S－Unit Equations and Integer Solutions to Exponential Diophantine Equations

Noriko HIRATA－KOHNO

October 19， 2004

S 単数方程式と指数方程式の整数解
日本大学理工学部数学科
平田典子

Abstract

In this article，we present some new applications of unit equations and linear forms in logarithms to obtain a simple upper bound for the number of the purely exponential Diophantine equations．The main idea essentially relies on a refined result of a bound for the number of the solutions to S－unit equations，due to F．Beukers and H．P． Schlickewei as well as that by J．－H．Evertse，H．P．Schlickewei and W．M．Schmidt ［Be－Schl］［E－Schl－Schm］．The tool to obtain a bound for the size of the solutions is the theory of linear forms in m－adic logarithms where m denotes a positive integer not necessarily a prime．

Keywords：Diophantine approximation，Unit equation，Linear forms in logarithms， Exponential Diophantine equations．

1 Introduction

Let us denote by \mathbb{Z} the set of the rational integers．Let $a, b, c \in \mathbb{Z}$ where $a, b, c \geq 2$ and $(a, b, c)=1$ ．

Consider the exponential Diophantine equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{1}
\end{equation*}
$$

in unknowns $a, b, c, x, y, z \in \mathbb{Z}, x, y, z \geq 1$ ．
In this case，we see $(a, b, c)=1 \Longleftrightarrow(a, b)=1 \Longleftrightarrow(a, c)=1 \Longleftrightarrow(b, c)=1$ ．

Let us recall a conjecture due to Tijdeman（sometimes called Beal＇s conjecture）：

Conjecture 1. (Tijdeman) The equation $a^{x}+b^{y}=c^{z}$ has no solutions in $(a, b, c, x, y, z) \in$ \mathbb{Z}^{6} with $a, b, c \geq 2, x, y, z \geq 3$.

The equation in the conjecture concerns 6 unknowns. It is known that the abcconjecture of Masser-Osterlé type implies that there is an effective positive number H which depends only on the $\varepsilon>0$ in the abc-conjecture such that Conjecture 1 is true for $x, y, z \geq H$.

It is also investigated by Darmon-Granville, Darmon-Merel, Kraus, Bennett and others that the number of the solutions a, b, c to (1) is finite if x, y, z are fixed with $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$.

When we consider again the six numbers as unknowns, a slightly different question is asked;

Conjecture 2. (Fermat-Catalan) If $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}<1$ then the number of the solutions in $(a, b, c, x, y, z) \in \mathbb{Z}^{6}$ with $a, b, c \geq 2, x, y, z \geq 2$ is finite.

For example some solutions to the equation of Conjecture 2 including large ones found by Beukers-Zagier are as follows.
Example 1. $2^{5}+7^{2}=3^{4}$
$7^{3}+13^{2}=2^{9}$
$2^{7}+17^{3}=71^{2}$
$3^{5}+11^{4}=122^{2}$
$17^{7}+76271^{3}=21063928^{2}$
$1414^{3}+2213459^{2}=65^{7}$
$9262^{3}+15312283^{2}=113^{7}$
$43^{8}+96222^{3}=30042907^{2}$
$33^{8}+1549034^{2}=15613^{3}$.

2 Our problem

Up to now, we assume till the end of the text that the integers a, b, c are fixed. We then consider x, y, z as unknowns only. Precisely, let us fix $a, b, c \in \mathbb{Z}$ with $a, b, c \geq 2,(a, b, c)=1$ and consider the equation

$$
\begin{equation*}
a^{x}+b^{y}=c^{z} \tag{2}
\end{equation*}
$$

in unknowns $x, y, z \in \mathbb{Z}$ with $x, y, z \geq 2$.

In 1993, K. Malher used p-adic Thue-Siegel method to show that the solutions x, y, z to (2) are only finitely many. The bound for the number of the solutions should depend on $\omega(a b c)$ the number of the primes dividing $a b c$. A. O. Gel'fond gave in 1940 a lower bound of linear forms in p-adic logarithms and then a bound for the
size of the solutions, namely an effectively calculable constant $C>0$ depending only on a, b, c such that $\max \{|x|,|y|,|z|\}<C$.

Around 1994, Terai and Jésmanowicz conjectured (see for example [Cao-Dong]) that if there exists a solution $\left(x_{0}, y_{0}, z_{0}\right)$ then this is the only solution:

Conjecture 3. (Terai and Jésmanowicz) The number of the solutions to the equation (2) is at most 1.

