Integers in p-adically closed fields are definable

Masanori Itai* (板井 昌典 東海大学 理学部)
Yoshihiro Ochi† (越智 禎宏 東京電機大学 理工学部)

Abstract

We show that the integers in p-adically closed fields are definable.

1 Theory of p-adically closed fields

In this short memo we show that the integers in p-adically closed fields are definable. This is a simple generalization of the fact that the integers in \mathbb{Q}_p are definable.

First we need to fix a language for the model theory of p-adically closed fields.

The language $\mathcal{L}_R = \{+, -, \cdot, -1, R, P_n(n \in \mathbb{N}), 0, 1, u_1, \ldots, u_{d-1}\}$, where R and P_n are unary predicates, $\pi, u_1, \ldots, u_{d-1}$ are constants.

The axiom of p-adically closed fields is the infinite set of following sentences.

- The theory of fields of characterestic zero
- $\forall x(x \neq 0 \rightarrow R(x) \lor R(x^{-1}))$
- $\forall x(P_n(x) \rightarrow \exists y(y^n = x))$ for each n.
- π is a prime element: this means that $v(\pi)$ is the least positive element, i.e., $v(\pi) > 0 \land \forall x(v(x) \geq 0 \rightarrow v(\pi) < v(x))$ which can be expressed by $R(\pi) \land \neg R(\pi^{-1}) \land \forall x(R(x) \rightarrow R(x\pi^{-1}) \land \neg R\pi^{-1})$ (for the definition of a prime element, see p. 13 of [1]).
- p-valued field: this can be expressed by saying that the value group is a \mathbb{Z}-group, i.e., for each natural number n the following holds, $\forall a \exists x \left(R(a^{\pi n}x^n)^{-1} \land R(\pi^n x^n a^{-1}) \right)$ with some $i \in \{0, 1, \ldots, n-1\}$. (see, p. 85 of [1])
- p-rank d: with $d-1$ constants express that \mathcal{O}/p is a d-dimensional vector space over \mathbb{Z}/p, i.e., $\forall x(R(x) \rightarrow x/p = a_0 + a_1 u_1 + \cdots + a_d u_d)$ with $a_i \in \{0, 1, \ldots, p-1\}$.
- Hensel's lemma holds; this can be expressed by saying that Newton's lemma holds, i.e., for each $f(X) \in \mathcal{O}[X]$, if there exists $a \in \mathcal{O}$ such that $v(f(a)) > v(f'(a)^2)$ then there is an x such that $f(x) = 0$. Therefore for each natural number n we write down the following: $\forall a_1 \cdots \forall x_n \exists a \left(R(a_1) \land \cdots \land R(a_n) \land R(a) \rightarrow R((a^n + a_1 a^{n-1} + \cdots + a_{n-1} a + a_n)(n a^{n-1} + (n-1) a^{n-2} a_1 + \cdots + a_{n-1}^{-1} a + a_n) \rightarrow \exists x(x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n = 0)\right)$

Remark 1 Recall that the p-adic Kochen operator can characterize formally p-adic fields of type (e, f), see Lemma 6.1 of p. 93 [1].

*Tokai University
†Tokyo Denki University
2 Defining the ring of integers in the \(p \)-adically closed fields

It is well known that the ring of integers \(\mathbb{Z}_p \) is definable in terms of the ring language in the \(p \)-adic numbers \(\mathbb{Q}_p \). We show in this section that if \(K \) is a \(p \)-adically closed field the ring of integers \(\mathcal{O}_K \) is also definable in the ring language.

Let \(K \) be a \(p \)-adically closed field. Then \(K \) is isomorphic to a finite extension of the \(p \)-adic numbers \(\mathbb{Q}_p \). Suppose \([K : \mathbb{Q}_p] = n\) and the ramification index is \(\varepsilon \). Then there is an element \(\pi \in K \) called the generator for which \(\pi^{\varepsilon} = p \). Let \(v_K \) be the valuation on \(K \) extending the \(p \)-adic valuation \(v_p \) on \(\mathbb{Q}_p \) such that

\[
v_k(x) = \frac{1}{n}v_{\mathbb{Q}_p}(N_{K/\mathbb{Q}_p}(x)) \quad (N \text{ is the norm}).
\]

Note that this follows from Hensel's lemma. Let \(\kappa(Y) = v_K(y) \).

