<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>On the arithmetic distributions of simultaneous approximation convergents arising from Jacobi-Perron algorithm (Analytic Number Theory and Surrounding Areas)</td>
</tr>
<tr>
<td>著者</td>
<td>Natsui, Rie</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 2006年08月 1511号 173-178</td>
</tr>
<tr>
<td>発行日</td>
<td>2006-08</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58597</td>
</tr>
<tr>
<td>右利</td>
<td>Publisher</td>
</tr>
<tr>
<td>文種</td>
<td>Departmental Bulletin Paper</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ

Kyoto University Research Information Repository

KURENAI
On the arithmetic distributions of simultaneous approximation convergents arising from Jacobi-Perron algorithm

Rie Natsui

Department of Mathematics, Keio University
Hiyoshi, Kohoku-ku, Yokohama 223-8522
Japan
E-mail: r.natsui@math.keio.ac.jp

We fix a positive integer \(d \geq 2 \). Let \(X = [0,1)^d \) with the Borel \(\sigma \)-algebra \(B \). Define a map \(T : X \rightarrow X \) by

\[
T((x_1, x_2, \ldots, x_d)) = \left(\frac{x_2}{x_1} - \left\lfloor \frac{x_2}{x_1} \right\rfloor, \ldots, \frac{x_d}{x_1} - \left\lfloor \frac{x_d}{x_1} \right\rfloor, \frac{1}{x_1} - \left\lfloor \frac{1}{x_1} \right\rfloor \right)
\]

for \(x = (x_1, x_2, \ldots, x_d) \in X \). Then there exists a unique absolutely continuous invariant probability measure \(\mu \). \((X, T)\) is called the \(d \)-dimensional Jacobi-Perron algorithm. We put

\[
k(x) = k^{(0)}(x) = (k_1, k_2, \ldots, k_d) = \left(\left\lfloor \frac{x_2}{x_1} \right\rfloor, \left\lfloor \frac{x_3}{x_1} \right\rfloor, \ldots, \left\lfloor \frac{x_d}{x_1} \right\rfloor, \left\lfloor \frac{1}{x_1} \right\rfloor \right)
\]

for \(x \in X \) and

\[
k^{(s)}(x) = (k_1^{(s)}, k_2^{(s)}, \ldots, k_d^{(s)}) = k(T^{s-1}(x)) \text{ for } s \geq 1.
\]

We first define \(Q^{(0)} \) as the \((d+1) \times (d+1)\) identity matrix \(I_{d+1} \); then recursively \(Q^{(n)} \) for \(n \geq 1 \) as

\[
Q^{(n)} = Q^{(n-1)} \begin{pmatrix} 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & \cdots & 0 & k_1^{(n)} \\ 0 & 1 & \cdots & 0 & k_2^{(n)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & k_d^{(n)} \end{pmatrix}
\]

We set for \(n \geq 1 \)

\[
Q^{(n)} := \begin{pmatrix} p_1^{(n-d)} & p_1^{(n-d+1)} & \cdots & p_1^{(n-1)} & p_1^{(n)} \\ p_2^{(n-d)} & p_2^{(n-d+1)} & \cdots & p_2^{(n-1)} & p_2^{(n)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ p_d^{(n-d)} & p_d^{(n-d+1)} & \cdots & p_d^{(n-1)} & p_d^{(n)} \\ q^{(n-d)} & q^{(n-d+1)} & \cdots & q^{(n-1)} & q^{(n)} \end{pmatrix}
\]

Then the sequence

\[
\left\{ \begin{pmatrix} p_1^{(k)} \\ p_2^{(k)} \\ \vdots \\ p_d^{(k)} \\ q^{(k)} \end{pmatrix} : k \geq 1 - d \right\}
\]

*The main part of this note is based on a joint work with V. Berthé and H. Nakada [1]
is called the simultaneous approximation convergents of x from the d-dimensional Jacobi-Perron algorithm. It is well-known that for any $x = (x_1, x_2, \ldots, x_d) \in X$

$$\lim_{n \to \infty} \frac{p_i^{(n)}}{q^{(n)}} = x_i \quad \text{for} \quad 1 \leq i \leq d$$

holds.