There are several investigations concerning with Conjecture 3 by N. Terai, Z. Li, or others. They essentially show that there exist particular examples of a, b, c where Conjecture 3 holds. Remark that the identity $2^{n}+2^{n}=2^{n+1}$ does not give infinitely many solutions. It is also noted that there are trivial identities:

$$
\begin{gathered}
2^{n+2}+\left(2^{n}-1\right)^{2}=\left(2^{n}+1\right)^{2} \quad\left(a=2 \text { or } a=2^{n+1}, b=2^{n}-1, c=2^{n}+1\right) \\
2^{1}+2^{n}-1=2^{n}+1 \quad\left(a=2, b=2^{n}-1, c=2^{n}+1\right) .
\end{gathered}
$$

Among the knowns, we quote an example of Conjecture 3 which is made by Terai;

Example 2. (Terai)

Suppose that u is even, $a=u^{3}-3 u, b=3 u^{2}-1, b$ is a prime, $c=u^{2}+1$, and that there exsists a prime l such that l divides $u^{2}-3$ with $3 \mid e$ for an integer $e>0$ satisfying $2^{e}-1$ is divisible by l. Then the equation (2) has the only solution $(2,2,3)$.

3 Our statement

Firstly we state a theorem which is quick to obtain.
Theorem 1. Let N be the number of the solutions to (2). Then we have

$$
N \leq 2^{36} .
$$

The advantage of Theorem 1 is the fact that the number N is independent of the number a, b, c especially of $\omega(a b c)$.

It might be possible to refine the bound in Theorem 1 ; we will prove this by a forthcoming article.

Secondly we show a bound for the size of the solutions:

Theorem 2. Suppose that c is odd and that c has the prime decomposition $c=$ $p_{1}^{r_{1}} p_{2}^{r_{2}} \cdots p_{l}^{r_{l}}$. Suppose that there exists an integer $g \in \mathbb{Z}, g \geq 2$ coprime with c such that

$$
v_{p_{i}}\left(a^{g}-1\right) \geq r_{i}
$$

and

$$
v_{p_{i}}\left(b^{g}-1\right) \geq 1
$$

for any prime $p_{i} \mid c$. Then we have

$$
\max \{|x|,|y|,|z|\} \leq 2^{288} \sqrt{a b c}(\log (a b c))^{3} .
$$

4 Outline of the proof

Theorem 1 is easily implied by the following theorem due to F. Beukers and H. P. Schlickewei [Be-Schl]. Their result corresponds to a refinement in a low-dimensional case of a theorem by J. -H. Evertse, H. P. Schlickewei and W.M. Schmidt [E-Schl-Schm].

Theorem 3. (Evertse-Schlickewei-Schmidt) Let $n \in \mathbb{Z}, n \geq 1$. Let K be an algebraic closed field with characteristic $0, \Gamma$ be a finitely generated subgroup of the multiplicative group $(K-\{0\})^{n}$. Denote by $r<\infty$ the number of the generators of Γ. Let $a_{i} \in K-\{0\}$. Consider the equation $a_{1} X_{1}+\cdots+a_{n} X_{n}=1$ in unknowns X_{1}, \cdots, X_{n} in Γ supposed the subsum satisfying $\Sigma_{i \in I} a_{i} X_{i} \neq 0$ for any non-empty proper subset I of $\{1,2, \cdots, n\}$. Then we have that the number of the solutions $\left(x_{1}, \cdots, x_{n}\right) \in \Gamma^{n}$ to the equation $a_{1} X_{1}+\cdots a_{n} X_{n}=1$ is at most

$$
\exp \left((6 n)^{3 n}(r+1)\right)
$$

When $n=2$, a refinement of the above is as follows:
Theorem 4. (Beukers-Schlickewei) Let $n=2$. Then we have that the number of the solutions $\left(x_{1}, x_{2}\right) \in \Gamma^{2}$ to the equation $a_{1} X_{1}+a_{2} X_{2}=1$ is at most

$$
2^{9(r+1)}
$$

Proof of Theorem 1

It is enough to apply the theorem of Beukers-Schlickewei. Our equation is $a^{x}+$ $b^{y}=c^{z}$, thus

$$
\frac{a^{x}}{c^{x}}+\frac{b^{y}}{c^{z}}=1 .
$$

We see that it turns out to consider the equation $X+Y=1$ with X, Y in " a, b, c units", namely in $\Gamma=<a, b, c>=\left\{a^{k} b^{l} c^{m} \mid k, l . m \in \mathbb{Z}\right\}$. Thus just use BeukersSchlickewei with $r=3$ to arrive at 2^{36}.

When a, b, c are distinct primes, then we may use Evertse' bound $3 \cdot 7^{12}$.
If we consider $S=\{p \mid a b c\}$ we do not get independence of $\omega(a b c)$ in the statement.

Proof of Theorem 2

Let m be an integer ≥ 2 not necessarily a prime. The concept of linear forms in m-adic logarithms is basically introduced by Malher and is revisited by Y. Bugeaud.

