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SOME MEAN VALUE THEOREMS FOR THE SQUARE OF CLASS
NUMBERS TIMES REGULATOR OF QUADRATIC EXTENSIONS

TAKASHI TANIGUCHI

ABSTRACT. In this article we give a survey of [T1] and [T2] and discuss related topics.
Let k be a number field, and A, hi and Rj the absolute discriminant, the class number
and the regulator, respectively. In [T2] we found the asymptotic behavior of the mean
values of h%.R% with respect to |Ap| for certain families of quadratic extensions F' of
a fixed number field k.

1. INTRODUCTION

This article is a survey of [T1] and [T2]. We start with our main result. We fix an
algebraic number field k. Let 9, M, Mz, Mg and M denote respectively the set of
all places of k, all infinite places, all finite places, all real places and all complex places.
For v € M let k, denotes the completion of k¥ at v and if v € M; then let g, denote the
order of the residue field of k,. We let 71, 72, and e, be respectively the number of real
places, the number of complex places, and the number of roots of unity contained in k.
We denote by (x(s) the Dedekind zeta function of k.

To state our result, we classify quadratic extensions of k via the splitting type at
places of M,,. Note that if [F : k] = 2, then F ® k, is isomorphic to either R x R or
C for v € My and is C x C for v € Mc. We fix an M.-tuples Lo, = (L, )vem,, Where
L, € {R x R,C} for v € Mg and L, = C x C for v € Mc. We define

QL) ={F|[F : k]| =2,F ®k, 2 L, for all v € My }.

Let 71(Loo) and r2(Leo) be the number of real places and complex places of F' € Q(Lo),
respectively. (This does not depend on the choice of F.) For v € M we put

E,=1-3¢°+2¢*+¢,°~¢°, E,=27'(1-¢")’(1+2g" +4¢” +2¢.°).
The following theorem is a special case of [T2, Theorem 10.12].

Theorem 1.1. We fiz an Lo and vy,...,v, € My satisfying ro(Leo) — 2r2 + 1 > 2.
Then the limit )
: 2 p2
dmsm ) MR
FEQ(LO@)

F:not split at vy,..., vn
BpElsX

exists, and the value is equal to

(Res,=18k(8))° Afedde(2)? ;o
27'1+7'2+1227'1(Loo)(27‘-)27'2(Loo) ) H E”t‘ H E”'
: 1<i<n vEM;
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Density theorems with local conditions at finite places are obtained simultaneously.
For details, see [T2, Theorem 10.12].

Combined with the result of Kable-Yukie [KY2], we also obtain the limit of certain
correlation coefficients. For simplicity we state in the case k = Q. We state the full
version of this theorem in Section 5.

Theorem 1.2. We fiz a prime | satisfying | = 1(4). For any quadratic field F = Q(v/m)
other than Q(V1), we put F* = Q(v/ml). For a positive number X, we put

_ [F:Q =2 —X <Dp <0,
A(X) = {F F ® Q; is the quadratic unramified extension of Q. |~
Then we have

> Fe(x) hrhpe _ H ( 2p~? )

lim = 1—
X —00 1/2 1/2 1 +p—1 +p—-2 _ 2p-—3 +p——5
(ZFGA,(X) th) (ZFeA,(X) h%“) (§)=-1

where (B) is the Legendre symbol and p runs through all the primes satisfying (§) = —1.

From this theorem, for example, we can observe that if we choose [ so that (f}) =1
for all small primes p then hr and hp. have strong relation, and if we choose I so that
(2) = —1 for all small primes p then the relations between hp and hp+ become weak.

2. TAUBERIAN THEOREM

Our approach to prove the theorems above are the use of global zeta functions of
prehomogeneous vector spaces. Before giving a sketch of the proof, we briefly recall the
Tauberian theorem to clarify the relation between Dirichlet series we consider and the
asymptotic formulae in Theorems 1.1 and 1.2. Let {a,}n>1 be a sequence of positive
numbers. We put

a(s) = %—: (s € C),
AX) = i a, (X>0).
n<X

Then, roughly speaking, the Tauberian theorem says that we can find some informations
of asymptotic behavior of A(X) as X — oo from the analytic properties of a(s). The
following is a basic type of the Tauberian theorem.

