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EXISTENCE OF A SPECIAL P-MATCHED PAIR
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1. INTRODUCTION

Let G be a finite group. Let V and W be complex (resp. real) G-modules. Let L be a
family of subgroups of G. We define an .L-free complex (resp. self-conjugate, resp. real)
P-matched pair of type 1 of G-module. Let P(G) be the set of all subgroups of G of prime
power order, possibly 1. A G-module W is called L-free if dimW¥ = O for any H € L,
and G-modules V and W are called P-matched if Res$ V and Res$ W are isomorphic for any
P € P(G).

Definition 1.1. A pair (V, W) is called an L-free complex (resp. real) P-matched pair of type
1 of G-modules if it holds that

(1) dimVS% =1,

(2) V-V and W are L-free, and

(3) V and W are P-matched.

A pair (V,W) is called an L-free self-conjugate P-matched pair of type 1 of complex G-
modules if V and W satisfy the above three condition and their characters take real numbers.

In the case when L = L(G), an L-free complex (resp. self-conjugate, resp. real) P-
matched pair of type 1 of G-modules is also called a special P-matched pair of complex
(resp. self-conjugate, resp. real) G-modules. If there exists an .L-free complex (resp. self-
conjugate, resp. real) P-matched pair of type 1 of G-modules, we say that G has an L-free
complex (resp. self-conjugate, resp. real) P-matched pair of type 1 or equivalently G has a
special P-matched pair of complex (resp. self-conjugate, resp. real) G-modules.

Oliver ([6]) defined classes Mc¢, Mc., and Mg as follows. A finite group G lies in the class
Mc, (resp. Mc,, resp. M) if G has a {G}-free complex (resp. self-conjugate, resp. real)
P-matched pair of type 1. He used them to classify closed manifolds which are appeared as
the fixed point set of a disk with smooth G-action. -matched G-modules are often appeared
when we discuss two tangential G-modules V and W of G-disks or G-spheres with exactly
two fixed points. Let .L(G) be the set of all subgroups of G which contain some Dress
subgroup. If we want to apply Morimoto’s surgery theory, we expect the assumption .£(G)-
freeness, since it is convenient for some construction. We say that G lies in the class Lg,
(resp. Lc., resp. Lg) if G has a L(G)-free complex (resp. self-conjugate, resp. real) P-
matched pair of type 1. The class Lc, (resp. L., resp. Lg) is a subclass of M, (resp.
Me,, resp. Mg). In [5], a L(G)-free real P-matched pair of type 1 is called a special pair.
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We consider the following problem: Classify finite groups into L5, L¢, Lcy+ and Ly.
Recall that Oliver obtained the classes Mg, Mc, and My are determined by an existence of
an element, a subgroup, a sub-quotient group. In the section 2, we give a sufficient condition
to lies in the class L¢, Lc. and Lr and we classify all symmetric groups. In the section 3, we
classify all simple groups by using Oliver’s result. In the section 4, we classify all projective
general linear groups and all general linear groups.

2. P-MATCHED PAIRS

Let G be a finite group. First we recall Oliver’s result about the classes Mc, Mc. and Mg.
An element x of G is called self-conjugate if it is conjugate to its inverse, and called real if it
is conjugate to its inverse by an involution (an element of order 2).

Proposition 2.1 ([6]). There is a {G}-free complex (resp. self-conjugate) P-matched pair of
type 1 of G-modules exactly when there is an element not of prime power order, (resp. a
self-conjugate element not of prime power order) of G. There is a {G}-free real P-matched

pair of type 1 of G-modules only if there is a subquotient group of G which has a real element
not of prime power order.

A cyclic group C, of order n lies in Mc if and only if » is not a power of a prime, and lies
in L if and only if n is divisible by at least 3 distinct primes. This is shown as follows.

Observation 2.2 (cf. [4, Example 1.5]). Let p, q and r be positive integers > 1 which are
coprime each other. For an integer k, let Cy be a cyclic group of order k. Then R(C,,,) is
isomorphic to R(C,)®R(C,)®R(C,). Take a nontrivial irreducible module £,, (resp. &,, resp.
&) over Cy, (resp. C,, resp. C,). Consider the element

(C - fp)(c "‘gq) + (C - ‘fq)(c - fr) + (C - fp)(c - §r) - Z(C - §p)(c - fq)(c - fr)

= (C +2£,6,80) — (§p€y + E4br + Ep6r)
of RCC)) ® RIC) @ R(C,). Set U = C+ 2,8,& and V = £p€, + £, + EpE,. It is easy to
see that £,£,&, and V are both L(C,,,)-free. Thus the pair (U,V) is a L(C,,,)-free complex
P-matched pair of type 1 of Cp,-modules and C,,, € Lc.

