# MEASURE-PRESERVING HOMEOMORPHISMS OF NONCOMPACT MANIFOLDS AND MASS FLOW TOWARD ENDS

京都工芸繊維大学 矢ヶ崎 達彦 (TATSUHIKO YAGASAKI) KYOTO INSTITUTE OF TECHNOLOGY

### 1. Introduction

This article is concerned with groups of measure-preserving homeomorphisms of non-compact topological manifolds. Suppose M is a connected n-manifold and  $\omega$  is a good Radon measure of M with  $\omega(\partial M)=0$ . Let  $\mathcal{H}(M)$  denote the group of homeomorphisms of M equipped with the compact-open topology, and by  $\mathcal{H}(M;\omega)\subset\mathcal{H}(M;\omega\text{-end-reg})$  we denote the subgroups consisting of  $\omega$ -preserving homeomorphisms and ' $\omega$ -end-biregular' homeomorphisms of M. (When M is compact, the conditions related to ends are redundant and are suppressed from the notations.) For any subgroup  $\mathcal{G}$  of  $\mathcal{H}(M)$ , the symbol  $\mathcal{G}_0$  denotes the connected component of  $id_M$  in  $\mathcal{G}$ .

Relations of these groups are studied in [6, 2, 3, 4, 8]. When M is compact, A. Fathi [6] showed that  $\mathcal{H}(M;\omega)$  is a SDR (strong deformation retract) of  $\mathcal{H}(M;\omega\text{-reg})$  and that  $\mathcal{H}(M;\omega\text{-reg})$  is HD (homotopy dense) in finite dimension in  $\mathcal{H}(M)$ . In case n=2, since  $\mathcal{H}(M)$  is an ANR, this implies that  $\mathcal{H}(M;\omega\text{-reg})$  is HD in  $\mathcal{H}(M)$  and  $\mathcal{H}(M;\omega)$  is a SDR of  $\mathcal{H}(M)$ . When M is non-compact, R. Berlanga [2, 3, 4] extended Fathi's arguments and showed that  $\mathcal{H}(M;\omega)$  is a SDR of  $\mathcal{H}(M;\omega\text{-end-reg})$ . In case n=2, we have shown that  $\mathcal{H}(M;\omega\text{-end-reg})_0$  is HD in  $\mathcal{H}(M)_0$  and thus  $\mathcal{H}(M;\omega)_0$  is a SDR of  $\mathcal{H}(M)_0$  [8]. However, we have no general results on relations between  $\mathcal{H}(M;\omega\text{-end-reg})$  and  $\mathcal{H}(M)$  in dimension  $n\geq 3$ .

A. Fathi [6] also studied the internal structure of  $\mathcal{H}(M;\omega)$ . When M is compact, he defined a mass flow homomorphism  $\widetilde{\theta}: \widetilde{\mathcal{H}}_0(M,\omega) \to H_1(M,\mathbb{R})$  or  $\theta: \mathcal{H}_0(M,\omega) \to H_1(M,\mathbb{R})/\Gamma$  and studied the existence of a section of  $\widetilde{\theta}$  and the perfectness of Ker  $\theta$ . In this article we consider the non-compact case and study a mass flow homomorphism toward ends [9]. Let  $\mathcal{H}_E(M;\omega)$  denote the subgroup consisting of all  $h \in \mathcal{H}(M;\omega)$  which fix the ends of M. There is a natural continuous homomorphism  $J:\mathcal{H}_E(M;\omega) \to V_\omega$  which measures mass flow toward ends. This quantity has been introduced in [1] as the end charge  $c_h$   $(h \in \mathcal{H}_E(M;\omega))$ , which are finitely additive signed measure on the ends of M. We use the following presentation of this notion: If  $h \in \mathcal{H}_E(M;\omega)$  and C is a Borel subset of M such that Fr C is compact, then the mass transferred into C by h is counted

by  $J_h(C) = \omega(C - h(C)) - \omega(h(C) - C)$ . The range  $V_\omega$  is the topological vector space of functions  $J_h: C \mapsto J_h(C)$ , which parametrize mass flow toward ends.

We use deformation of measures by engulfing isotopy in M and show that the mass flow homomorphism J has a continuous (non-homomorphic) section.

**Theorem 1.1.** There exists a continuous map  $s: V_{\omega} \to \mathcal{H}_{\partial}(M, \omega)_1$  such that  $Js = id_{V_{\omega}}$  and  $s(0) = id_M$ .

The topological group  $\mathcal{H}_E(M,\omega)$  acts continuously on  $V_\omega$  by  $h \cdot a = J_h + a$   $(h \in \mathcal{H}_E(M,\omega), a \in V_\omega)$ . The mass flow homomorphism  $J : \mathcal{H}_E(M,\omega) \to V_\omega$  coincides with the orbit map at  $0 \in V_\omega$ . The existence of section for this orbit map and the contractibility of the base space  $V_\omega$  implies the following consequences.

Corollary 1.1. (1)  $\mathcal{H}_E(M;\omega) \cong \operatorname{Ker} J \times V_{\omega}$ .

