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We fix a positive integer d > 2. Let X = [0,1)? with the Borel o-algebra B.
Defineamap T: X — X by

[z fr ) Td Td 1 - i
T ((z1,z2,-..,2Z4)) = (E [x_l]""’zl [ml]’xl [%D

for x = (21,%2,...,24) € X. Then there exists a unique absolutely continuous
invariant probability measure u. (X,T) is called the d-dimensional Jacobi-Perron
algorithm. We put

) = 900 = bk = (2], [2] o[22 [2]) e
. Ty T I1 Ty _
and
k®(x) = (k&’),kg’%...,kg’)) = k(T*(x)) for s>1.

We first define Q) as the (d + 1) x (d + 1) identity matrix I;;; then recursively
Q™ forn > 1 as

00 ...0 1

10 0 k™

QM = g1 {0 1 0 kM

00 1 kY

We set forn > 1

pg"':) pg"_:’t) pﬁ”—? AV
prd pla—dr 0 en o)
Q(") = : o . . .
p%n—d) p%n.-—d+1) p%n.—l) p('n.)
qn——d) qn-—d+1) qn-l) qn)

Then the sequence

pgk) p&k)
-q-m)',...,w :kZl"d

*The main part of this note is based on a joint work with V. Berthé and H. Nakada [1]
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is called the simultaneous approximation convergents of x from the d-dimensional

Jacobi-Perron algorithm. It is well-known that for any x = (z1,22,...,24) € X
p('n)
lim -z-—za:,- for 1<i<d
n—oo ¢ n)
holds.

Our result is that for almost every x € X the sequences of vectors
{(g9,g"=3+D, ... ,g™) : n > 1} and {(p{™,p{",...,p{",q™) : n > 1} are
both equidistributed modulo m for any integer m > 2. More precisely we put

72;1:1 = {(a1;03...,a4+1) € an“ t(a1,09...,04+1) generates Z,, }

and - -~
cm = § 23! (the cardinality of Z2}!).

One easily sees that

em = pat1(m) "
= ﬂ{(al’az" "a'd'f'l) € {1’ "1m}d+1 :ng(alv' e 7ad+1,m) = 1}:

where 441 denotes the Jordan totient function of order d + 1; we thus have
om =mHH (1 - p~@),
plm :

where the notation [] . stands for the product over the prime numbers p that
divide m. Then we have the following:

Main Theorem. For almost every x € X, we have

i H{1<n < N: (gD, g4 | ¢"™) = (a1,02...,0441) (mod. m)}

N—-oo N ‘
= lim ﬂ{l S n S N: (Pgn),Pgn)s v ,pfiﬂ),q(n)) = (a11a2 . -1ad+1) (mOd m)}
N—oo N
1 1 1

Cm Yd+1 (m) - md+1 Hp’m(l -p_(d+1))

for any (a1, as...,aq41) € igil with any integer m > 2.
+

To prove main theorem, we consider for a given integer m > 2, the group G(m)
defined in a similar way as in [3]:
G(m) = SL(d+1,Z,,) ifdiseven,
SLi(d+1, Z,,) ifdisodd,
where SL(d+1, Zy,) stands for the matrices with entries in Z,,, with determinant 1,

whereas SLy(d+1, Z,,) stands for the matrices with entries in Z,,, with determinant
+1. Let us recall that (see for instance [6] or [5]) that

d+1 d+1
§SL(d+1, Zm) = m@ D 2 T] TIQ - p7%) = md@+D2 T pi(m).
i=2 p|n i=2



Let C,, denote the cardinality of G(m). Since SL(d + 1, Zy,) is a subgroup of
SLyi(d+1, Zpm) of index 2 if d is odd and m # 2, one thus gets

d+1)%2-1 7yd+1
m( 1) l_I 2 I;Ip|'n, - )
o - = ma@+D/2 T 0, (m) if d is even or m = 2 @)
m = — d 1
o (d+1)? IH + Hpn -
= 2md(d+1)/2 n"“ (m) if d is odd and m # 2.

We identify Q) with the (d + 1) x (d + 1) matrix with coefficients in Z,
obtained by reducing modulo m its entries, which we call J-P matrix. Here we note
that det Q) = 1 or ~1 if d is respectively even or odd, which implies that Q)
belongs to the group G(m), whatever may be the parity of d.

We define the map T, on X x G(m) by

Tn(x, A) = (T(x)v AQ(I))'

T, is said to be a G(m)-extensmn of the map T. We also define the probability
measure J,, on G(m) by (5—,.. 76_) Then it is easy to see that u x dp, is
an invariant probability measure for Tp,. Our question is whether (Tj,, g X ) is
ergodic or not. First, we show that the set of J-P matrices with Z,,-entries (reduced
modulo m) generates G(m).

