in independent variables \(\in A \) with integer coefficients. \(H_n^{(m)}[\varphi] \) can be extended to \((m, n) \in Z \times N\) by setting \(H_n^{(0)} := 1, \varphi_n := 0 \) \((m < 0)\), where \(N \) denotes the set of non-negative integers. In the following two sections, we give a very rough survey on the results related to \(H_n^{(m)} \). In Section 2, we give some results on \(H_n^{(m)}[\varphi] \) for a general word \(\varphi \), cf. [K-T-W], [T2]. In Section 3, we give some of the results related to \(H_n^{(m)}[\varphi] \) when \(\varphi \) is the Thue-Morse word, the Fibonacci word, and a Fibonacci-type word, cf. [A-P-ZXW-ZYW], [K-T-W], [T2]. In Section 4, we give a new characterization of the 2-adic Toeplitz words \(\varphi \) by an algebraic property (completely reducibility) of \(H_n[\varphi] \), cf. [M-T-Tn]. We shall give no proofs, but state only results with minimum definition.

2. General properties of \(H_n[\varphi] \). The set \(A^\ast \) becomes a complete metric space with respect to the metric defined by

\[d(\xi, \eta) := \exp(-\inf(n; \xi_n \neq \eta_n)) \((\xi = \xi_0 \xi_1 \xi_2 \ldots, \eta = \eta_0 \eta_1 \eta_2 \ldots \in A^\ast \)(\xi_n, \eta_n \in A))\).

As usual, \(K((Z)) \) denotes the set of formal Laurent series of one variable \(Z \) over a field \(K \). We put

\[K := Q(A) (\supset A) . \]

The set \(K((z^{-1})) \) becomes a metric space induced by a non-Archimedean norm defined by

\[|\varphi^{(h)}| := \exp(-n_0 + h), \varphi_0 := \inf(n \in N; \varphi_n \neq 0) \(101 := 0\) \]

for

\[\varphi^{(h)} = \sum_{n \geq 0} \varphi_n z^{-n+h} \in K((z^{-1})) \] (1)

with \(h \in Z := \{0, \pm 1, \pm 2, \ldots\} \). Note that \(|\varphi^{(h)}| = \exp h \) holds if \(\varphi = \varphi_0 \varphi_1 \varphi_2 \ldots \in A^\ast \subset A^\ast \).
\(K^*\). If \(\varphi\) is a finite word of length \(k\), then \(\varphi_n := 0\) for \(n \geq k\). For any given \(\varphi = \varphi_0 \varphi_1 \varphi_2 \cdots \in K^*\), we say that \((P, Q) \in K[z]^2\) is an \(h\)-Padé pair of order \(m\) for \(\varphi\) iff

\[||Q\varphi^{(h)}-P|| < \exp(-m), \quad Q \neq 0, \quad \deg Q := \deg Q \leq m\] \hspace{1cm} (2)

holds. The usual Padé pair (for a formal Laurent series) agrees with the \(h\)-Padé pair with \(h = -1\) (for a word), cf. [N-S]. It is known that an \(h\)-Padé pair \((P, Q)\) of order \(m\) for \(\varphi\) always exists for any \(h \in \mathbb{Z}, m \geq 0, \varphi \in K^*\), cf. Lemma 1. [T2]. For \(h\)-Padé pairs \((P, Q)\) of order \(m\) for \(\varphi\), a rational function \(P/Q \in K(z)\) is uniquely determined for any given \(h \in \mathbb{Z}, m \geq 0, \varphi \in K^*\). The element \(P/Q \in K(z)\) for an \(h\)-Padé pair \((P, Q)\) of order \(m\) for \(\varphi \in K^*\) is referred to as the \(h\)-Padé approximant of order \(m\) for \(\varphi\). A number \(m \in \mathbb{N}\) is called a normal \(h\)-index for \(\varphi \in K^*\) if (2) implies \(\deg Q = m\). A normal \(h\)-Padé pair, i.e., \(\deg Q\) is a normal \(h\)-index, is said to be normalized if the leading coefficient of \(Q\) equals one. Normal \((-1)\)-indices (resp. \((-1)\)-Padé pairs, \((-1)\)-Padé approximants) will be simply referred to as normal indices (resp. Padé pairs, Padé approximants). The set of all the normal \(h\)-indices for \(\varphi\) will be denoted by

\[\Lambda_n(\varphi) := \{m \in \mathbb{N}; m \text{ is normal } h\text{-indices for } \varphi\}\]

\[\Lambda(\varphi) := \Lambda_{-1}(\varphi)\].