Observation 2.3. Let p, q be distinct prime powers which are coprime each other. We show

that C,, ¢ Lc. Suppose there exists a complex P-matched pair (U, V) of type 1 of Cpy-
modules. In R(C,,), we can express

p-l g-1

U-v= C+Zk§p+zm,§’+zznu§’f’

i=1 j=1

for some integers ki, mj, n; ;. Here £, and £, are nontrivial irreducible complex modules over

C, and C,, respectively. If Resc”" (U=V) =0, then Z" ! ~1 and Z"_l ni; = —k; for

each i. Thus that Resp"" u-v= 0 foreach P € P(Cp,) yzelds that ¥ Yk = Z"' = -1,
f;ll n;j = —k; for each j and Yo i=1 Mi,j = —k; for each i. In this case, we can express

p-1 ¢-1

U-V=> > nC-&)C-&).

i=1 j=1
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On the other hand, if (U — V)¢ = C as C,-modules, then k; = 0 for each i, and thus if (U, V)
is L(Cp,)-free, then k; = m; = O for each i and each j. Therefore the above two conditions
are contradiction. Thus Cp, has no .L(C,,)-free complex P-matched pair of type 1.

We also show that there is no .L(G)-free complex P-matched pair of type 1 if G is a
dihedral group or a generalized quarternion group. Let G = D,, be a dihedral group of order
2n generated by a and b with relation a" = b* = 1 and bab = a™!. This group lies in My if
and only if n is not a power of a prime. The character table is as follows:

Character Table of D,,, n odd

1 d1<i<®l) b

#ofconj.cl. |1 2 n
éo 1 1

I
& 1 1 -1
xidsj<Ehy2 wivwd 0

Character Table of D,,, n even

1 d(1<i<? a! b ab

#ofconj. cl. |1 2 1 2. 2
& 1 1 1 1 1
& 1 1 1 -1 -1

& 1 =) D1 -l

& 1 -1y -Df -1 1
xid<j<®h|2 witw 2-1 0 0

where w = exp(r vY=1/n). Then Xx; is L(Dyy)-free. Since diij is even, any L(Ds,)-

free complex D,,-module is of even dimension. Therefore there is no £(D,,)-free complex
P-matched pair of type 1. Similarly we obtain that there is also no .£(Q,)-free complex
P-matched pair of type 1 for a generalized quarternion group of order 4n:

Qun=(ny| =1,y =x", yxy=x7")

Character Table of Q4,, n odd
M dUa<k<n) » 63 o)
#of 'conj. 1 2 n 1 n

T (€=0123)|1 (- VT (-1 (=VoD
m(l<t<n) |2  wew* 0 2-1f 0
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Character Table of Q4,, n even

() (HA<k<m) ) 0 0%

# of conj. 1 2 n 1 n
T (6,7 =0,1) | 1 (-1 -1y 1 (=D
ne(l1<sé€<n) | 2 wh 4 wke 0 2D o0

Here w = exp(m V=1/n). Note that Qs, € Mg if n is not a power of a prime. Therefore

Mc € Mc, € Mg and L € Le, ¢ Ly are different.
Let 7(G) be the set of all primes which divide the order of G.

In(CI | 0,1 >2

Dy, | Mo | M\ Lc
Q4n Mz: MR\LC

Now we discuss sufficient conditions to lie in the classes L¢, Lc+ and Lg. One elementary
property for Mc, Mc, and Mg is that if K is a subgroup of G with K € Mc (resp. Mc.,

resp. Mg), then G also lies in Mc (resp Mg, resp. Mg). But this property does not hold
for L¢, Le, and Ly.

The following two proposmons are basic.

Proposition 2.4. An L-free real P-matched pair of type lis an L-free self-conjugate P-

matched pair of type 1 and an L-free self-conjugate P-matched pair of type lis an L-free
complex P-matched pair of type 1.

Proposition 2.5. Let f: K — L be a group epimorphism. If there is a L(L)-free complex
(resp. self-conjugate, resp. real) P-matched pair of type 1 of L-modules, then there is an
L(G)-free complex (resp. self-conjugate, resp. real) P-matched pair of type 1 of G-modules.

As a corollary, we obtain that the order of the abelianization G/[G, G] of G is divisible
by at least 3 primes, then there is an L(G)-free complex P-matched pair of type 1. Recall
that if for a nontrivial element of G is conjugate to it’s inverse, then the order of G is even.
Furthermore, a nilpotent group G is classified by {7(G)|.

Theorem 2.6. Let G be a nilpotent group. If |n(G)| < 1, then G ¢ M, if |n(G)| = 2, then
G € Mc \ Mcy U Lg), and otherwise, G € Lo \ Mc,.
[n(G)l || 0,1 2 >3 |
| G [ M| Mc\(Mc, U L) | L\ Mo |

For a prime p, we denote by O?(G) the smallest normal subgroup of G with index a power
of p.

Lemma 2.7. Assume that there exists a cyclic subgroup C of G such that |n(C)| > 3 and that

OP(G)C = G for each p € n(G). Then G has an L(G)-free complex P-matched pair of type
1, namely G € L.
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We set G"! = ,ex) O'(G). This is a smallest normal subgroup N of G with G/N nilpo-
tent.
Proposition 2.8. Assume that there exists an element x of G such that
(1) CcGM =g,
(2) the group C N O’(G) is not of prime power order for each r € n(G),
where C = (x). Then there is an L(G)-free complex P-matched pair of type 1 of G-modules.