(2) Ker J is a strong deformation retract of  $\mathcal{H}_E(M;\omega)$ .

In [10] we have obtained a version of Theorem 1.1 for smooth manifolds and volume-preserving diffeomorphisms. In the succeeding sections we explain definition of the mass flow homomorphism J toward ends ( $\S\S 2-4$ ) and give some details of arguments to deduce Theorem 1.1 ( $\S\S 5-6$ ).

## 2. END COMPACTIFICATIONS

2.1. Conventions. Throughout the paper, X denotes a connected, locally connected, locally compact, separable metrizable space, and the symbols  $\mathcal{O}(X)$ ,  $\mathcal{F}(X)$ ,  $\mathcal{K}(X)$ , and  $\mathcal{C}(X)$  denote the sets of open subsets, closed subsets, compact subsets, and connected components of X respectively. When A is a subset of X, the symbols  $\operatorname{Fr}_X A$ ,  $\operatorname{cl}_X A$  and  $\operatorname{Int}_X A$  denote the frontier, closure and interior of A relative to X.

The symbol  $\mathcal{H}_A(X)$  denotes the group of homeomorphisms h of X onto itself with  $h|_A=id_A$ , equipped with the compact-open topology. This group includes various subgroups.  $\mathcal{H}_A^c(X)$  denotes the subgroup consisting of homeomorphisms with compact support. When X is a polyhedron,  $\mathcal{H}^{\operatorname{PL}}(X)$  denotes the subgroup of PL-homeomorphisms of X. For any subgroup G of  $\mathcal{H}(X)$ , the symbols  $G_0$  and  $G_1$  denote the connected component and the path-component of  $id_M$  in G respectively. When  $G \subset \mathcal{H}^c(X)$ , by  $G_1^*$  we denote the subgroup of  $G_1$  consisting of  $h \in G$  which admits an isotopy  $h_t \in G$   $(t \in [0,1])$  such that  $h_0 = id_X$ ,  $h_1 = h$  and there exists  $K \in \mathcal{K}(X)$  with Supp  $h_t \subset K$   $(t \in [0,1])$ .

# 2.2. End compactifications. (cf. [4])

Suppose X is a noncompact, connected, locally connected, locally compact, separable metrizable space. An end of X is a function e which assigns an  $e(K) \in \mathcal{C}(X - K)$  to each  $K \in \mathcal{K}(X)$  such that  $e(K_1) \supset e(K_2)$  if  $K_1 \subset K_2$ . The set of ends of X is denoted

by  $E = E_X$ . The end compactification of X is the space  $\overline{X} = X \cup E$  equipped with the topology defined by the following conditions:

- (i) X is an open subspace of  $\overline{X}$ ,
- (ii) the fundamental open neighborhoods of  $e \in E$  are given by

$$N(e, K) = e(K) \cup \{e' \in E \mid e'(K) = e(K)\} \quad (K \in \mathcal{K}(X)).$$

Then,  $\overline{X}$  is a connected, locally connected, compact, metrizable space, X is a dense open subset of  $\overline{X}$  and E is a compact 0-dimensional subset of  $\overline{X}$ . We fix a metric d on  $\overline{X}$ . For any  $\varepsilon > 0$  there exists a neighborhood U of E in  $\overline{X}$  such that  $\operatorname{diam}_d C < \varepsilon$   $(C \in \mathcal{C}(U))$ .

Consider the family  $S = S(X) = \{C \subset X \mid \operatorname{Fr}_X C : \operatorname{compact}\}$ . For each  $C \in S$  we set

$$\overline{C} = C \cup E_C$$
,  $E_C = \{e \in E_X \mid e(K) \subset C \text{ for some } K \in \mathcal{K}(X)\}.$ 

Then,  $E_C$  is open and closed in  $E_X$  and  $\overline{C}$  is a neighborhood of  $E_C$  in  $\overline{X}$ .

Lemma 2.1. Let  $C, D \in \mathcal{S}(X)$ .

- (1) (i)  $C \cup D \in \mathcal{S}(X)$  and  $E_{C \cup D} = E_C \cup E_D$ .
  - (ii)  $C \cap D \in \mathcal{S}(X)$  and  $E_{C \cap D} = E_C \cap E_D$ .
  - (iii)  $X C \in \mathcal{S}(X)$  and  $E_{X-C} = E_X E_C$ .
- (2) (i)  $E_C \subset E_D$  iff C D is relatively compact in X (i.e., has the compact closure in X).
  - (ii)  $E_C = E_D$  iff the symmetric difference  $C\Delta D = (C D) \cup (D C)$  is relatively compact in X.

Each  $h \in \mathcal{H}(X)$  has a unique extension  $\overline{h} \in \mathcal{H}(\overline{X})$ . The map  $\mathcal{H}(X) \to \mathcal{H}(\overline{X}) : h \mapsto \overline{h}$  is a continuous group homomorphism. We set  $\mathcal{H}_{A \cup E}(X) = \{h \in \mathcal{H}_A(X) \mid \overline{h}|_E = id_E\}$ . Then  $\mathcal{H}_{A \cup E}(X)_0 = \mathcal{H}_A(X)_0$ , and if  $C \in \mathcal{S}(X)$  and  $h \in \mathcal{H}_E(X)$ , then  $h(C) \in \mathcal{S}(X)$  and  $E_{h(C)} = E_C$ .

