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Abstract

This report is revised version of [8] (2002). We describe one asymptotic
formula of the non-holomorphic Eisenstein series for SL(Z) on the critical
line by using Airy functions. The ¢-aspect of the Eisenstein series is not sim-
ple contrary to the good behavior of its constant term. We employ uniform
expansions of the Bessel function due to Olver derived from the theory of
asymptotic solutions of differential equations. Our result is maybe regarded
as Voronoi-Atkinson type formula.

1 Eisenstein series

Leti=+/—1,s =0 +it € Cand H is the upper half plane. The non-holomorphic
- Eisenstein series for SLy(Z) with weight 0 is defined by

E(z,s) =y Y lez+d|™. )

{cd}
Here z is a point of H, s is a complex variable and the summation is taken over
(%3), a complete system of representation of SL(Z) over the stabilizer of the
point at infinity. The right-hand side of (1) converges absolutely and locally uni-
formly on {(z,s)| z € H,o > 1}, and Eisenstein series has the Fourier expansion:

0 1
c<2s)E(z,s)=c<2s>y*+\/‘e;(2s—1)r(r( 2y o

r( )‘/— Z n’ 2"'I—Zs(")K _1(27tny)cos(27mx),

where {(s) is the Riemann zeta-function, F(s) is the Gamma function, Ky (7) is the
modified Bessel function and o;(n) is the sum of s-th powers of positive divisors
of n. :

It is well-known that The Fourier expansion (2) gives the holomorphic contin-
uation of this function to the whole s-plane except for the simple pole at s =1,
and gives the functional equation:

7T (s)¢ (28)E(z,8) = 7 17°T(1 —5){ (2 — 25)E(z,1 — 5).



We call the first two terms of (2) are the constant term of E(z,s).

Remark 1. It is well-known that the constant term represents the y-aspect of
E(z,s) when y tends to c. Non-constant terms decay rapidly, because the Bessel
function in the Fourier expansion decaies exponentially. Therefore we have the
following estimation except on the poles:

|E(z,5)| £ A1y + Ay Rel) (y =+ o). 3)

In addition, modularity of E(z,s) gives the y-aspect when y — 0. So we see for
every positive y,

A (yRe) +yRe() (Re(s) > 3)

4
A (y“l“‘Re(‘) +y1—Re(s)) (Re(s) £ %) @

|E(z,5)] {

except on the poles.

The z-aspect of E(z,s) is not simple. The non-constant terms in (2) are not
negligible when ¢ — oo, More precisely, the non-constant terms are not exponen-
tial decay when the (imaginary) order of the Bessel function is less than or nearly
equal to its parameter 27ny.

Remark 2. Matsumoto [7] (2003) gave asymptotic expansions (respect to
z) of the holomorphic Eisenstein series. Asymptotic expansions associated with
Epstein zeta-functions and its weighted mean value (as y — <o) are investigated
precisely by Katsurada [6] (2004), which give several new proofs on analytic
properties of the Eisenstein series.

2 Airy Functioin

On the calculation of the Fourier coefficients of the automorphic forms, the inte-
gral following type plays a fundamental role:

am(y,s) = / exp(—2mimu)(u+ iy) ~*|u + iy| "> du.
It should be noted that the initial work on this integral is due to Hecke (1927). And
the representation of this integral into special functions was originally investigated
by Maass (1964) in terms of the Whittaker function. Our case is weight zero, as
is well-known, this integral is written by using K-Bessel function.
There are several definitions of the modified Bessel function. One way is using
the integral like this:

T 1, 1
Ky(?) = -;-‘/u"’1 exp (—i'r(u+ ;)) du.
0
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It is also known that the K-Bessel function Ky(7) satisfies the differential equation
called modified Bessel equation:

In order to describe the asymptotic expansion of the K-Bessel function, we
introduce the Airy function. For real variable, the Airy function Ai(7) is defined
by the following integral, or by the K-Bessel function with real order one third:

, 17 (1, 1 g (2
= — - = —71IK1 { =72 ).
Ai(t) JrO/cos (3u +'L'u) du \/5”1: §(3 )
ForteC excépt negative real number, Ai(7) is defined by

Ai(7) = M]eexp (—‘r%u) cos (%u%) W idu.

2n
0

In which fractional powers take their principal values.
The differential equation satisfied by Ai(7) is as follows:
d*w

2;2— =Tw.

We also introduce some fundamental properties of Ai(t). For positive real vari-
able, Ai(7) > 0 and its derivative (Ai’(7)) is negative, and
Ai(0) =3-fr(3)~.
The Airy function satisfies tﬁe identity
Ai(—7) = e¥ Ai(1e¥) + e S Ai(1e T,

which will be emploied for the negative real axis.