Our result is that for almost every $x \in X$ the sequences of vectors

$$\{(q^{(n-d)}, q^{(n-d+1)}, \ldots, q^{(n)} : n \geq 1\} \text{ and } \{(p_{1}^{(n)}, p_{2}^{(n)}, \ldots, p_{d}^{(n)}, q^{(n)} : n \geq 1\}$$

are both equidistributed modulo m for any integer $m \geq 2$. More precisely we put

$$\hat{Z}_{m}^{d+1} = \{(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d+1}) \in Z_{m}^{d+1} : (\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d+1}) \text{ generates } Z_{m}\}$$

and

$$c_{m} = \# \hat{Z}_{m}^{d+1} \quad \text{(the cardinality of } \hat{Z}_{m}^{d+1}).$$

One easily sees that

$$c_{m} = \varphi_{d+1}(m)$$

$$= \#\{(a_{1}, a_{2}, \ldots, a_{d+1}) \in \{1, \ldots, m\}^{d+1} : \gcd(a_{1}, \ldots, a_{d+1}, m) = 1\} , \quad (1)$$

where φ_{d+1} denotes the Jordan totient function of order $d + 1$; we thus have

$$c_{m} = m^{d+1} \prod_{p|m}(1 - p^{-(d+1)}),$$

where the notation $\prod_{p|m}$ stands for the product over the prime numbers p that divide m. Then we have the following:

Main Theorem. For almost every $x \in X$, we have

$$\lim_{N \to \infty} \frac{\#\{1 \leq n \leq N : (q^{(n-d)}, q^{(n-d+1)}, \ldots, q^{(n)}) \equiv (\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d+1}) \text{ (mod. } m)\} \cdot N}{N}$$

$$= \lim_{N \to \infty} \frac{\#\{1 \leq n \leq N : (p_{1}^{(n)}, p_{2}^{(n)}, \ldots, p_{d}^{(n)}, q^{(n)}) \equiv (\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d+1}) \text{ (mod. } m)\} \cdot N}{N}$$

$$= \frac{1}{c_{m}} = \frac{1}{\varphi_{d+1}(m)} = \frac{1}{m^{d+1} \prod_{p|m}(1 - p^{-(d+1)})}$$

for any $(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d+1}) \in \hat{Z}_{m}^{d+1}$ with any integer $m \geq 2$.

To prove main theorem, we consider for a given integer $m \geq 2$, the group $G(m)$ defined in a similar way as in [3]:

$$G(m) = \begin{cases} SL(d + 1, Z_{m}) & \text{if } d \text{ is even,} \\ SL_{\pm}(d + 1, Z_{m}) & \text{if } d \text{ is odd,} \end{cases}$$

where $SL(d + 1, Z_{m})$ stands for the matrices with entries in Z_{m} with determinant 1, whereas $SL_{\pm}(d + 1, Z_{m})$ stands for the matrices with entries in Z_{m} with determinant ± 1. Let us recall that (see for instance [6] or [5]) that

$$\# SL(d + 1, Z_{m}) = m^{(d+1)^{2}-1} \prod_{i=2}^{d+1} \prod_{p|m}(1 - p^{-i}) = m^{d(d+1)/2} \prod_{i=2}^{d+1} \varphi_{i}(m).$$
Let C_m denote the cardinality of $G(m)$. Since $SL(d+1, \mathbb{Z}_m)$ is a subgroup of $SL_\pm(d+1, \mathbb{Z}_m)$ of index 2 if d is odd and $m \neq 2$, one thus gets

$$C_m = \begin{cases}
\frac{m^{(d+1)^2-1}}{(d+1)!} \prod_{i=2}^{d+1} \prod_{p|n} (1 - p^{-1}) & \text{if } d \text{ is even or } m = 2 \\
2m^{(d+1)^2-1} \prod_{i=2}^{d+1} \prod_{p|n} (1 - p^{-1}) & \text{if } d \text{ is odd and } m \neq 2.
\end{cases}$$

We identify $Q^{(1)}$ with the $(d + 1) \times (d + 1)$ matrix with coefficients in \mathbb{Z}_m obtained by reducing modulo m its entries, which we call J-P matrix. Here we note that $\det Q^{(1)} = 1$ or -1 if d is respectively even or odd, which implies that $Q^{(1)}$ belongs to the group $G(m)$, whatever may be the parity of d.

We define the map T_m on $X \times G(m)$ by

$$T_m(x, A) = (T(x), AQ^{(1)}).$$

T_m is said to be a $G(m)$-extension of the map T. We also define the probability measure δ_m on $G(m)$ by $(\frac{1}{C_m^d}, \ldots, \frac{1}{C_m^d})$. Then it is easy to see that $\mu \times \delta_m$ is an invariant probability measure for T_m. Our question is whether $(T_m, \mu \times \delta_m)$ is ergodic or not. First, we show that the set of J-P matrices with \mathbb{Z}_m-entries (reduced modulo m) generates $G(m)$.