Recall the definition of m-adic valuation. Let $m=p_{1}^{r_{1}} \cdots p_{l}^{r_{l}}$ where $p_{1}<\cdots<p_{l}$ are primes, $r_{1} \cdots, r_{l} \in \mathbb{Z},>0$. Let $x \in \mathbb{Z}, x \neq 0$. We recall that the p-adic valuation is $v_{p}(x):=$ the greatest integer $v \geq 0$ such that $p^{v} \mid x$. Following this, we define

$$
\begin{aligned}
& v_{m}(x):=\text { the greatest integer } v \geq 0 \text { such that } m^{v} \mid x \\
& =\min _{1 \leq i \leq l}\left[\frac{v_{p_{i}}(x)}{r_{i}}\right]
\end{aligned}
$$

where [.] denotes the Gauss' symbol.
For a rational number $\frac{a}{b} \neq 0, a, b \in \mathbb{Z},(a, b)=1$, we define $v_{m}\left(\frac{a}{b}\right):=v_{m}(a)-$ $v_{m}(b)$.

We state a variant of a lemma of Y. Bugeaud by removing some specific conditions. Denote here by $h(\cdot)$ the absolute logarithmic height. Theorem 2 is deduced by using Lemma 1 :
Lemma 1. Let $\Lambda:=\alpha_{1}^{b_{1}}-\alpha_{1}^{b_{2}} \neq 0$ where $\alpha_{1}, \alpha_{2} \in \mathbb{Q}, \alpha_{1} \neq \pm 1, b_{1}, b_{2} \in \mathbb{Z}, b_{1}, b_{2}>0$. Let $m=p_{1}^{r_{1}} \cdots p_{l}^{r_{i}}$. Suppose $v_{p_{i}}\left(\alpha_{1}\right)=v_{p_{i}}\left(\alpha_{2}\right)=0$ for any $p_{i} \mid m$. Suppose further that there exists an integer $g \in \mathbb{Z}, g>0$, coprime with m such that

$$
\begin{aligned}
& v_{p_{i}}\left(\alpha_{1}^{g}-1\right) \geq r_{i} \\
& v_{p_{i}}\left(\alpha_{2}^{g}-1\right) \geq 1
\end{aligned}
$$

and moreover

$$
\begin{aligned}
& v_{2}\left(\alpha_{1}^{g}-1\right) \geq 2 \\
& v_{2}\left(\alpha_{2}^{g}-1\right) \geq 2
\end{aligned}
$$

if $2 \mid m$. Then there exists an effectively computable constant $C>0$ depending on the data with

$$
v_{m}(\Lambda) \leq \frac{C m^{2}}{\max (\log m, 1)^{2}}\left(\log \left(\frac{\left|b_{1}\right|}{\log A_{1}}+\frac{\left|b_{2}\right|}{\log A_{2}}\right)\right)^{2} \log A_{1} \log A_{2}
$$

where $\log A_{i} \geq \max \left(h\left(\alpha_{i}\right), \log m\right) \quad(i=1,2)$.

References

[Be-Schl] F. Beukers \& H. P. Schlickewei, The equation $x+y=1$ in finitely generated groups, Acta Arith. 78. 2, 189-199, 1996.
[Cao-Dong] Zhenfu Cao \& Xiaolei Dong, An application of a lower bound for linear forms in two logarithms to the Terai-Jésmanowicz conjecture, Acta Arith. 110, 153-164, 2003.
[E-Schl] J. -H. Evertse \& H. P. Schlickewei, The Absolute Subspace Theorem and linear equations with unknowns from a multiplicative group, inNumber Theory in Progress, I, (eds. K. Györy, H. Iwaniec, J. Urbanowicz), Walter de Gruyter, 121-142, 1999.
[E-Schl-Schm] J. -H. Evertse, H. P. Schlickewei \& W.M. Schmidt, Linear equations in variables which lie in a multiplicative group, Ann. Math. 155, 1-30, 2002.
[Pa-Schf] A. N. Parshin \& I. R. Schfarevich (eds.), N. I. Fel'dman \& Yu. V. Nesterenko (authors), Number Theory IV, Encyclopaedia of Mathematical Sciences vol. 44, 1998.
[Schm1] W. M. Schmidt, Diophantine approximation, Lecture Notes in Math., 785, Springer, 1980.
[Schm2] W. M. Schmidt, Diophantine approximation and Diophantine Equations, Lecture Notes in Math., 1467, Springer, 1991.
[Sho-T] T. N. Shorey \& R. Tijdeman, Exponential Diophantine Equations, Cambridge Tracts in Math., Vol. 87, Cambridge Univ. Press, 1986.
[Wa] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups, Grundlehren der Math. Wissenschften 326, Springer, 2000.
[Wü] G. Wüstholz, A Panorama of Number Theory, Cambridge Univ. Press, 2002.

Noriko HIRATA-KOHNO

Dept. of Mathematics
College of Science and Technology
NIHON University
Kanda, Chiyoda, Tokyo 101-8308
JAPAN