We can consider the series (1) over \(K = \mathbb{Q}(a, b, \ldots)\) with \(a, b, \ldots \in \mathbb{C}\). In such a case, \(\varphi^{(h)}\) defined by (1) turns out to be not only an element of \(C((z^{-1}))\), but also an analytic function on \(\{z \in \mathbb{C}; |z| > 1\}\), and the \(h\)-Padé approximant of order \(m\) for \(\varphi^{(h)}\) pointwise converges to \(\varphi^{(h)}\) with respect to the usual topology on \(\mathbb{C}\) for each \(z \in \mathbb{C}, |z| > 1\) as \(m\) tends to infinity.

Proposition 1 (cf. [T1]). Let \(\varphi \in K^*\) be a word over \(K = \mathbb{Q}(A)\) with an alphabet \(A\) possibly consisting of infinite letters.

\[H_{n+1}(m)[\varphi] = (-1)^{m/2} \prod_{Q(\varphi) = 0} P(z) \quad (h, m \in \mathbb{Z}, m \geq 0),\]

where \((P, Q)\) is a normalized \(h\)-Padé pair of degree \(m\) for \(\varphi\), \(|x|\) denotes the largest integer not exceeding a real number \(x\), and \(\prod_{Q(\varphi) = 0}\) indicates a product.
taken over all the zeros of Q with their multiplicity in any field \widetilde{K} containing an algebraic closure of K.

Remark 1. We can take $\widetilde{K}=\mathbb{C}$ in Proposition 1 in the case where A is a subset (possibly empty) of \mathbb{C}.

Remark 2. If m is not a normal h-index of φ, then $P, Q \in K[z]$ have common zeros. Hence, it follows from Proposition 1 that $m \notin \Lambda_h(\varphi)$ implies $H_{n,m}(\varphi)=0$. The converse of this fact is valid, cf. Lemma 2, [T2].

In particular, Proposition 1 holds for all the fixed point $\varphi \in A^w(CK^*)$ of a substitution over any alphabet A. The following remark is useful, while it is valid only for a word φ consisting of at most two symbols.

Remark 3. Let M be a matrix of size $n \times n$ with entries consisting of two variables a, b (symbols). Then

$$\det M = (a-b)^{n-1} (pa+qb) \in \mathbb{Z}[a,b],$$

where p, q are integers defined by

$$p = \det M \mid (a, b) = (1, 0), \quad q = \det M \mid (a, b) = (0, 1).$$

3. **Thue-Morse, and Fibonacci cases.**

J.-P. Allouche, J. Peyrière, Z.-X. Wen and Z.-Y. Wen considered $H_{n,m}(\zeta)$ for the Thue-Morse sequence $\zeta=ababab\cdots$ with $(a,b)=(1,0)$, and showed that the 2-dimensional word $H_1(\zeta) \mod 2$ of $(n,m) \in \mathbb{N}^2$ is 2-dimensionally automatic; it is remarkable that $A(\zeta)=\mathbb{N}$ is known, cf. [A-P-ZXW-ZYW].

In general, it is very difficult to give an explicit formula of $H_n(\eta(n))$ for a given infinite word φ that is not periodic, while explicit formulae of $H_n(\eta)$ are completely given for the Fibonacci word $\eta=abaab\ldots$, cf. Theorems 1-5 in [K-T-W]. By f_n we denote the n-th Fibonacci number ($f_0=1, f_1=f_0+f_1=2$). Let
\[n = \sum_{i \geq 0} \delta_i(n)f_i \quad (\delta_i(n) \in \{0,1\}, \delta_{i+1}(n)\delta_i(n) = 0 \text{ for all } i \geq 0) \]

be the representation of \(n \) in the Fibonacci base due to Zeckendorf. We write

\[m \equiv_k n \]

iff \(\delta_i(m) = \delta_i(n) \) holds for all \(0 \leq i < k \). We put

\[\tau(k,S) := \begin{cases} 1 & \text{if } k = s \pmod{6} \text{ for some } s \in S, \\ 0 & \text{otherwise}, \end{cases} \]

for a subset \(S \) of \(\{0,1,2,3,4,5\} \). Then we have, for instance,

Proposition 2 (Theorem 3, [K-T-W]). For any \(k, m, i \geq 0 \) integers satisfying

\[m \equiv_{k+1} n \quad 0 \leq i < f_{k-1} \]

the following formulae hold:

\[H_{f_k}^{(m)}(n) \left| (a,b) = \left(1, 0 \right) \right. = \tau(k;2)\tau(k;1,4)^i f_{k-1}, \]

if either \(\delta_{k+1}(m) = 0 \) and \(0 \leq i < f_{k-1} \),

or \(\delta_{k+1}(m) = 1 \) and \(0 \leq i < f_k \),

\[= \tau(k;1,2,4) f_{k-2}, \]

if either \(\delta_{k+1}(m) = 0 \) and \(i = f_{k-1} \),

or \(i = f_{k+1}-1 \),

\[= 0 \text{ otherwise,} \]

\[H_{f_k}^{(m)}(n) \left| (a,b) = \left(0, 1 \right) \right. = \tau(k;1,2,4)\tau(k;1,4)^i f_{k-2}, \]

if either \(\delta_{k+1}(m) = 0 \) and \(0 \leq i < f_{k-1} \),

or \(\delta_{k+1}(m) = 1 \) and \(0 \leq i < f_k \),

\[= \tau(k;2) f_{k-3}, \]

if either \(\delta_{k+1}(m) = 0 \) and \(i = f_{k-1} \),

or \(i = f_{k+1}-1 \),

\[= 0 \text{ otherwise.} \]