Theorem 1. For any $B \in G(m)$, there exist J-P matrices A_1, A_2, \ldots, A_s such that $B = A_1A_2\cdots A_s$.

By using Theorem 1 we have the ergodicity of T_m.

Theorem 2. The skew product $(X \times G(m), T_m, \mu \times \delta_m)$ is ergodic.

From Theorem 2 and the individual ergodic theorem, we have the following proposition.

Proposition 1. For a.e. $x \in X$ and any $A \in G(m)$,

$$\lim_{N \to \infty} \frac{1}{N} \# \{1 \leq n \leq N : Q^{(n)} \equiv A \ (\text{mod } m)\} = \frac{1}{C_m}.$$

We are now able to give proof of main theorem.

Proof of Main Theorem

For any $(\alpha_1, \alpha_2, \ldots, \alpha_{d+1}) \in \mathbb{Z}_m^{d+1}$, we denote by $N_{(\alpha_1, \alpha_2, \ldots, \alpha_{d+1})}$ the number of elements in $G(m)$ such that the $(d+1)$th row is $(\alpha_1, \alpha_2, \ldots, \alpha_{d+1})$. We will show that

$$N_{(\alpha_1, \alpha_2, \ldots, \alpha_{d+1})} = C_m \cdot m^d,$$

where C_m denotes the cardinality of $SL(d, \mathbb{Z}_m)$ or $SL_\pm(d, \mathbb{Z}_m)$ if d is even or odd, respectively. It is easy to see that

$$N_{(0, \ldots, 0, 1)} = C_m \cdot m^d.$$

Now we need the following lemma.

Lemma 1. For any $(\alpha_1, \alpha_2, \ldots, \alpha_{d+1}) \in \mathbb{Z}_m^{d+1}$, there exist J-P matrices A_1, A_2, \ldots, A_s with \mathbb{Z}_m-entries such that

$$(\alpha_1, \alpha_2, \ldots, \alpha_{d+1}) = (0, \ldots, 0, 1)A_1A_2\cdots A_s,$$

where s depends on $(\alpha_1, \alpha_2, \ldots, \alpha_{d+1})$.
From Lemma 1, we note that there always exists $D \in G(m)$ such that the $(d + 1)$th row is $(\alpha_1, \alpha_2, \ldots, \alpha_{d+1})$ for any $(\alpha_1, \alpha_2, \ldots, \alpha_{d+1}) \in \mathbb{Z}_m^{d+1}$.

For any matrix E of the form
\[
\begin{pmatrix}
* \\
0 & \ldots & 0 & 1
\end{pmatrix},
\]
ED is of the form
\[
\begin{pmatrix}
* \\
\alpha_1 & \ldots & \alpha_d & \alpha_{d+1}
\end{pmatrix}.
\]
This implies
\[
N_{(\alpha_1, \alpha_2, \ldots, \alpha_{d+1})} \geq N_{(0, \ldots, 0, 1)}.
\]
On the other hand, for any matrix D' of the form
\[
\begin{pmatrix}
* \\
\alpha_1 & \ldots & \alpha_d & \alpha_{d+1}
\end{pmatrix},
\]
$D' \cdot D^{-1}$ is of the form
\[
\begin{pmatrix}
* \\
0 & \ldots & 0 & 1
\end{pmatrix},
\]
which implies
\[
N_{(\alpha_1, \alpha_2, \ldots, \alpha_{d+1})} \leq N_{(0, \ldots, 0, 1)}.
\]
Thus we have (3).

From Proposition 1 together with (3), we have
\[
\lim_{N \to \infty} \frac{\#\{1 \leq n \leq N : (q^{(n-d)}, q^{(n-d+1)}, \ldots, q^{(n)}) \equiv (\alpha_1, \alpha_2, \ldots, \alpha_{d+1}) \pmod{m}\}}{N} = \frac{c_m \cdot m^d}{c_m} = \frac{1}{c_m} \text{ for } \mu\text{-a.e. } x.
\]
Indeed one easily checks according to (1) and (2) that $\frac{c_m \cdot m^d}{c_m} = \frac{1}{c_m}$ holds. Since μ is equivalent to the Lebesgue measure, this holds for a.e. x with respect to the Lebesgue measure. If we consider the $(d + 1)$th column, then the same argument shows the other equality. This completes the proof of Main Theorem.