Remark. The Airy function was originally investigated and defined by Sir Gcorge
Biddell Airy who was English astronomer and geophysicist. (He was the chief of
Royal Greenwich Observatry.) Definition was given in 1838 and 1849. The nota-
tion Ai(7) are due to H. Jeffreys and J. C. P. Miller around 1940’s. (On the Airy
function, see [13], Chapters 2,4 and 11.)

3 Olver’s result

The asymptotic expansion of K () for the cases 7/t £ 1 or T~t = o('tll!) are
obtainable by using saddle-point method. However, in the transitional regions,
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namely 7/t is nealy equal to 1 while |7 —¢| is large, the investigation becomes
much more involved. As an another approach, the theory of asymptotic solutions
of differential equations are emploied (see [4], §7.4 and §7.13). Balogh [2], [3]
gave one uniform asymptotic expansion of the modified Bessel function by using
Airy functions. Balogh’s result is based on Olver’s works [9]-[12]. The following
proposition (Olver [13], Chap.11, p. 425) is the uniform asymptotic expansion of
the modified Bessel function of imaginary order, which is crucial in this report.

Proposition 1 (Balogh [3](1967), Olver [13] p.425)Fort € Rvo,m20anduc C
with |arg(u)| < m,

Kiy(tu) = g—exp (—gt) (1;4;;?) ‘ {Al( 13 Z Ak(é)

+dAK(-r3E)T "‘5)+e2m+1<r é)}

The error term is estimated as

Vo (§7Bm)
e (,6)) S o ) g {2y gt ) =,

Here the path of variation being chosen so that Im(§3/ 2 is monotomic, and the
suffix j on M being —1 if 0 < arg(u) < wand 1 if —& < arg(u) < 0.

Remark. Notations in the above Proposition are defined in [13] (Chap. 11). The
variation V (§ 2B,,,) converges in sutable region, for example, |arg(—&)| < 2 sn—38
withany 8§ >0or § €R.

®

4 Statement of the results

Combining Proposition 1 and the estimation of the sum of the divisor function,
we have the following main theorem:

Theorem 1 Letz =x+iy € H andt > 289. Suppose t — (4logt)3t3 < 2nyN <.
Define

2. et HP-CE o 2}
3T ="tlog 21ty {t* — (27ny)*}*.
Then for every € > 0,
E(z,% +if)
425ty N

Tl +2in) = En"’oz,,(n) {#? - (27ny)*}~  cos(27nx) Td Ai(~13)

ybtit g yh-igi® 4 o ()"%t‘%(logt)%” +y % (logr)$+¢log(t/y )) '

Here ® = m~24{(2it)T'(it) /C(2it)T(it).
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Corollary 1 Supposet — 15+1 < 2ayM < t. For every € > 0,
E(z, 5 +it)

!
- %3% £ n~0u(n) {12 - (2amy?} ¥ cos(2mms)cos(3,~ 3)
n=1

+ yhHi 4 yEe® 4 0y (logr) 16+ y ek (logr) ¢ Log(1/))

5 Jutila’s formula

Our asymptotic formula have some analogy with the Voronoi-Atkinson type for-
mula by Jutila on the square of the Riemann zeta-function. Jutila’s formula is
expressed as follows:
Theorem (Jutila [5](1984)) Lett 2 127, § be a fixed positive number, t> <N <
t/12x, and

N =t/28+N/2— (N*/4+Nt/2m)*.

Define
£(t,n) = 2tarcsinh\/Tn/2¢ + (x2n? + 27nt)} + 7 /4.

Then,
¢ (3+is)[°

1

= 27 f; (—1)"d(n)n~* (3+ ﬁ);%cos( f(t,n))
n=1
+2 I{ld(n)n‘% cos (tlog(t/27n) —1 — %) + 0 (N%t-%(logtf +10gt) .

Remark 1. Jutila’s formula is a differentiated version of Atkinson’s formula. In
the proofs of these formulas, Voronoi’s summation formula and the saddle-point
method are the main instruments.

Remark 2. We have to make mention of differences between Theorem 1 and
Jutila’s formula. In the case of square of the Riemann zeta-function, Atkinson
type formulas usually have two summations, whereas my Theorem 1 and Corol-
lary 1 consist of one summation ¥;<,<y- This difference is explained by each
approximate functional equations;

L% s) = f: d(n)n=° + n*! LG -3) ﬁd(n)n -1+ O(NT~Clogt)
n=1 ) 1“2(%) n=1 ’

where 0S 6 S 1,NN' = (t/27)2, N2 1,N' 2 1.
For the case of E(z,s), the Fourier expansion (2) itself may be regarded as one
self dual (approximate) functional equation.
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