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On relationship between proliferation and transition raets
of multicells
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Abstract

The development of a multicellular organism is a dynamic process. Starting with one or a few cells,
the organism develops into different types of cells with distinct functions to survive. We have constructed a
simple model with a cell number increase and a cell-type order conservation to assess conditions for cell-type
diversity. This model is based on probabilistic Lindenmayer system for three types of cells. In the present
model, we have successfully derived rigorous relations between the proliferation and transition rates for celi—
type diversity by using an algebraic operation, quantifier elimination (QE). Surprisingly, three modes for
the proliferation and transition rates emerge against various ratios of the initial cells to the developed cells.
Furthermore, it has been revealed that the high cell-type diversity originates from the order conservation.
During the developing process of multicellular organisms, the complex but explicit relations exist between
the cell-type diversity and the development rates.

1 Introduction

In a multicellular organism, a single cell—an egg—or a group of cells develops into a certain pattern with a
variety of cell types (Gilbert, 2003). These different cell types are created through cell differentiation, which
starts with an initial type, and then the cell changes into several intermediate types before differentiating into
the final type. The process of cell differentiation can be shown as a cell lineage. One representative of a real
cell lineage is the development of blood cells, wherein a stem cell is capable of extensive proliferation, creating
more stem cells as well as more differentiated cellular progeny.

The theoretical study of cell differentiation and morphogenesis was pioneered by Alan Turing, who showed
that a reaction—diffusion system can produce an inhomogeneous, stable pattern (Turing, 1952). Independent of
initial conditions, concentrations of chemicals form a stripe or wave pattern, and this pattern formation process
is robust against perturbations. Turing’s theory provides the basis for a dynamical system for morphogenesis
and potentiality of cell differentiation. Embryogenesis with an increase of cell numbers was, however, not stud-
ied, and the intracellular dynamics were not sufficiently complex. In fact, resource chemicals are transported
into the cell, and a complex catalytic reaction network within the cell changes the cell’s state over time. Genes
are expressed and repressed in response to these intracellular dynamics. Kauffman proposed that each cell type
should be regarded as an attractor of such intracellular dynamics (Kauffman, 1993), where each cell type is
represented as an attracting state of a genetic network. Again, morphogenetic processes with cell differentia-
tion were not studied. By considering Turing’s study and intracellular dynamics, together with the cell division
process to increase the cell numbers, Kaneko and Yomo proposed isologous diversification (Kaneko and Yomo,
1997, 1999). This allows spontaneous cell differentiation through cell division processes and cell-cell interac-
tions. These studies have provided a basis for the cell-type diversity of a multicellular organism. However, the
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B 1: Schematic representation of our previous model. The cells are surrounded by a bath of source material
with a constant concentration. After a division, the cells are connected to one another by forming a cell bridge.
The cells are thus connected to one another as a one-dimensional chain.

explicit relevance of the proliferation and transition rates between cell types to cell-type diversity has not been
studied.

Apart from the approach above, Lindenmayer system (abbreviated as L-system) is a parallel rewriting system
that was originally introduced to model the development of multicellular organisms (Lindenmayer, 1968a,b).
Indeed, L-system is used for modelling the development process of various organisms (Yoshida et al., 2005c¢).
Furthermore, probabilistic aspects are introduced into L-system, termed probabilistic L~system (Eichhorst and
Ruskey, 1981; Eichhorst and Savitch, 1980). The probabilistic L-system can take account of the influences of
proliferation and transition rates, depending on the cell types.

The aim of this work is the derivation of rigorous relations between proliferation and transition rates for high
cell-type diversity with conservation rule. For this purpose, we have constructed a model based on probabilistic
L~system with interactions and have analyzed it by using quantifier elimination (abbreviated as QE). The
derivation allows us to understand the explicit relations between the cell-type order conservation rule and high
cell-type diversity over multicellular organisms.

