Title
Integers in p-adically closed fields are definable

Model Theory of fields and its applications

Author(s)
Itai, Masanori; Ochi, Yoshihiro

Citation
数理解析研究所講究録 2006, 1515: 50-51

Issue Date
2006-09

URL
http://hdl.handle.net/2433/58698

Right

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Integers in \(p \)-adically closed fields are definable

Masanori Itai* (板井 昌典 東海大学 理学部)
Yoshihiro Ochi† (越智 禎宏 東京電機大学 理工学部)

Abstract

We show that the integers in \(p \)-adically closed fields are definable.

1 Theory of \(p \)-adically closed fields

In this short memo we show that the integers in \(p \)-adically closed fields are definable. This is a simple generalization of the fact that the integers in \(\mathbb{Q}_p \) are definable.

First we need to fix a language for the model theory of \(p \)-adically closed fields.

The language \(\mathcal{L}_R = \{+, -, \cdot, -1, R, P_n (n \in \mathbb{N}), 0, 1, \pi, u_1, \cdots u_{d-1}\} \), where \(R \) and \(P_n \) are unary predicates, \(\pi, u_1, \cdots, u_{d-1} \) are constants.

The axiom of \(p \)-adically closed fields is the infinite set of following sentences.

- theory of fields of characteristic zero
- \(\forall x (x \neq 0 \rightarrow R(x) \lor R(x^{-1})) \)
- \(\forall x (P_n(x) \rightarrow \exists y(y^n = x)) \)
- \(\pi \) is a prime element: this means that \(v(\pi) \) is the least positive element, i.e., \(v(\pi) > 0 \land \forall x (v(x) \geq 0 \rightarrow v(\pi) < v(x)) \) which can be expressed by \(R(\pi) \land \neg R(\pi^{-1}) \land \forall x (R(x) \rightarrow R(x\pi^{-1}) \land \neg R(x\pi)) \) (for the definition of a prime element, see p. 13 of [1])
- \(p \)-valued field: this can be expressed by saying that the value group is a \(\mathbb{Z} \)-group, i.e., for each natural number \(n \) the following holds, \(\forall a \exists x (R(a(\pi^n)^{-1}) \land R(\pi^nx^{-1})) \) with some \(i \in \{0, 1, \cdots, n-1\} \). (see, p. 85 of [1])
- \(p \)-rank \(d \): with \(d-1 \) constants express that \(\mathcal{O}/p \) is a \(d \)-dimensional vector space over \(\mathbb{Z}/p \), i.e., \(\forall x (R(x) \rightarrow x/p = a_0 + a_1u_1 + \cdots + a_du_d) \) with \(a_i \in \{0, 1, \cdots, p-1\} \).
- Hensel's lemma holds; this can be expressed by saying that Newton's lemma holds, i.e., for each \(f(X) \in \mathcal{O}[X] \), if there exists \(a \in \mathcal{O} \) such that \(v(f(a)) > v(f'(a)^2) \) then there is an \(x \) such that \(f(x) = 0 \). Therefore for each natural number \(n \) we write down the following: \(\forall a_1 \cdots \forall x_n \exists x \left(R(a_1) \land \cdots \land R(a_n) \land R(a) \rightarrow R((a^n + a_1a^{n-1} + \cdots + a_{n-1}a + a_n)(na^{n-1} + (n-1)a^{n-2}a_1 + \cdots + a_{n-2}) \land \neg R(na^{n-1} + (n-1)a_1a^{n-2} + \cdots + a_{n-1})(a^n + a_1a^{n-1} + \cdots + a_{n-1}a + a_n)^{-1}) \right) \rightarrow \exists x (x^n + a_1x^{n-1} + \cdots + a_{n-1}x + a_n = 0) \)

Remark 1 Recall that the \(p \)-adic Kochen operator can characterize formally \(p \)-adic fields of type \((e,f)\), see Lemma 6.1 of p. 93 [1].
2 Defining the ring of integers in the p-adically closed fields

It is well known that the ring of integers \mathbb{Z}_p is definable in terms of the ring language in the p-adic numbers \mathbb{Q}_p. We show in this section that if K is a p-adically closed field the ring of integers \mathcal{O}_K is also definable in the ring language.