Finally we have the following corollary.

Corollary 1. For a.e. $x \in X$ and any $a \in \mathbb{Z}_m$
\[
\lim_{N \to \infty} \frac{1}{N} \#\{1 \leq n \leq N : q^{(n)} \equiv a \pmod{m}\} = \frac{m^d \cdot \varphi_d(\gcd(a, m))}{\gcd(a, m) \cdot \varphi_{d+1}(m)}.
\]

Remark 1. Let \mathbb{F}_q denote the finite field of cardinality q and let $\mathbb{F}_q[X]$ be the set of polynomials with \mathbb{F}_q-coefficients. We denote by L the set of formal Laurent power series with negative degree. Since L is a compact Abelian group, there exists a unique normalized Haar measure m. We can define the Jacobi-Perron algorithm on L^d for any $d \geq 1$. In this case, m^d is invariant under this algorithm. Suppose that
\[
\left(\frac{P_1^{(n)}}{Q_1^{(n)}}, \ldots, \frac{P_d^{(n)}}{Q_d^{(n)}}\right)
\]
is the n-th convergent of $(f_1, \ldots, f_d) \in L^d$. For any $R \in \mathbb{F}_q[X]$,
it is possible to prove the following: for any \(A_1, \ldots, A_d, A_{d+1} \in \mathbb{F}_q[X] \) such that \(A_1, \ldots, A_d, A_{d+1}, R \) are relatively prime,

\[
\lim_{N \to \infty} \frac{\#\{1 \leq n \leq N : (P_1^{(n)}, \ldots, P_d^{(n)}, Q^{(n)}) \equiv (A_1, \ldots, A_d, A_{d+1}) \pmod{R}\}}{N} = c_R \quad \text{for md-a.e.} \quad (f_1, \ldots, f_d) \in \mathbb{L}^d,
\]

where \(c_R \) is a constant depending only on \(d \) and \(R \). The proof is essentially the same as that of Main Theorem of this paper. We refer to K. Inoue and H. Nakada [2] for the study of the rates of convergence for Jacobi-Perron algorithm over \(\mathbb{L}^d \) and to R. Natsui [4] for the \(L \)-version of Jager-Liardet's result in the case of continued fractions.

Remark 2 (Accelerated Brun algorithm).

We put

\[
Y = \{ x = (x_1, x_2, \ldots, x_d) \in X : x_1 > x_2 > \cdots > x_d \}
\]

and define a map \(S : Y \to Y \) by

\[
S((x_1, x_2, \ldots, x_d)) = \left(\frac{x_2}{x_1}, \frac{x_3(x)}{x_1}, \frac{1}{x_1} - a(x), \frac{x_{d(x)+1}}{x_1}, \ldots, \frac{x_d}{x_1} \right)
\]

for \(x = (x_1, x_2, \ldots, x_d) \in Y \), where

\[
a(x) = \left\lfloor \frac{1}{x_1} \right\rfloor
\]

\[
\epsilon(x) = \begin{cases} 1 & \text{if } \frac{1}{x_1} - \left\lfloor \frac{1}{x_1} \right\rfloor > \frac{x_2}{x_1} \\ i & \text{if } \frac{x_i}{x_1} > \frac{1}{x_1} - \left\lfloor \frac{1}{x_1} \right\rfloor > \frac{x_{i+1}}{x_1} & \text{for } 2 \leq i \leq d - 1 \\ d & \text{if } \frac{x_d}{x_1} > \frac{1}{x_1} - \left\lfloor \frac{1}{x_1} \right\rfloor
\end{cases}
\]

Then we can define another simultaneous approximation convergents of \((x_1, x_2, \ldots, x_d)\) by a similar way (see [7]). In this case, it is not so hard to see that the associated matrices also generate \(GL(d + 1, \mathbb{Z}_m) \) and get the same results.

Remark 3 (Skew product map).

Let us consider the map \(U \) on \([0,1)^2 \) defined by

\[
U(x_1, x_2) = \left(\frac{1}{x_1} - \left\lfloor \frac{1}{x_1} \right\rfloor, \frac{x_2}{x_1} - \left\lfloor \frac{x_2}{x_1} \right\rfloor \right)
\]

Then it is easy to see that the associated matrices do not generate \(SL(3, \mathbb{Z}_m) \).

References