The valuation \(v_k \) has the following properties:

(1) \(p \not| n \) We show that \(\mathcal{O}_K = \{x \in K : \exists y(y^{2n} = px^{2n} + 1)\}. \)

Let \(\alpha \in \mathcal{O}_K \). Consider the polynomial \(f(Y) = Y^{2n} - (p\alpha^{2n} + 1) \). Since \(f(Y) \equiv Y^{2n} - 1 \pmod{\pi} \), \(f(1) \equiv 0 \pmod{\pi} \). Note that \(f'(Y) \equiv 2nY^{2n-1} \pmod{\pi} \). It follows that \(f'(1) \not\equiv 0 \pmod{\pi} \). Hence by Hensel's lemma there is an element \(y \) such that \(y^{2n} = p\alpha^{2n} + 1 \).

Now let \(x \) be an element of \(K \) such that there is \(y \) with \(y^{2n} = px^{2n} + 1 \). Then \(v_K(y^{2n}) = 2nv_K(y) \). Suppose \(x \not\in \mathcal{O}_K \). Then \(v_K(px^{2n} + 1) = v_K(px^{2n}) = 2nv_K(x) + 1 \). Therefore, if \(x \not\in \mathcal{O}_K \) then \(2nv_K(y) \) is even and \(2nv_K(x) + 1 \) odd. This is absurd. So \(x \) must be in \(\mathcal{O}_K \).

(2) \(p | n \) We show that \(\mathcal{O}_K = \{x \in K : \exists y(y^{2n} - y = px^{2n})\}. \)

Let \(\alpha \in \mathcal{O}_K \). Consider the polynomial \(f(Y) = Y^{2n} - Y - p\alpha^{2n} \). Since \(f(Y) \equiv Y^{2n} - Y \pmod{\pi} \), we have \(f(1) \equiv 0 \pmod{\pi} \). Now \(f'(Y) \equiv 2nY^{2n-1} - 1 \equiv -1 \pmod{\pi} \) since \(p \) divides \(n \). Hence \(f'(1) \not\equiv 0 \pmod{\pi} \). By Hensel's lemma, there is an element \(y \) such that \(y^{2n} - y = p\alpha^{2n} \).

Now suppose \(y^{2n} - y = px^{2n} \) for some \(x, y \in K \). We show that \(x \in \mathcal{O}_K \). Note first that \(v_K(px^{2n}) \) is an odd integer. It is easy to see that \(v_K(y^{2n} - y) = \min\{v_K(y^{2n}), v_K(y)\} \).

(i) Suppose \(v_K(y^{2n}) = v_K(y) \). Then \(2nv_K(y) = v_K(y) \). Hence \(v_K(y) = 0 \). Thus \(y \) is a unit. Then \(y^{2n} - y \in \mathcal{O}_K \). Therefore \(px^{2n} \in \mathcal{O}_K \) as well. It follows that \(v_K(px^{2n}) = 1 + 2nv_K(x) \geq 0 \). This gives us the inequation \(0 > v_K(x) \geq -\frac{1}{2n} \), if \(x \not\in \mathcal{O}_K \). But this contradicts the fact that \(v_K(x) \in \mathbb{Z} \).

(ii) Suppose \(v_K(y) < v_K(y^{2n}) \). Then \(v_K(y) < 2nv_K(y) \). Hence \(v_K(y) > 0 \). Then as in the case (i) above, we have \(px^{2n} \in \mathcal{O}_K \). Consequently this yields a contradiction as before.

(iii) Suppose \(v_K(y^{2n}) < v_K(y) \). In this case, since \(v_K(y^{2n} - y) = v_K(y^{2n}) \), we get a contradiction immediately by checking the parity of \(v_K(y^{2n}) \) and \(v_K(px^{2n}) \).

2.2 \(p = 2 \)

In this case, regardless whether \(n \) is either even or odd we have that \(\mathcal{O}_K = \{x \in K : \exists y(y^{2n} - y = px^{2n})\} \). The same argument above works for \(p = 2 \).

References