Let x € G and let #({x)) = {p1,. .., pr}. Throughout the identification R(C,)®: - -®R(C,) =
R({x)), where C; is a Sylow p;-subgroup of (x), take an irreducible complex C;-module ;

such that the character of &; - - - &, at x is exp(27 V=1/}x). We set Uc(x) = (C-&) - (C-&,).

Let {g;} be the set of all representatives of conjugacy classes of elements not of prime power

order. Then a P-matched element of R(G) is a linear combination of Uc(g;)’s with rational
coefficients.

Proposition 2.9. If there exists p € n(G) such that 7(C N OP(G)) # n(C) for each cyclic
subgroup C of G not of prime power order, then G has no L(G)-free complex P-matched
pair of type 1 of G-modules.

To show the existence of £(G)-free complex (resp. self-conjugate, resp. real) P-matched
pair of type 1 for each prime p, the following lemma says that it suffices to see that the

existence of {0P(G)}-free complex (resp. self-conjugate, resp. real) P-matched pair of type
1 for each prime p.

Lemma 2.10. If there exists an {OP(G)}-free complex (resp. self-conjugate, resp. real) P-

matched pair of type 1 for each prime p, then there exists an L(G)-free complex (resp. self-
conjugate, resp. real) P-matched pair of type 1.

Each character of G is a linear combination with integer coefficients of characters induced
from characters of elementary subgroups. Namely, each character of G is a linear combina-
tion with integer coefficients of monomial characters. monomial means a character induced
by a representation of degree 1 of a subgroup of G.

Lemma 2.11. Let G be a finite group. Suppose that there is an epimorphism p from a
subgroup K of G onto a cyclic group C such that OP(G)K = G and that p(K N O7(G)) € Mc

for each prime p. Then there is an L(G)-free complex P-matched pair of type 1 of G-
modules.

Now, we consider about the existence of .L(G)-free real P-matched pair of type 1 of G-
modules.

Lemma 2.12. Let G be a finite group. Suppose that there exists a subgroup K of G for each
prime p € n(G) such that there is an L(K)-free real P-matched pair of type 1 of K-modules
and OP(G)K = G. Then there is an L(G)-free real P-matched pair of type 1 of G-modules.

Proposition 2.13. For each prime p, assume that there are subgroups K of G and a group H
satisfying as follows:

(1) There is a {H)-free real P-matched pair of type 1 of H-modules,
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(2) there is an epimorphism p: K — H such that p(K N OP(G)) = H, and
3) O’(G)K =G.

Then there is an L(G)-free real P-matched pair of type 1 of G-modules.

Note that Oliver showed that the condition (1) of Proposition 2.13 is equivalent to what
there is a subquotient group D,,, of H such that p and g are distinct primes.

These propositions answer the classes of symmetric groups. For n > 5, a symmetric group
Z, on n letters has a subgroup generated by (1,2), (1,2, 3) and (4, 5) which is isomorphic to
Dy;. By Proposition 2.1, there is a {Z,}-free real P-matched pair of type 1 of Z,-modules and

X, € Mg. A symmetric group Z, for n < 4 has no elements not of prime power order and
then En ¢ MC.

Proposition 2.14. The symmetric group T, has an L(Z,)-free real P-matched pair of type 1
ifand only ifn > 7.

Proof. Assume n > 7. Let K be a subgroup generated by four elements (1,2, 3), (1,2), (4,5)
and (6,7) and H a group generated by (1,2, 3)(4,5), (1,2)(4,5). K and H are isomorphic to
Dg X C, X C; and Dy, respectively. In particular, there is an {H}-free real P-matched pair of
type 1 of H-modules. Recall that Dg X C, = Dy,. Let ¢: K — H be a homomorphism which
sends (1,2,3)(4,5)6,7), (1,2)4,5), (6,7) to (1,2,3)(4,5), (1,2)(4,5), (), respectively. It
clearly holds ¢(KNOP(%,)) = H and OP(Z,)K = Z, for any prime p. Thus by Proposition 2.8,
X, has an L(Z,)-free real P-matched pair of type 1. v ]

[(n[234] 56 [=7

l_in ME; MR N -£C L]R

3. SIMPLE GROUPS

For a perfect group G, it holds £(G) = {G} and then G € Ly, Lc+ and Lc respectively if
and only if G € Mg, Mc, and Mc respectively. In this section, we classify all finite simple
groups as follows.

| finite simple groups class

Cyp Li(@) = Ly(5) = Alis, Lo(7) = L3(2), L(3), Mc
Ly(9) = Alts, L,(17), L3(4), S2(8), S2(32)

L;(8), Us(4), Us(8) Mc N Mc.
Us(3) M N\ Mg
others Mg

Note that any cyclic simple group does not lie in Mc. We decide classes for nonabelian
simple groups.