The present paper is organized as follows. Firstly, in Section 2, we have a brief view of our previous model
and results (Yoshida et al., 2005b), wherein the cell~type order conservation rule has appeared spontaneously.
In Section 3, we introduce a model of a multicellular organism consisting of one-dimensional cells. This model
postulates the cell~type order conservation rule as one of the rewriting rules. We make a brief explanation on
QE method in Section 4. Results of algebraic computation by using QE are given in Section 5, which describes
rigorous relations between the proliferation and transition rates. In Sections 5.2 and 5.3, these relations have
revealed that the cell-type order conservation rule plays a key role in high cell-type diversity. We will also
have a brief discussion on relevance of our results to the specific relation between proliferation and transition
rates which has been observed in our previous work (Yoshida et al., 2005b).

2 Previous study

In this section, we have a brief view of our previons work (Yoshida et al., 2005b), which is the basis of the
construction and analysis of the model in this work.

In a multicellular organism, a single cell—an egg—correctly develops into a prospectively determined pat-
tern. This morphogenesis is robust against environmental perturbations, and the same patter is always gener-
ated from an egg. In other words, recursive production is repeated. At the same time, the developmental process
in a multicellular organism produces a variety of cell types. The compatibility of these two points is surprising,
because ‘recursive production’ is the reproduction of the same pattern of an individual cell, while ‘cell~type
diversity’ is the existence of various patterns, namely, various cell types, within an individual. The question we
addressed in our previous work was the selection of initial cell(s), to allow for compatibility between recursive
production and cell-type diversity.

We present our previously developed model of a multicellular organism in Fig. 1. Within each cell, cat-
alytic and autocatalytic chemical reactions maintain the cell itself and synthesize some chemicals for the cell
membrane. Our numerical results have indicated that by starting with an initial object, consisting of both the
chaotic cell type with diverse chemicals and the regular dynamics cell type with less chemical diversity, the
recursive production of a multicellular organism with cell-type diversity has been realized. In addition to the
recursive production, a remarkable regeneration pattern, which is analogous to the intercalary regeneration in
cockroach legs (See Fig. 2), and planarian and salamander limb blastema (Gilbert, 2003), has been observed
in our previous work (Yoshida et al., 2005b). Starting with the two cells corresponding to I and I,, the regen-
eration pattern corresponding to I1 [ ... I, has been eventually produced as illustrated in Fig. 3. Here, such
regeneration phenomena can be described as the following rewriting rule, named a cell~type order conservation
rule:

LIy = Ll o I ;> i+ 1), ¢))]

This rewriting rule appears as an interaction term in the L-system which will be introduced in the next section.
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B 2: Intercalary regeneration in cockroach legs (Alberts et al., 2002). When mismatched portions of the
growing legs are grafted together, new tissue is intercalated to fill in the gap so that the noncontiguous positional
values disappear.
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[ 3: Regeneration of cell-type sequence, which is observed in (Yoshida et al., 2005b). The cell differentiates
from I, to Is sequentially. Starting with I; I, patterns without noncontiguous numbers, such as 1,1, b3 13141515,
are eventually produced. Thus, noncontiguity will disappear during the development process.

3 Model

In this section, we present a simple model of a multicellular organism in which the cell lineage can be
represented as a line, that is, only sequential differentiation occurs. Our model is schematically illustrated in
Fig. 4, We assume that cell differentiation starts with an initial type, /;, and then the cell differentiates into
several intermediate types I, — I3 — ... — I, before differentiating into the final type, I,. The proliferation
and transition rates of cell type i (1 < i < n) are defined as follows:

: LL; pi;
L = { L pin (1si<n),
L 1-piy—pin
: L1, p
h - { I 1= pen @

with0< pi; <1(1<i<n), 0< pijr1 £1(1 Si<n),pii+ piist £1(1 <i < n). In addition to the rewriting
rules above, we further adopt a rewriting rule, a cell-type order conservation rule: Iil; — Ll 11 ( >
i + 1), which guarantees the contiguity of cell types, shown in Section 2.