Let K be a p-adically closed field. Then K is isomorphic to a finite extension of the p-adic numbers \mathbb{Q}_p. Suppose $[K : \mathbb{Q}_p] = n$ and the ramification index is e. Then there is an element $\pi \in K$ called the generator such that $\pi^e = p$. Let v_K be the valuation on K extending the p-adic valuation v_p on \mathbb{Q}_p such that

$$v_k(x) = \frac{1}{n}v_{\mathbb{Q}_p}(N_{K/\mathbb{Q}_p}(x)) \quad (N \text{ is the norm}).$$

Like most proofs of this kind we must treat the case when $p = 2$ separately. So first we discuss the case assuming $p > 2$.

2.1 $p > 2$

There are two cases to consider.

(1) $p \nmid n$. We show that $\mathcal{O}_K = \{x \in K : \exists y(y^{2n} = px^{2n} + 1)\}$.

Let $\alpha \in \mathcal{O}_K$. Consider the polynomial $f(Y) = Y^{2n} - (px^{2n} + 1)$. Since $f(Y) \equiv Y^{2n} - 1 \pmod{\pi}$, $f(1) \equiv 0 \pmod{\pi}$. Note that $f'(Y) \equiv 2nY^{2n-1} \pmod{\pi}$. It follows that $f'(1) \equiv 0 \pmod{\pi}$. Hence by Hensel's lemma there is an element y such that $y^{2n} = px^{2n} + 1$.

Now let x be an element of K such that there is y with $y^{2n} = px^{2n} + 1$. Then $v_K(y^{2n}) = 2nv_K(y)$. Suppose $x \notin \mathcal{O}_K$. Then $v_K(px^{2n} + 1) = v_K(px^{2n}) = 2nv_K(x) + 1$. Therefore, if $x \notin \mathcal{O}_K$ then $2nv_K(y)$ is even and $2nv_K(x) + 1$ odd. This is absurd. So x must be in \mathcal{O}_K.

(2) $p | n$. We show that $\mathcal{O}_K = \{x \in K : \exists y(y^{2n} - y = px^{2n})\}$.

Let $\alpha \in \mathcal{O}_K$. Consider the polynomial $f(Y) = Y^{2n} - Y - \alpha x^{2n}$. Since $f(Y) \equiv Y^{2n} - Y \pmod{\pi}$, we have $f(1) \equiv 0 \pmod{\pi}$. Now $f'(Y) \equiv 2nY^{2n-1} - 1 \equiv -1 \pmod{\pi}$ since p divides n. Hence $f'(1) \equiv 0 \pmod{\pi}$. By Hensel's lemma, there is an element y such that $y^{2n} - y = \alpha x^{2n}$.

Now suppose $y^{2n} - y = px^{2n}$ for some $x, y \in K$. We show that $x \in \mathcal{O}_K$. Note first that $v_K(px^{2n})$ is an odd integer. It is easy to see that $v_K(y^{2n} - y) = \min\{v_K(y^{2n}), v_K(y)\}$.

(i) Suppose $v_K(y^{2n}) = v_K(y)$. Then $2nv_K(y) = v_K(y)$. Hence $v_K(y) = 0$. Thus y is a unit. Then $y^{2n} - y \in \mathcal{O}_K$. Therefore $px^{2n} \in \mathcal{O}_K$ as well. It follows that $v_K(px^{2n}) = 1 + 2nv_K(x) \geq 0$. This gives us the inequation $0 > v_K(x) \geq -\frac{1}{2n}$, if $x \notin \mathcal{O}_K$. But this contradicts the fact that $v_K(x) \in \mathbb{Z}$.

(ii) Suppose $v_K(y) < v_K(y^{2n})$. Then $v_K(y) < 2nv_K(y)$. Hence $v_K(y) > 0$. Then as in the case (i) above, we have $px^{2n} \in \mathcal{O}_K$. Consequentley this yields a contradiction as before.

(iii) Suppose $v_K(y^{2n}) < v_K(y)$. In this case, since $v_K(y^{2n} - y) = v_K(y^{2n})$ we get a contradiction immediately by checking the parity of $v_K(y^{2n})$ and $v_K(px^{2n})$.

2.2 $p = 2$

In this case, regardless whether n is either even or odd we have that $\mathcal{O}_K = \{x \in K : \exists y(y^{2n} - y = px^{2n})\}$. The same argument above works for $p = 2$.

References