3.1. Alternating Groups Alt,. Note that Alts = L,(5) and Alte = Ly(9). Forn > 7, the
alternating group Alt, lies in Mg, since the subgroup of Alz, generated by two elements
(1,2)(5,6) and (1,2)(3,4)(5,6,7) is isomorphic to a dihedral group D, of order 12.
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3.2. Simple Groups of type A,. LetA,(q) = L,+1(q) = PSL(n+1, g), n > 1 denote a linear
simple group.

Proposition 3.2.1. (cf. [2, Theorem 6.5.1]) Let d = ged(2,q — 1). The maximal dihedral
subgroups of Ly(q) are Dys1)/a-

Then we decide prime power g such that g + 1 are prime power.

Lemma 3.2.2. (1) Let q be 2-power. If g — 1 and q + 1 are both prime power, possibly
1, then g = 2,4,8. ‘
(2) Let q > 1 be odd prime power. If 5;—1 and 9;—1 are both prime power, possibly 1, then
q=3,5,7,9,17.

Thus, we obtain that L,(q) lies in My if ¢ # 2,3,4,5,7,8,9, 17, and does not lie in Mc if
otherwise.

The following proposition is checked directly.

0 10 01 1
Then the subgroup of Li(q) = S L(3,q) generated by x and y is isomorphic to Di,.
(=) =(yP=1)
(2) Let q be 2-power, E, the identity matrix and B a matrix of order ¢* - 1 in GL,(q).

Set x = (lgz %2) andy = (g 391). Then x, y lie in Ls(q), and it holds that

-1 00 100
Proposition 3.2.3. (1) Let q be odd prime power. Setx=|0 0 1,y=[0 0 -1}

22 = y71 = (xy)?* = 1. Thus Lu(q) has a subgroup Dy,
0001 0001
(3) Take x = 8 (1) (1) g and y = (1) (1) g (1) which are elements of Ly(2) =
1000 0010 '
6

SL(4,2). Then it holds that x*
Dy,.

¥® = (xy)> = 1. Thus L4(2) has a subgroup

Hartley and Mitchell has completely decided maximal subgroups of Ls(q) (cf. [2, Theo-
rem 6.5.3]). Since the order of an element of L3(2) is either 1, 2, 3, 4 or 7, Ly(2) ¢ Mc.
Since the order of an element of L3(4) is either 1, 2, 3, 4, 5 or 7, L3(4) ¢ Mc. The order of
an element of L3(8) is either 1, 2, 3,4, 7,9, 14, 21, 63 or 73. If y is an element of order 14,
then the normalizer N((y)) of the cyclic group generated by y and the centralizer Z(y) of y are
same group of order 56. If y is an element of order 21 or 63, then |[N({y)) = 126, |Z(y)| = 63
and x"'yx = y? for any x € N({y)) \ Z(y). Therefore L3(8) € Mc \ Mc.

3.3. Simple Groups of type B,. Let B,(q) = 03,+1(q), n > 1. Since O5,+,(g) has subgroups
which are isomorphic to O,,(x1,9) and O4(-1,q) = Ly(g?), Os(q) € Mg if ¢ # 2, 3.
Since 04(1,q) = Ly(q) X Ly(g), we obtain that 04(1,2) = Dg X Dg > C, X Dg = Dy, and
04(1,3) = A4 X A4 € Mc. (Note that Os5(2) = Z¢.) Furthermore we obtain
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Proposition 3.3.1. For the elements x and y of S Os(q), it holds that x* = y* = (xy)* = 1.

-1 0 0 00O 0 -1 0 0O
0 -1 0 00O -1 0 0 0O
Herex=|0 0 -1 0 Olandy=}10 0 O 1 O} Thus Os(q) has a subgroup
0 0 0 01 0 0 0 01
0 0 0 10 0 0 -1 00

Dy, for any odd prime power q.

3.4. Simple groups of type C,. Let C,(q) = S2.(q) = PS p.(q) for n > 2. The group S,(q)
is of order q”2 gf:,(q“ - 1)/(2,q - 1). It holds $,(q) € Mg since S»,(q) = S4(q) = Os(q).

3.5. Suzuki Groups Sz(22"*1). Let g = 2%*! and r = 2™, Let By(q) = "Ca2(q) = Sz(q).
The order of Sz(g) is g%(g - 1)(g* + D = g*(g - 1)(g—r+ 1)(g+r+1).

Lemma3.5.1. (1) 5 =2%2+1 mod 2**3 fork > 0.
(2) 22*1 +2™! 4+ 1 is not S-power for any n.
(3) The equation 2*+! — 2™ 4 1 = 5™ implies (n,m) = (1,1), (2,2).

Proof. We show clearly the first assertion by induction on k and omit the proof. We show the
second assertion. Suppose 22*! + 2™ + 1 = 5™, Let m = 2a, a 0odd, 5% = 2*2(1 + 2x) + 1.
Then 2% + 221 = 5m _ ] = (22(1 +2x) + 1) = 1 = @ 2F2(1 + 2x) +. . . + 29642 (] 4 2)8
andthusn+1=k+2,2n+1>ak+2)+a.Ifa>3,then2n+1=2k+3 <3k+6 <a(k+3)
is contradiction. Thena = 1, m = 2"!. If k > 2, then 5™ > 22" > 22n+D 5 22w+l L on+l 4
which is contradiction. However it clearly holds 5™ < 2%**! +2"*! + 1 fork = 0, 1.