Notice that Proposition 2 together with Remark 3 gives a part of the explicit formulae for \(H_n^{(*)}(\eta) \). In comparison with the automacity result for the 2-dimensional word \((H_n^{(*)}(\eta) (\text{mod } 2))_{(n,m) \in \mathbb{N}^2} \) for the Thue-Morse sequence.
given in [A-P-ZXW-ZYW], we gave an explicit expression of the
2-dimensional word \(H_n^{(m)}(\tau) \) \((n,m) \in \mathbb{N}^2\) for the Fibonacci word \(\tau \text{=abaabab...} \), which
is rather complicated, cf. Theorem 5 in [K-T-W].

In [T2], we developed a theory of analysis on words, especially for words of
Fibonacci type, i.e. the fixed points of substitutions of the form
\[
\sigma(a) := a \cdot b, \quad \sigma(b) := a \quad (k>0).
\tag{3}
\]
We denote by \(\tau = \tau(a,b;k) \) the fixed point of the substitution defined by (3), and
by \(|w|_* := \text{the number of occurrences of an identical symbol } x \text{ appearing in a word } w \). In Sections 2, 3 in [T2], we gave explicit formulae for the continued
fraction expansion with partial denominators \(K[z] \) \((K = \mathbb{Q}(a,b)) \) and normalized
Padé pairs for the Laurent series \(\tau^{-1}(z) = \tau(z,a,b;k) \) defined by (1) with \(\varrho = \tau \),
cf. Theorems 1-12, [T2]. For instance, we have

Proposition 3 (Theorem 8, [T2]). Let \(k \geq 2 \). The continued fraction expansion
of the Laurent series \(\tau^{-1}(z) \in K((z^{-1})) \) for \(\tau = \tau(a,b;k) \in \{a,b\}^* \) is given by
\[
\tau^{-1}(z) = [0; a^{-1}(z-1), (-1)^m(a-b)^{-1}h_m^*b_{m-1}^*, (-1)^n(a-b)h_m^{-1}h_{m+1}^{-1}(z-1)]_{m=0}^\infty,
\]
where
\[
\begin{align*}
h_n := |\sigma^*(a)|a^*+|\sigma^*(a)|b^*(=g.a+g_{n-1}b \in \mathbb{Z}[a,b]), & f_* = f_* := |\sigma^*(a)|, \\
b_* = b_*^*(z;k) := & z^f_* \sum_{0 \leq j < f_*+1} z^{-1} \sum_{1 \leq j \leq k-1} (k-j) z^{j-1} f_*+1+k \sum_{0 \leq j < f_*-1} z^j \in \mathbb{Z}[z].
\end{align*}
\]
If \((a,b) \in \mathbb{C}^2\), then Proposition 3 is valid under the condition
\[
a \neq b, \quad h_* (=g_*a+g_{*+1}b) \neq 0 \text{ for all } n \geq 0.
\tag{4}
\]
We can give explicit formulae for the continued fraction expansion of \(\tau^{-1}(z) =
\tau(z,a,b;k) \in C((z^{-1})) \) with \((a,b) \in \mathbb{C}^2\), which does not satisfy (4). For example,

Proposition 4 (Theorem 9, [T2]). Let \((a,b) \in \mathbb{C}^2\) with \(h_* = 0, a \neq 0, t \geq 0 \). Then
\[
\tau^{-1}(z) = [0; a_1, d_1, c_0, d_0, \ldots, c_{1-2}, d_{1-2}, e_1, e_2, i_m, j_m]_{m=0}^\infty
\]
holds with partial denominators \(K[z] \) given by
\[
\begin{align*}
a_1 &= a^{-1}(z-1) \\
c_m &= (-1)^* (a-b)h_m^{-1}h_{m+1}^{-1}(z-1)
\end{align*}
\]
\[d_m = (-1)^{m+1} (a-b)^{-1} h_{m+1} z b_{m+1}^{*}, \]
\[e_1 = (-1)^{t-1} (a-b) h_{t-1} z (z-1) b_{t-1}, \]
\[e_2 = (-1)^{t} (a-b)^{-1} h_{t-1} z b_{t}, \]
\[i_m = (-1)^{m+1} (a-b) h_{m+1} z g_{m+1}^{*} (z-1), \]
\[j_m = (-1)^{m+1} (a-b)^{-1} h_{m+1} z b_{m+1}^{*}. \]

Concerning such continued fractions, we studied uniform convergence in Section 5, [T2]. Related to the product formula (Proposition 1), we studied the distribution, and the simplicity of the zero points of \(Q(z) \) for the Padé pairs \((P, Q)\) for \(\epsilon(z; a, b; k) \) in Section 4, [T2].