Theorem 1. For any B € G(m), there erist J-P matrices Ay, As, ..., A such that
B=A4; --A,.
By using Theorem 1 we have the ergodicity of T,.
Theorem 2. The skew product (X x G(m), T, i X 0m) is ergodic.

From Theorem 2 and the individual ergodic theorem, we have the following
proposition.

Proposition 1. For a.e. x € X and any A € G(m),

lim -—-tt{l <n<N:Q™ = A (mod m)} = 1.
Nooco N Cm
We are now able to give proof of main theorem.
Proof of Main Theorem
For any (ai,as3,...,0441) € ZE!, we denote by N(q, a,... as) the number of
elements in G(m) such that the (d + 1)th row is (01, a2,...,04+1). We will show
that
N(al,az,...,ad+1) = Cm ’ md, (3)

where C,,, denotes the cardinality of SL(d, Z,,) or SL+(d, Z,) if d is even or odd,
respectively. It is easy to see that

N,...0,1) = Cm -m®. 4)
Now we need the following lemma.

Lemma 1. For any (ai,0q,...,04+1) € Zf,;”, there exist J-P matrices A;, Ag,
.,A; with Z,,-entries such that

(alyam vee ’ad+l) = (0, .y 0, I)AIAZ .. -Aas

where s depends on (a3, 2, ...,0411).
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From Lemma 1, we note that there always exists D € G(m) such that the
(d + 1)th row is (al,az, .,ag41) for any (a1,0z,...,441) € ZEHL,
For any matrix E of the form

0 01
ED is of the form
%
(0’1 I ¢ ) ad+1)
This implies
N(a;,ag,...,ad+1) 2 N(O,...,O,l)-

On the other hand, for any matrix D’ of the form

*
a1 ... Q&4 Od4i
*
0 ... 0 1

N(al)aﬁy'“aad-{—l) S N(O,...,O,l) M

D’ . D! is of the form

which implies

Thus we have (3).
From Proposition 1 together with (3), we have

Hl<n < N: (¢, g4, ..., ¢™) = (a1,02...,441) (mod m)}

N N
Cm . md 1
= = — for y-a.e. X
Cm Cm #
Indeed one easily checks according to (1) and (2) that —%— —=- holds. Since

u is equivalent to the Lebesgue measure, this holds for a.e. x thh respect to the
Lebesgue measure. If we consider the (d + 1)th column, then the same argument
shows the other equality. This completes the proof of Main Theorem. O

Finally we have the following corollary.

Corollary 1. For a.e. x€ X and anya € Z,,

d
= (n) = m=: QOd(ng(a, m)) .
Jim G H1Sn SN g =a (mod m)) = CEBIECRTD

Remark 1. Let F, denote the finite field of cardinality g and let F4[X] be the set of
polynomials with Fg-coefficients. We denote by L the set of formal Laurent power
series with negative degree. Since L is a compact Abelian group, there exists a

unique normalized Haar measure m. We can define the Jacobi-Perron algorithm on
L2 for any d > 1. In this case, m? is invariant under this algorithm. Suppose that

(n {n)
(%,...,%) is the n-th convergent of (fi,...,f4) € L% For any R € F¢[X],
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it is possible to prove the following : for any Ay, ..., Ad, Ag+1 € Fg[X] such that
Ay, ..., Ad, Ady1, R are relatively prime,

lim f{1<n<N: (pl(n),,..,pa(ln),Q(n)) = (Ai,..., A4, Agpr) (mod. R)}
=cp for mae. (fi,...,fs) €LY,

where cp, is a constant depending only on d and R. The proof is essentially the same
as that of Main Theorem of this paper. We refer to K. Inoue and H. Nakada [2]
for the study of the rates of convergence for Jacobi-Perron algorithm over L¢ and
to R. Natsui [4] for the L-version of Jager-Liardet’s result in the case of continued
fractions. ‘

Remark 2 (Accelerated Brun algorithm).
We put
Y ={x=(z1,22,...,2q) EX 11 > T2 > """ > x4}

and defineamap §S:Y — Y by

S (@none20) = (2o T L g, Zr 22

z'" 7 T o T z)
for x = (z1,22,...,24) € Y, where
1
T
fl—-ll|l>2z2
1 if & [11] > 3
_ Y - 7 1 1 Litl ; -
e(x)=(i if2>f—|2-|>3 for2<i<d-1
] 1 1
d if 5‘% > rreal Y
Then we can define another simultaneous approximation convergents of (21, Z2,. .. ,Zd)

by a similar way (see [7]). In this case, it is not so hard to see that the associated
matrices also generate GL(d + 1,Z,,) and get the same results.

Remark 3 (Skew product map).
Let us consider the map U on [0, 1)? defined by

o= (2-[2].5- [2)

Then it is easy to see that the associated matrices do not generate SL(3,Zn,).
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