We show the last assertion. Suppose 22! — 2"1 + 1 = 5" Let m = 2*a, (£ odd),
5% = 2#2(1 4+ 2x) + 1. By comparing :

5" —1=a- 221 +2x) + ...+ 2°®8D(1 4+ 2x)°

and
22n+l - 2n+1 = 2n+1 + 2n+2 +...+ 22n,

itholdsn+1=k+2,2n > a(k+2)+a,namelyn =k+1,(2—-a)k+2-3a>0. Hence
a=1,m=2"" Ifn >3, then 5% > 227" > 22+l 5 22+l _on+l L | Ifn =2 thenm = 2,
and if n = 1 then m = 1. This completes the proof. o

We remark that maximal subgroups of S z(g) have already classified. (See Theorem 6.5.4
(2]

Proposition 3.5.2. If n is either | or 2, then S z(2*'*!) ¢ Mc and Sz(2***') € Mg if other-
wise.

Proof. Let g = 2***! and r = 2"*!. The character table of Sz(q) is well-known. From it, an
order of an element of S z(g) is a divisor of one of 4, g — 1, g + r + 1 and a maximal dihedral
subgroup not of 2 power order is one of Dy_1), Dygirs1y, Dagg-r+1)- Note that F+1=0
mod 5, since2* =1 mod 5. Assume any of g— 1, g£r+1 is prime power. By Lemma 3.5.1,
q-r+ 1isdivisible by Sand n = 1,2, g = 23,2°. Itis clear that any element of Sz(g) has
prime power order for g = 8,32. We complete the proof. o
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3.6. Simple groups of type D,. Let n > 3, D,(g) = 04,(1, ) and D,(g, ¢*) = Oz(~1,q).
The group 0y,(1,4) is of order order ¢"V/%(¢" — 1) [T/Z}(¢% - 1)/(4,4" - 1). Since
0Os(1, q@) = Ly(q), it holds 0,,(1, q) € Mg. :
The group O2,(~1, g) is of order ¢""~/2(g"+1) [T’} (g¥ - 1)/(4, g"+1). Since Os(-1,9) =
[q(qz), it lies in Mg if ¢ # 2, 3; And O4(-1,2) = §4(3) € M.

Proposition 3.6.1. We may assume the group O¢(-1, 3) preserves 2-form f = le + X% +
xg + X3x4 + X5X¢. Let

-1 0 -1 0 0 0) (1 0 0 0 0 O
0 -11 0 0 O 01 0 0 OO
0= 0 0 -1 0 0 O and b = 00-1 0 00
1t -1 1 -1 0 O .7 100 0 -1 00
0 0 0 0 -1 O 00 0 0 10
0 0 0 0 0 -1 00 0 0 O 1)

be matrices of S L(6, 3). It holds that both a and b preserve f, la| = 6, |b| = 2 and |ba| = 2.
Therefore the group generated by a and b is D,,, which gives a subgroup of Og¢(—1, 3) through
the homomorphism to Og(—1, 3).

The twisted Chevalley group *Dy(q, ¢°) is of order ¢**(¢® + ¢* + 1)(¢® - 1)(¢* - 1). By
Table 4.5.2 in [2], *D4(q, ¢°) contains a subgroup A;(g) X A;(q*) and thus lies in Mg.

3.7. Projective Unitary Groups PSU(n, q). Let 2A,(¢,4?) = U,i(q) = PSU(n + 1,9),
n > 2. We assume n > 3 throughout this subsection. Since U,(q) = L,(g), we consider the
eight cases where g = 2,3,4,5,7,8,9,17. First if n > 4, then it holds that U,(q) > Us(g) =
Os(-1,9) € Mz.

By ATLAS [1] we obtain the following facts which are also confirmed by GAP [3].

Fact 3.7.1. (1) The order of an element of U4(2) is either 1, 2, 3 or 4 and thus Uz(2) ¢
Mc. _

(2) The order of an element of U3(3) is either 1, 2, 3, 4, 6, 7, 8 or 12. If x is an element
of order 6, it holds that N({x)) = C3 = Cg, C({(x)) = C12, and g"'xg = x~! for some g
of order 8, but g"'xg = x for any g € N({x)) of order 2. Thus U3(3) € Mc:+ \ Mg.

(3) The order of an element of U3(4) is either 1, 2, 3, 4, 5, 10, 13 or 15. Let x be a
nontrivial element which holds g~ xg = x™! for some g. Then the order of x is either
3 orS. If x is of order 5, then the order of g is 2 or 10. For any element x of order
3, there exists an element g such that g'xg = x™\. (The order of g is also 2 or 10.)
Thus Us(4) € Mc \ Mc,.

4) Us(8) € Mc \ Me..

(5) Us(9) € Mg, since U3(9) > Dyg. Note U3(9) ¥ Dy,.