Theorem 2.1. Assume a(s) is holomorphic for R(s) > a ezcept for a pole at s = a of
order b. Let c/(s—a)® be the leading coefficient of the Laurent expansion at s = a. Then
lim ——/—1—(—)—0— ==

X—oo Xo(log X)b  ab!

Hence to prove Theorem 1.1 it is enough to investigate the function
) h%RE
Feat.y  OFALP

F:not split at vy,...,vn
On the other side this function is more or less the global zeta function of one specific

prehomogeneous vector space, and we can study analytic properties of the zeta functions
from the Fourier analysis.
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3. PREHOMOGENEOUS VECTOR SPACES AND GLOBAL ZETA FUNCTIONS

We briefly recall the definition of prehomogeneous vector spaces and their applications
to number theory. For details, see [SS] or [Y1, Introduction]. For simplicity we here give
a definition of a certain restricted class instead of the general. Let k be a field.

Definition 3.1. An irreducible representation of a connected reductive algebraic group

(G, V) over k is called a prehomogeneous vector space if

(1) there exists a Zariski open G-orbit in V' and

(2) there exists a non-constant polynomial P € k[V] and a rational character x of G
such that P(gz) = x(g)P(z) forallge Gandz € V.

The space of quadratic forms (GL(n),Sym?k™) is a classical example. Irreducible
prehomogeneous vector spaces over an arbitrary characteristic 0 algebraically closed
field were classified by Sato and Kimura in [SK]. Sato and Shintani [SS] defined global
zeta functions for prehomogeneous vector spaces if (G, V) is defined over a number field.
Let us recall the definition. Let & be a number field and A the ring of adeles. We denote
by | - |a the idele norm. Let (G,V’) be a prehomogeneous vector space defined over k.
Let P € k[V] be of minimum degree satisfying (2) in Definition 3.1 (which is unique up
to constant), and x be the corresponding character. We put

T :=ker(G — GL(V)), G:=G/T, V*:={ze€V|P(z)#0}.
Let #(V(A)) be the space of Schwartz-Bruhat functions on V(A). We fix a Haar measure
dg on G(A).
Definition 3.2. For ® € &#(V(A)) and s € C we define

Z(®,s) := /( o Ix(9)]a Z ®(gz)d

z€Ve (k)
and call it the global zeta function.

Remark 3.3. For z € V*(k) let G, = {g € G | gz = z} and G its identity component.
We denote by 7(G2) the unnormalized Tamagawa number of G° Roughly speaking the
global zeta function is a counting function of rational orbits G(k)\V* (k)

with weight T(G:) We do not give the details here, but mention that by a standard
modification we have

Z@’ ) ; T(G) ‘”s@m da:s
( 8) xe@(%/n(k) [G.‘L‘( : G;(k)] /C;(A)/ég(A) IX(Q )IA (g $) g.

where dg, be an appropriate left G(A)-invariant measure.

The interpretation of G(k)\V*(k) and GS in terms of field extensions for preho--

mogeneous vector spaces is first established systematically in the celebrated work of
Wright-Yukie [WY].

The remark above implies that if we know the information of pole structures of Z (®,s),
one can obtain the density theorems of G(k)\V*(k) with weight 7(G2). On the other
side it is in general a very difficult problem to describe the principal parts of Z(®,s)
explicitly and is one of the central problem in the theory of prehomogeneous vector
spaces.
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4. THE SPACE OF PAIRS OF 2 X 2 MATRICES AND ITS INNER FORMS

Let B be a quaternion algebra over k. We denote by B°P the opposite algebra of B.
Let us consider the representation (G,V) = (G, p, V) where

(4.1) G=B*x(B®)*xGL(2), V=Bok=3863,
and
p(9)(a®v) = (g:1a9:) ® (gsv) for g=(g1,95,93) € G,a € B,v € K",
We regard this representation as a representation of the algebraic group G over k. If
B = M(2,2) then V is the space of pairs of 2 x 2 matrices, and in general (G, V) is an

inner form of this split form. This is an example of prehomogeneous vector space, and
there is an interesting interpretation of G(k)\V*(k) and Gj.

Proposition 4.2. (1) There ezists a non-zero polynomial P of V and a rational char-
acter x on G such that P(gz) = x(g)P(z).