4 Method

The key point in this work is the usage of QE, which is one of the subjects in computer algebra (Caviness
and Johnson, 1998). QE deals with first~order formulae, which consist of polynomial equations, inequalities,
quantifiers (3, V) and Boolean operators. QE computes an equivalent quantifier—free formula for a given first—
order formula over the real closed field. For example, for the input vx(xg+bx+c > 0), QE outputs the equivalent
quantifier—free formula b2~4c < 0. It follows from this that we can obtain a condition for unquantified variables
that makes the input formula true by QE. We can also obtain the maximum value by adding one extra value, ¢,

as follows:
Iy P+ <l,ysAyze).

2

Q O Q
?_\_a ........... .._\Q.AQ

1 4: Schematic representation of our model. Cell differentiation proceeds as follows: Iy = L — ... = I,.
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For this formula, QE outputs € < (\/5 - 1)/2, which shows that the maximum value of y is ( V5~ 1)/2.
" Recently, by using this ability, we can perform symbolic—numeric optimization for the biochemical kinetic
model (Orii et al., 2005a,b) and algebraic computation for the multicell development model (Yoshida et al.,
2005a).

5 Results and discussion

5.1 Analysis for growth matrix in probabilistic L-system

Now, we calculate the growth matrix M of the two contiguous cell types LI, Liliy, Ii1l; (1 € i <n-1),
which enables us to estimate the composition of Iply (k = £ -1, ¢, £ + 1) at step m. It should be noted that other
two contiguous cell types (e.g., [;/;.3) never appear at any steps in virtue of the cell-type order conservation
rule. We could use the growth matrix of a longer sequence. For the present study, however, this simple matrix
with the two contiguous cell types is sufficient to characterize the diversity of cell-type composition.

If one starts with I, then the composition at step m can be calculated by the following formula:

(1,0,0,..)M™. &)}

Hére, we have studied the case of n = 3, showing the existence of three cell types. For the sake of simplic-
ity, let A, B and C denote I}, I; and I3, respectively, in what follows. In this case (n = 3), the growth matrix M is:

2p1+(1-p12 (-piadpz (1-pi2)pi2 P}, 0 0 0
P11 1-p12 0 P12+ P22 — Pr1ap23 P23 0 0
P11 0 l-p12  pra+pz2—pi2p2s 0 P23 0
0 0 Y 2p22+(1=p23) (-ppdp2s (A=pd2s Phy |
0 0 0 D22 1- D23 0 D23+ P33
0 0 0 D22 ‘ 0 1-pas P23+ P33
0 0 0 0 0 ) 0 1+ 2p3_3
with its eigenvalues:
1= pi2,1+2p1y — pra,(1 = p12)% 1= p23, 1 +2paz = pa3. (1 — p23) and 1 + 2ps5. @

Let S denote a diagonal matrix with the eigenvalues above in the order of (4). The features of the growth matrix
M can be summarized as follows:

e Only 1 +2p11 ~ p12,1 +2p22 — p23 and 1 + 2p3 3 can possibly have values of greater than 1. If the
eigenvalues differ from one another, then M can be divided into PS P!, where P is a regular matrix.
It may be worth noting that special conditions in which the eigenvalues are exactly the same have no
particular physical or biological importance.

o (1,0, 07 0, 0, 0,0)P is

1-
(01 29 __(_____p_l;z_)P__lﬁ, o’ eés, €6, e7) v
D1
where es, e5 and e7 are non-zero values.

e The 5th and 7th rows of P!, corresponding to the eigenvalues 1 + 2p;2 — p23 and 1 + 2p3 3 have zero
elements at the AA, AB, BA and AA, AB, BA, BB, BC, CB columns, respectively.

Taking these results into account, we can obtain one of the necessary conditions that AA, AB, BA, BB, BC, CB
and CC are well mingled as m approaches infinity, in other words, as the chain of cells becomes sufficiently
long:

14+2p—pr2>1and 1 +2py3 = pr2 > 1 +2p22 = pas, 1+ 2ps33. &)
In addition, we assume the following constraints:

YN(AA) = N(BB) = N(CC), YN(AB) = N(BC), - ®
where N(XY) denotes the number of sequence XY as m approaches infinity and ¥ denotes that the ratio of the

initial cells to the developed cells is 1/y. Notice that N(AB) = N(BA) and N(BC) = N(CB) always hold true
because of constructions of the rewriting rules (2).