010 0 0 -1
Proposition 3.7.2. Let p be one of 5, 7, 17. Set x = [O 0 1} zZ= [0 -1 0 ] y =
100 -1 0 O
1 -2 =2
nP-3 [—2 1 -2]. Then x, z, y are in Us(p) such that X* = y* = 22 = [x,y] = [y,2] =
-2 =2 1

(x2)* = 1. Then the group generated by x, y, z is isomorphic to Dy, which yields Us(p) € Mg.

3.8. Simple groups of type E,, Fy. Since E¢(q) > Ls(q), Es(q, 4°) > Us(q), E1(q) > La(q)
and Eg(q) > Ls(g), their groups lie in Mg. The group F4(q) is of order ¢g**(¢'? - 1)(¢® -
1)(¢® - 1)(¢* - 1). Since F4(q) > PS p3(g), F4(g) lies in Mg.

3.9. Simple groups of type G,. The group G,(q) is of order g%(¢q® — 1)(¢* - 1). First, assume
that g is odd. let € = Z;’=o Re; be the Cayley algebra. (We pute; (1 < i < 6) along the triangle
rotating anti-clockwise and e, the barycenter.) (Recall e; = e;e;, e4 = €,€7, s = €3¢7, and
es = ejere7. Let x and y be automorphisms over € defined by x(ep) = ep, x(e1) = —ea,
x(e;) = —er, x(e3) = es, x(es) = —e3, x(es) = —es, x(es) = —ee, x(€7) = —ey, Y(€o) = e,
y(e1) = ez, ¥(e2) = ey, y(e3) = —e3, y(es) = es, y(es) = es, y(€s) = ~€s, ¥(€7) = e7. Then these
elements lie in G, and |x| = 6, |y| = 2, yxy = x™!. Therefore G»(q) € Mg.

Next, let g is 2 power. Then G,(q) = G»(2), and by ATLAS, G,(2) = U5(3) : 2 > 42 : Dy,
in particular G,(2) > D;, by GAP.

By Table 4.5.2 in [2], it holds G5(gq) > A1(g)* and thus lies in My, since G2(q) > Z3 X Z3 >
D12 for q= 2, 4, 8.

Fact 3.9.1. Let g = 3%**!. The Ree group ‘G,(q) = Re(g) is of order g*(¢° + 1)(g — 1). Since
Re(q) > Ly(g), it holds Re(q) lies in Mg for ¢ > 3*. The nonsimple group Re(3) = L,(8).3
lies in Mc \ Mc. by GAP. '

Notice that the maximal subgroups of Re(g) have already classified (cf. [2, Theorem 6.5.5])
and Re(g) contains no copy of Dy, ([2, p.334)). ' _

3.10. Sporadic simple groups. Twenty-six sporadic groups exist. By ATLAS table [1] we
compute the class algebra constants and we obtain a sporadic group has a subgroup D,
for some n, not a power of a prime. (This is also computed by using the software GAP.)
Therefore each sporadic group lies in Mg.

4, PROJECTIVE GENERAL LINEAR GROUPS

In this section we show the following results.
Projective general linear groups PGL(n, g) lie in the following classes.

n\q| 2 4 8 3 15,7,9, 17 | others !
2 | M M M Mo M\ Le| Lr
3 Mf: M\ Mcs U Le) | Lo~ Mcey | Lr Lr Lr
>4 | Lr Lr Ly Lr Lr Lr

General linear groups GL(n, ¢) lie in the following classes.
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in\g] 2| 4 8 | 3 5,7,9, 17 | others |
2 | MS| Lo\ M, Mc Mg Lo\ Leo | Me\ Lo | Lr
3 M‘ Lo~ Mc, | Lo~ M, Ly Ly Lr
=4 -C]k Lr Lr Lr Lr Lr

4.1. Special P-matched pairs. The classes L¢, L¢., Lr are subclasses of Mc, Mcs, Mg,
respectively.

Note that GL(n,2) = PS L(n, 2) for any n.

Lemma 4.1.1. If GL(n,q) € Mg, then GL(m,q) € Ly for any m > n. If PGL(n,q) € Mg,
then PGL(m, q) € Ly for any m > n.

Proof. Tt holds that PGL(n, q) € Mg implies GL(n, q) € Mg. The condition GL(n, g) € Mg
requires n > 2. Suppose that GL(n, q) € Mg.

Take a subgroup K = GL(n,g) X C,-; of GL(m,q). In fact it is a subgroup of GL(n +
1,9). Let H = GL(n,q) and 7: K — H be a canonical epimorphism. For A € GL(n,q),
the element of (A,detA™!) lies in SL(n + 1,9) and its image to H through 7 is A. Thus
T(KNSL(n+1,q)) = H. By Proposition 2.13, we obtain that GL(m, q) € L. Similarly let
¢: GL(n + 1,q) —» PGL(n + 1, q) be a canonical epimorphism, K’ = ¢(K), H' = ¢(H) and
let ¢(1): K’ — H’ be the epimorphism induced by 7. Then ¢(T)(K' N PSL(n + 1,q)) = H'.
By applying Proposition 2.13 for (G, K, H) = (PGL(m, q),K’, H"), if PGL(n,q) € Mg, then
PGL(m,q) € Lg. m]

Lemma 4.1.2. Suppose that gcd(n,q — 1) = 1. If PSL(n,q) € Mc (resp. Mc,, resp. Mg),
then GL(n, q) € Lc (resp. Lc., resp. Lg.