(2) There exists the canonical bijection between G(k)\V*(k) and the set of isomorphism
classes of separable quadratic algebras of k those are embeddable into B. For x €
V=(k), we denote by k(x) the corresponding algebra.

(3) For z € V*(k), Go = (k(x)*/k*)? as an algebraic group over k.

By (3), 7(G2) is equal to hi(z)R?cEw) up to a constant multiple. This together with
Remark 3.3 implies that the study of this zeta function yields Theorem 1.1.
On the principal parts formula, we proved the following in [T1].

Theorem 4.3. Let B be a non-split quaternion algebra. Then
Z(‘Pa S) = Z+((Du 3) + Z+(&))2 - S)

+7(G/T) (;I’EO% B <I>(0)) + Zgil_l_d;,/lzﬂ) 3 Z3§1E¢1,/12/2)'

Here Z,(®,s) is an integral entire as a function of s, 7(G/T) is the Tamagawa number
of G/T, R® the suitable restriction of ® to B(A), ® a suitable Fourier transform, and
Zp the zeta function of simple algebra associated to B.

This is proved by using the Fourier analysis. The global theory includes rather case by
case explicit computation. The k-rank of the group G affects seriously on the complexity
of this computation and if B is non-split then the computation becomes quite mild.
This is the reason why we consider non-split forms. For details on this topic see Yukie’s
treatise [Y1]. We mention that H. Saito’s method [Sa2] is an alternative strong tool to
establish the global theory in some cases.

5. CORRELATION COEFFICIENTS
Since the split form of (4.1)
(5.1) G=GL(2) xGL(2) x GL(2), V=K @Kok

has a high symmetry, there are many k-forms of this representation. One interesting
k-forms is studied by Kable-Yukie in a series of work [KY1, Y2, KY2, KY3, KY4]. We
fix a separable quadratic algebra k. We denote by H,(k) be the set of binary Hermitian
forms over k. Let o : k — k be the non-trivial k-automorphism. Then set theoretically,
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~

Hy(k) = {z € M(2,2;k) | tz = z}. The group GL(2, k) acts naturally on this space by
(g,z) — gxtg”. Now

G =GL(2,k) x GL(2,k), V = Hy(k)® K
is an outer form of (5.1). For this case the following proposition is proved in [KY1].

Proposition 5.2. (1) There exists a non-zero polynomial P of V' and a rational char-
acter x on G such that P(gz) = x(g)P(z).

(2) There erists the canonical bijection between G(k)\V*(k) and separable quadratic
algebras of k. For x € V*(k) we denote by k(z) the corresponding algebra.

(3) Forz € V*=(k), G2 = (k® k(z))*/k* as an algebraic group over k.

Let k and k(z) be different quadratic extensions of k. Then the biquadratic field
k ® k(z) contains another quadratic extension of k. We denote this field by k(z)*. Then
by (3) the Tamagawa number of é; is more or less the product ) Ri(z) X hi(z)» Ri)*-

We will state the full version of [T2, Section 11]. Let S denote a finite set of places of
k containing My, and Lg = (L,)yes an S-tuple of separable quadratic algebra L, of k.
Let F be a quadratic extension of k. We write F ~ Lg to mean that F ® k, & L, for
all v € S. Let X be a positive number. For convenience, we introduce the abbreviation

Q(LSaX) = {F l [F : k] =2, F~ LS,N(AF/I:) < X} .
Here, N(Af/x) is the ideal norm of the relative discriminant Apx of F/k.
Definition 5.3. We define
> rea(ws,x) hrRrhps Rps
2 p2 \ /2 2 P2
(ZFGQ(LS,X) hFRF) (ZFEQ(LS,X) R RF*)

if the limit of the right hand side exists and call it the correlation coefficient.

Cor(Lg) = }}Jm

—00

172

The asymptotic behavior of the numerator in the right hand side as X — oo was
investigated in [KY2, KY3, KY4], while the denominator is considered in [T2]. Hence
we could find the correlation coefficients for certain types of k and Lgs. Let My, My, and
M., be the sets of finite places of k which are respectively ramified, inert and split on
extension to k. For v e M and a separable quadratic algebra L, we define the separable
quadratic algebra L} as jonows. Let k, = k®k,. If k, & k, x k, then we define L} = L,
for any L,. In the case k, is a field, if L, = k, X k, then we let L} = k,, and if L, & &,
then we let L? = k, X k,. Finally in the case k, and L, are distinct fields, we define

L the same way as we defined F™* for number fields. Let Mgy = {v € Wz | v | 2}. We

proved the following in [T2, Section 11].