Under the condition (5) and the assumption of constraint (6), let m approach infinity, and the following
equations are derived:

¥(p12 — p23)(1 = p12 = p23)
Y(P12~ P23) + P23

N(BC) = N(CB)=vyN(AB),

N@BB) = N(CO)=1y,

P = p1a(l = pra)(p2s + ¥(Pr2 — P23))/ 2¥(p12 = P23)(1 = P12 — P23))s

N(AB)

fl

N(BA) =

P2 = (Prapaa(=(1= P12}y + P23 = P12pas) + (123 = 5p23) = (2= pas)(1 = pa3)p} 5 — Pa(1 = 2p23)

+P12P%3(=1+ 22 = p23)(1 = P23)P23) + P 2P23(S — 9p23 + 6P3 )

~P32 Q2+ p23 = TPhs + 4P}y + (P12 = P23)(1 — P23)P23Q2 = P12 = P23/

Q212 = P23)(=1 + P12 + P2aV(=1 + Pr2)p1a = Poy + (P12 = P23X=2 + P12 + P23)Y))s
P33 = (P23((1 = P12)P12pP23 — (P12 — Pas)(Phy + (1 = p23)phs — Pra(l + pas + pas)y —

(@12 = P23V 2 — P12 = Pas)(1 = 2p12 + P23y

2(p12 = P23)=1 + p12 + P23)¥((=2 + p12)P127 — P23(1 = (2 = p23)7))).

In the equations above, N(AA) is normalized, i.e., N(AA) = 1 Thus, N(XY), (X,Y € {A, B,C)), p1,1, p22 and
P33 can explicitly be represented as functions of p; ; and p;

Notice that as all of N(AB) = N(BA), N(BB), N(BC) = N(CB), N(CC) approach 1, the diversity of the
composition approaches the highest.

5.2 QE analysis for relations of the proliferation and transition rates
Now, let us calculate some relations between the proliferation and transition rates. Firstly, we have deter-
mined the maximum values of N(AB) by the following QE procedure:
3p123p2,3, subject to the constraints: (5), (6) and (7), N(AB) 2 € > 0 ®)

The QE procedure (8) outputs the following inequalities: 0 < € < (\/ﬁ +1)/8 ~ 0.64039, (V881 — 9)/40 ~
0.517041 and (V89801 — 99)/400 ~ 0.50167 when vy is 1, 10 and 100, respectively. Thus, we have determined
the maximum values as seen in Section 4. To sum up, we have obtained the following most diverse composition:

with f(1) = (V17 + 1)/8, £(10) = (V881 - 9)/40 and £(100) = (V89801 — 99)/400. Thus, by QE method,
we have obtained the exact maximum value, pruning huge numbers of candidates for the maximum effectively.
It may be worth noting that it is difficult to calculate the interval of € under the complicated constraints (5), (6)
and (7) having many equations and inequalities, but QE method can actually calculate such interval.

Furthermore, QE method has let us know the rigorous relations between the proliferation and transition rates
when the maximum values above are satisfied. The relations for ¥ = 1, 10 and 100 are shown in Fig. 5. For
instance, the relation when ¥ is 10 is the following:

e Mode I

P23 = the first root of the equation for x, .
190p3, — 490p3, +200p? , + (~391py 2 + 681p%, — 100p3 ,)x +
(200 + 120py 2 ~ 310p2 )22 + (=310 + 100py2)x> + 110x* = 0 (0 < p12 < po),

where pg is approximately 0.293122 and exactly the first root of the equation for x,

399 — 3274x + 9188x% — 10232x° + 3920x* = 0.

e Mode II:

Prz= (1 +18p1a = \[1+36p12 ~768%,) /20 (po < P12 <2/5).

e Mode II:

- (zo ~9p12~ /400~ 1960p1, +2481p%,) 40 (0 < p12 < 2/5).