It is an interesting problem which asks whether we can do the same for the Thue-Morse word \(\zeta \). The fact \(\Lambda(\zeta) = N \) (cf. [A-P-ZXW-ZYW]), we mentioned, says that all the denominators of the continued fraction for \(\zeta^{(-1)}(z) \) are of degree 1. It is of special interest to find the continued fraction expansion for \(\zeta^{(-1)}(z) \) in a closed form.

We could not give a completely explicit formula for \(H_{m}^{(m)}[\epsilon(z; a, b; k)] \) when \(k \geq 2 \); we gave the following

Proposition 5 (cf. Corollary 6, [T2]).
\[H_{f_n}^{(0)}[\epsilon(z; a, b; k)] = r_n (g_n a + g_n b) (a-b)^{f_n-1}, \]
\[H_{g_{n+1}-1}^{(0)}[\epsilon(z; a, b; k)] = s_n (g_n a + g_n b) (a-b)^{f_{n+1}-1} (n \geq 0); \]
and \(H_{m}^{(0)} = 0 \) for all \(m \neq f_n \) and \(m \neq f_{n+1}-1 (n \geq 0) \), where \(r_n \neq 0, s_n \neq 0 \) are integers independent of \(a, b \).

4. Toeplitz cases. In this section, we consider Hankel determinants for 2-adic Toeplitz words

\[w = w_1 w_2 w_3 \ldots \ (w_1 \in A). \]

Note that the numbering of the symbols starts from 1 (not from 0), cf. Sections 2, 3. Recall that a word \(w = w_1 w_2 w_3 \ldots \ (w_1 \in A) \) is a 2-adic Toeplitz word iff
\[\text{ord}_z(m) = \text{ord}_z(n) \implies w_n = w_n. \]

Without loss of generality, we may suppose \(A = \{a_0, a_1, a_2, \ldots \} \). In some cases, we use symbols \(a, b, c, \ldots \) instead of \(a_0, a_1, a_2, \ldots \) as before. Recall also the universal 2-adic Toeplitz word

\[\omega = abacabadabacabaeabacabadabacabaf \ldots \]

and the notation

\[H_n[\omega] = H_n^{(w)}[\omega] \]

defined in Section 1. For example, by direct calculation, we have

\[
H_7[\omega] = \begin{bmatrix}
 a & b & a & c & a & b & a \\
 b & a & c & a & b & a & d \\
 a & c & a & b & a & d & a \\
 c & a & b & a & d & a & b \\
 a & b & d & a & b & a & b \\
 b & a & d & a & b & a & c \\
 a & d & a & b & a & c & a \\
\end{bmatrix}
\]

\[
= -4ab^2c^4+abc^5-ac^6+16ab^2c^3d-12abc^4d+2ac^5d-24ab^2c^2d^2 \\
+8abc^3d^2+ac^4d^2+16ab^2cd^3+8abc^2d^3-4ac^3d^3-4ab^4d^4-12abcd^4 \\
+ac^2d^4+4abd^5+2acd^5-ad^6 \\
= -a(2b-c-d)^2(c-d)^4.
\]

We say that a form (i.e., a homogeneous polynomial) \(P \in \mathbb{Z}[A] \) is completely reducible iff \(P = 0 \), or \(P \) can be factorized into linear forms \(\in \mathbb{Z}[A] \), i.e.,

\[
P = P_1P_2 \cdots P_k, \quad (\deg P_i = 1 \text{ for all } 1 \leq i \leq k).
\]

One can check that \(H_n[\omega] \) are non-zero completely reducible forms for small \(n \) (for \(n \leq 30 \) or so) by using the soft "Mathematica". This is a curious phenomenon, since, for instance, \(H_2[\omega] \) (resp., \(H_3[\omega] \), etc.) is not completely reducible for any word \(\omega \) having \(abc \) (resp., \(abacd \), etc.) as its prefix of \(w \). Related to such a phenomenon, we can show the following

Proposition 6 (Main Theorem in [M-T-Tn]). Let \(\omega \) be a fixed point of a substitution of constant length 2. Suppose \(\omega \) is a word strictly over an alphabet
consisting of at least 3 symbols. Then $H_n[w]$ is completely reducible for all $n \geq 1$ if and only if w is a 2-adic Toeplitz word.

The proof of this proposition together with something more interesting (probably) will appear in the forthcoming paper [M-T-Tn].

References