Proof. Let F = C (resp. R, resp. R). The condition ged(n,q — 1) = 1 implies that
PGL(n,q) = PSL(n,q) and then there exists a canonical epimorphism f from GL(n, q) to
PSL(n,q). Let (F® V, W) be a complex (resp. self-conjugate, resp. real) P-matched pair of
type 1 of PS L(n,q)-modules. Since PS L(n, q) is simple, GL(n, q) is perfect, and V and W

are L(PS L(n, g))-free. Then (F&® f*V, f*W) is an L(G)-free complex (resp. real) P-matched
pair of type 1 of GL(n, q). o

4.2. GL(n, q). We classify GL(n, q) into M, Mc, Mc., or M. Since GL(2,2) is isomor-
phic to Dg, it holds GL(2,2) € M. Considering a subgroup of GL(2, 3) which is generated

by elements (‘1) 2) (8 (1)) it is isomorphic to Dj,. Thus GL(2, 3) lies in M.

* Lemma 4.2.1. Forq >4, q # 8, GL(2,q) € Mg. For q = 4,8, GL(2,q) € Mc \ Mc..
Proof. We show D1y are (maximal) dihedral subgroups of GL(2, g). The group generated
by (p pO ) and ((1) (])) is Dy(,—1y Which is one of maximal dihedral subgroups of GL(2, g).

Let x; be an element of order g>— 1. Then there is an element ¢ of order 2 such that tx,t = x,9.
Therefore GL(2, g) has a subgroup Dy,.1y, since tx29't = x,"9*!. Thus GL(2,q) € My if
g # 2,3,4,8. Let g = 4,8. Then it holds GL(2,q) € Mc, since x; is of composite order
q* - 1. The order of an element of GL(2, ¢) is divisor of one of 2(g— 1), g and g — 1. However
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any element of a composite order is not self-conjugate. (To show this, it suffices to calculate
the class algebra constants by its character table.) O

Since GL(3,2) = SL(3,2) is a simple group of order 168, we have already classified:
GL(3,2) e Mg. By ATLAS [1], PGL(3, g) and then GL(3, g) for g = 4, 8 lies in M. Recall
that any PS L(4, q) for g > 2 lies in Mg. Thus any GL(4, g) for g > 2 also lies in Mg.

[n\gq| 2 | 4 | 8 | others |
2 ME Me N\ M, Mc Lr
3 ME Mc N\ Mey | Me N M, | Mg
>4 | Mg Mg Me Mz

4.3. PGL(n, q). Note that PGL(2, q) is isomorphic to the simple group PS L(2, g) for g even
and thus PGL(2, q) for g even have already classified: The groups PGL(2,q) for ¢ = 2,4,8
do not lie in Mc and PGL(2, g) for other even g lies in M.

From now on, throughout this subsection we assume that g is odd. Let ¢: GL(n,q) —

PGL(n, q) be a canonical projection. The group generated by ¢ (p 0) and ¢ ((1) (1)) is iso-

0 1
. 10 1 0). . .
morphic to Dy_;). The group generated by ¢(1 l) and ¢(O _1) is isomorphic to Dy,.
Let x; be an element of order g — 1 of GL(2,q). Then there is an element ¢ of GL(2,q)
of order 2 such that tx,t = x,. Thus the group generated by ¢(x;) and ¢(¢) is isomorphic
to Dy(y41y. Therefore Doy, Doy are maximal dihedral subgroups of PGL(2, q) for g odd.
In particular, any PGL(2, g)-module is real. Furthermore, the group PGL(2, 3) of order 24,
which is isomorphic to S 4, does not lie in Mc, PGL(2, q) € Mg otherwise.

Since PGL(3,2) = S L(3,2) and PGL(3, 3) = S L(3, 3) are simple groups, we have already
classified: PGL(3,2) ¢ Mc, PGL(3,3) € Mg. It holds that PGL(3,8) € Mc \ Mc,,
since PGL(3, 8) = PS L(3, 8). Conjugacy classes of PGL(3, g) are well-known. Then we get
PGL(3,4) lies in Mc \ Mc,. As any PSL(4,q) for g > 2 lies in Mg, any PGL(4, q) for
q > 2 also lies in Mg. Therefore, we have classified PGL(n, q) into M%, Mc, Mc+, Mg.

n\ql] 2 4 | 8 3 | others
2 I M M, M: M| Mr
3 Mo | M\ Mo, [ Mc\ M, [ Mr| Mg
>4 | Mg Mg Mg Mr | Mgr

Now, we classify PGL(n, q) into LS, L¢, Le+, and Ly.

Lemma 4.3.1. Suppose that q # 3,5,7,9, 17. If either (g — N or (g + 1)¥ is a composite
number, then PGL(2, q) € Lg.