Theorem 5.4. Assume My NMay =0 and S DO M. Let Lg = (Ly)uves is an S-tuple
of separable quadratic algebras such that there are at least two places v with L., are fields.
Further assume that there are at least two places v with L}, are fields. Then we have

2¢;2
Cor(Lg) = H (1 - ———— 3 _5) .
vETi\S 1+g7t +¢,% — 27 + g5
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6. FURTHER PROBLEMS

In the invaluable work [WY], Wright and Yukie found good interpretations of rational
orbits for 8 cases including our case (5.1), and discussed the expected density theorems
for those cases. On the other hand, in the process [T1] and [T2] to prove Theorem 1.1,
the technical heart is to consider the inner form to handle the global theory. The k-forms
of irreducible reduced regular prehomogeneous vector spaces over local and global fields
are classified by H. Saito [Sal], and we could see that some other cases treated in [WY]
have inner forms. In this section, we will discuss the rational orbit decomposition for
some inner form representations. The proof may be appear in a forthcoming paper. Let
k be an arbitrary field. Let &; be the set of isomorphism classes of separable algebras of
k of degree .

(I) The case (GL(3) x GL(3) x GL(2),k* ® k¥* ® k?).
Let D be a simple algebra of degree 3 over k. Then

G=D*x (D?)* xGL(2), V=D®K

is an inner form. Let £3(D) be the set of isomorphism classes of separable cubic algebras
of k those are embeddable into D. Then the following proposition holds.

Proposition 6.1. (1) There ezists a non-zero polynomial P of V' and a rational char-
acter x on G such that P(gz) = x(9)P(z).

(2) Let V* = {x € V | P(z) # 0}. Then there exists the canonical bijection between
G(k)\V*=(k) and €3(D). For z € V*(k) we denote by k(z) € E3(D) be the corre-
sponding algebra.

(3) For x € V*(k), G2 = k(z)* x k* as an algebraic group over k.

T

From this proposition, we may obtain the density of Ar Rr of cubic extensions F' of k.
In the case D is not split, the principal parts of the global zeta function were described
in [T1]. It has possible simple pole at s = 0,1/6,4/3,3/2 and holomorphic elsewhere.
The local theory and the filtering process necessary to obtain the density theorem are
in progress.

(IT) The case (GL(4) x GL(2), A%k* ® k?).
Let B be a quaternion algebra of k. We denote by Hy(B) be the set of binary Hermitian
forms over B. Then

G = GL(2, B) x GL(2), V = Hy(B) ® k?
is an inner form. For this case the following proposition holds.

Proposition 6.2. (1) There ezists a non-zero polynomial P of V' and a rational char-
acter x on G such that P(gz) = x(g9)P(z).

(2) Let V* = {z € V | P(z) # 0}. Then there erists the canonical bijection between
G(k)\V*(k) and €,. For z € V*(k) we denote by k(x) € €, be the corresponding
algebra.

(3) For z € V*(k), G2 = (B ® k(z))* as an algebraic group over k.

(III) The case (GL(6) x GL(2), A%k® ® k?).
Let H3(B) be the set of ternary Hermitian forms over B. Then just the same as the
above case,
G =GL(3,B) x GL(2), V =H;3(B)®Fk?
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is an inner form. For this case the following proposition holds.

Proposition 6.3. (1) There erists a non-zero polynomial P of V and a rational char-
acter x on G such that P(gz) = x(g9)P(x).

(2) Let Vs = {z € V | P(z) # 0}. Then there erists the canonical bijection between
G(k)\V*(k) and €. For z € V*(k) we denote by k(z) € €3 be the corresponding
algebra.

(3) Forx € V*(k), G2 = {g € (B®k(z))* | N(g) € k*} as an algebraic group over k.

The principal parts of the global zeta function for (II) and (III) are not known.
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