)
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(a) Relation between p; 2 and p33

©) 142p11~pr2and 1 +2p23 — p23 (d) Magnified graph of (c)

B 5. Relations between the proliferation p;; and transition rates p;;.; when the maximum values above are
satisfied. The three lines: black line, dashed line, gray line denote the relations in the case that y is 1, 10 and 100,
respectively with the cell-type order conservation rule; in contrast, the dot—dashed line denotes that in the case
of y = 10 without the cell-type order conservation rule. (b) Modes I, II and III correspond to the three curves
(or lines) into which the points where the curve is not smooth separate the whole region, Mode I include the
origin. (d) is the magnified graph of (c) around (1, 1). Note in (c) and (d), the line 1+2p; 1~p12 = 1+2p22-p23
is much the same as the gray curve.

-p23
1+42p22-p2. 1+2p22-p23
20

. 7 10 -
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l T 3 5 + 5 + 1w - -10
(a) Deviation 0.01 (b) Deviation 0.05

[ 6: Relations between the the points which deviates from the highest cell-diversity curve by 0.01 (a) and
0.05 (b).

Modes I, II and III show the existence of 3 stages, in which the cell-types are highly diverse. We have also
observed the existence of 3 stages in the case that y is 1, 10 or 100.

We have focused on the case of ¥ = 10 because in our previous simulation (Yoshida et al., 2005b), the
constraint (6) over N(XY), (X,Y € {A, B,C)) has been observed. We have also calculated the relation between
the proliferation and transition rates when N(AB) is the maximum without the cell-type order conservation rule
(1) in order to evaluate the effect of the conservation rule. It is observed in Figs. 5 (c) and (d) that with the
cell-type order conservation rule, the (1 +2py 1 — p12,1 + 2p22 ~ py3) curve (dashed and gray) is close to the
line 1 + 2py,; — p12 = 1 + 2p22 — p23; by contrast, the curve of ¥ = 10 without the conservation rule (the
dot—dashed line) is separate from 1 + 2p; ) — py2 = 1 +2p22 — p23.

5.3 Numerical analysis for relation between cell-type diversity and order conserva-
tion rule

Furthermore, we have evaluated robustness of high cell-diversity when ¥ is 10 with and without the cell-type
order conservation rule. This evaluation has been performed by deriving the relation between the proliferation
and transition rates which deviates by 0.01 and 0.05 from the highest cell-diversity curve. As illustrated in
Figs. 6 (a) and (b), the set of points (gray) without the conservation rule is more separate from the original set
than the set (black) with the rule.

This fact show that without the cell-type order conservation rule, the relation between the proliferation and
transition rates wherein high cell-diversity is realized has less robustness against deviation. Taking the results
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in Section 5.2 and the results above into account, one can safely state that the cell-type order conservation rule
plays a key role in high cell-type diversity.

Lastly, it is possible to compare the results in this work with the specific relation between the proliferation
and transition rates which has been observed (but not written) in our previous work (Yoshida et al., 2005b).
There, the following relation has been observed:

14+ 2p = pijsr ~ 1+ 2pjj— pjjets (# J) (10)

when the cell differentiation proceeds as Iy — I — I; — ... — I,. On the other hand, Fig. 5(d) shows
that such a relation of i = 1, j = 2 appear and that this relation would disappear without the cell-type order
conservation rule as mentioned in Section 5.2, We are now in a position to state that when high cell-diversity
is assumed, the relation (10) is satisfied if and only if the cell-type order conservation rule appears.

6 Conclusion

One of the remarkable features in the present study is that the rigorous relations have been derived over
the L-system with interactions with the aid of quantifier elimination. Indeed, the derived relations between
the cell-type diversity and the cell-type order conservation have revealed that the cell-type diversity appears
robustly if and only if the cell-type order conservation rule exists. Although the present model is assumed
to be composed of three cell-types, the present approach, the combination of discrete model and algebraic
computation, will shed some light on important role of cell-type order conservation rule over multicelluar
organisms.
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