Proof. There exists a subgroup K = Dy, generated by a and b with relations a%*! = b? =
(ab)? = 1 of PGL(2,q). Then K - PSL(2,q) = PGL(2,q). We can take the element b from
PSL(2,q). Let ¢: K - K/(a“*"™) = D, ,\ya1 = H be a canonical epimorphism. Clearly it
holds that ¢(K N PSL(2,q)) = ¢(D,+1) = H. Suppose that (g + 1) is a composite number.
Then H € Mg and PGL(2, q) € Lg by Proposition 2.13. u}

Next we consider the case where each (g + 1) is power of an odd prime.
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Lemma 4.3.2. Let q be power of an odd prime such that g — 1 = 2°*' p*, where p is an odd
prime, a > 0 and b > 0. Then PGL(2, q) lies in Lp.

Proof. Recall that any PGL(2, g)-module is real. Set s = 2%(p—1),t = 2°~-1)p®, u = 2°+p’.

Let x = Y1 +Xg = Xory —Xory + Yoy be the element of RO(PGL(2, ¢)). Note that s, ¢ and u

are different numbers less than ”—;3 Let 7, (resp. 7,) be a primitive 29*-th (resp. p®-th) root.
Then it holds that 7, = 7%, ’Hp = 1,7, = 75", and 75 = 1. It follows that x(g) = O for any
element g of PGL(2, g) of prime power order. Taking V = y1 +x,+x", and W = x +x

g+1 g+l X g+1°
the pair (V, W) is a real L(PGL(2, g))-free P-matched pair of type 1. 0O

Similarly we obtain

Lemma 4.3.3. Let g be power of an odd prime such that g + 1 = 2°*' p?, where p is an odd
prime, a > 0 and b > 0. Then PGL(2, q) lies in L.

Proof. Sets =24(pP — 1), 1= (2 = 1)p", u = 2° + pb. Lety = 1 — xg + Xory + Xory =X
be the element of RO(PGL(2,q)). Note that s, t and u are different numbers less than 9—*2-'1
Let 7, (resp. 7,) be a primitive 29*L_th (resp. p®-th) root. Then it holds that Ty =Ty ‘Hp =1,
T, = T,", and 75 = 1. It is easy to show that y(g) = O for any element g of PGL(2,q) of
prime power order. Taking V = y; + X(S_)l +x® and W= Xq+ x®,, the pair (V, W) is a real

-1 -1?
L(PGL(2, g))-free P-matched pair of type 1. ! ! o

By combining Lemmas 4.3.1, 4.3.2 and 4.3.3 we obtain
Theorem 4.3.4. PGL(2,q) for q # 1,2,3,4,5,6,7,8,9,17 lies in Ly.

By Lemma 2.12, the groups PGL(n, q) for n > 2 lies in Ly if PGL(2, g) lies in L. By
using Proposition 2.9, we obtain that PGL(2, q) forg = 3,5,7,9, 17 does not lie in L¢. Recall
that PGL(n,q) = PSL(n,q) if gcd(n,q — 1) = 1. Then PGL(3,3), PGL(3,5), PGL(3,9),
PGL(3,17), PGL(4,4), PGL(4,8) lie in Ly and PGL(3,8) € Lc \ Mc..

Since GL(3,4) does not lie in Mg, it holds GL(3,4) ¢ Lc,. Let K = D3 X C; be a
subgroup of GL(3,4) and n: K — H = D, be a first projection. Then K N SL(3,4) is
isomorphic to H through n. By Proposition 2.13, it holds GL(3,4) € L¢.

Let G = GL(2,5). Let £&3 = R[C3] —R be the nontrivial irreducible real G3-module. There
exists an irreducible real G;-module &, such that the number (2R & &3,n)g,,, + (262, Mg,
is divisible by 4 for any nontrivial irreducible real G-module and is not divisible by 4 for
n = R. Thus G does not lies in L¢.. Next let G = GL(2,7). There are an irreducible real
G3-module &3 and a real Gyy-module £; such that the number (2R @ &3, 7)g,, + (262, Mgy,
is divisible by 4 for any nontrivial irreducible real G-module and is not divisible by 4 for
n = R. (We can take &, as the direct sum of some three nontrivial irreducible modules.) Let
G = GL(2,9). There are the real G5;-module & = R[Cs] — R and a real G;-module &, such
that the number (R, 7)g,;, + (€5, M5 + (€2.MG,, is even for any nontrivial irreducible real
G-module and is odd for = R. (We can take &; as the direct sum of some five nontrivial
irreducible modules.) Finally let G = GL(2, 17) and & = R[Cy] - R the nontrivial irreducible
real G3-module. There are an irreducible real G;;7;-module &7 and a real Gi;;-module &,
such that the number (2£3, 7)g,5, +(3&17, Mgy, + (262, MGy, is divisible by 4 for any nontrivial
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irreducible real G-module and is not divisible by 4 for n = R. (We can take &, as the direct
sum of some eight nontrivial irreducible modules and one trivial module.) Therefore we
obtain that GL(2, g) for ¢ = 5,7,9, 17 do not lie in L¢,. We finish the classification.
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