#### 3. Fundamental facts on Radon measures

Next we recall general facts on spaces of Radon measures cf. [4, 6]. Suppose X is a connected, locally connected, locally compact, separable metrizable space.

### 3.1. Spaces of Radon measures.

Let  $\mathcal{B}(X)$  denote the  $\sigma$ -algebra of Borel subsets of X. A Radon measure on X is a measure  $\mu$  on the measurable space  $(X, \mathcal{B}(X))$  such that  $\mu(K) < \infty$  for any compact subset K of X. Let  $\mathcal{M}(X)$  denote the set of Radon measures on X. We say that  $\mu \in \mathcal{M}(X)$  is good if  $\mu(p) = 0$  for any point  $p \in X$  and  $\mu(U) > 0$  for any nonempty open subset U of X. For  $A \in \mathcal{B}(X)$  let  $\mathcal{M}_g^A(X)$  denote the set of good Radon measures  $\mu$  on X with  $\mu(A) = 0$ .

The weak topology w on  $\mathcal{M}(X)$  is the weakest topology such that the function

$$\Phi_f: \mathcal{M}(X) \to \mathbb{R}: \ \Phi_f(\mu) = \int_X f \, d\mu$$

is continuous for any continuous function  $f: X \to \mathbb{R}$  with compact support. The notation  $\mathcal{M}(X)_w$  denotes the space  $\mathcal{M}(X)$  equipped with the weak topology w.

For  $\mu \in \mathcal{M}(X)$  and  $A \in \mathcal{B}(X)$  the restriction  $\mu|_A \in \mathcal{M}(A)$  is defined by  $(\mu|_A)(B) = \mu(B)$   $(B \in \mathcal{B}(A))$ . For any  $A \in \mathcal{F}(X)$  the restriction map  $\mathcal{M}^{\operatorname{Fr}A}(X)_w \to \mathcal{M}(A)_w : \mu \mapsto \mu|_A$  is continuous, and for any  $K \in \mathcal{K}(X)$  the map  $\mathcal{M}^{\operatorname{Fr}K}(X)_w \to \mathbb{R} : \mu \mapsto \mu(K)$  is continuous ([4, Lemma 2.2]).

# 3.2. Action of homeomorphism groups.

Suppose  $A \in \mathcal{B}(X)$  and  $\omega \in \mathcal{M}(X)$ .

**Definition 3.1.**  $\mu \in \mathcal{M}(X)$  is said to be

- (i)  $\omega$ -biregular if  $\mu$  and  $\omega$  have same null sets (i.e.,  $\mu(B) = 0$  iff  $\omega(B) = 0$  for any  $B \in \mathcal{B}(X)$ ),
- (ii)  $\omega$ -mass-biregular if  $\mu$  is  $\omega$ -biregular and  $\mu(X) = \omega(X)$ ,
- (iii)  $\omega$ -cpt-biregular if  $\mu$  is  $\omega$ -biregular and  $\mu|_{X-K} = \omega|_{X-K}$  for some  $K \in \mathcal{K}(X)$ .

The corresponding subspaces are denoted by the following symbols respectively:

$$\mathcal{M}(X, \omega\text{-reg}), \quad \mathcal{M}(X, \omega\text{-mass-reg}), \quad \mathcal{M}(X, \omega\text{-cpt-reg}).$$

**Definition 3.2.**  $h \in \mathcal{H}(X)$  is said to be

- (i)  $\omega$ -preserving if  $h_*\omega = \omega$  (i.e.,  $\omega(h(B)) = \omega(B)$  for any  $B \in \mathcal{B}(X)$ ),
- (ii)  $\omega$ -biregular if  $h_*\omega$  and  $\omega$  have the same null sets

(i.e., 
$$\omega(h(B)) = 0$$
 iff  $\omega(B) = 0$  for any  $B \in \mathcal{B}(X)$ ) ([6]).

The corresponding subgroups are denoted by the following symbols:

$$\mathcal{H}(X;\omega) = \{h \in \mathcal{H}(X) \mid h : \omega\text{-preserving}\}, \quad \mathcal{H}(X;\omega\text{-reg}) = \{h \in \mathcal{H}(X) \mid h : \omega\text{-biregular}\}.$$

The group  $\mathcal{H}(X)$  acts continuously on  $\mathcal{M}(X)_w$  by  $h \cdot \mu = h_* \mu$   $(h \in \mathcal{H}(X), \mu \in \mathcal{M}(X))$ . The orbit map at  $\omega \in \mathcal{M}(X)$  is defined by  $\pi_\omega : \mathcal{H}(X) \to \mathcal{M}(X), \pi_\omega(h) = h_*\omega$ . The subgroup  $\mathcal{H}(X;\omega)$  coincides with the stabilizer of  $\omega$  under this action.

Suppose M is a compact connected n-manifold. The von Neumann-Oxtoby-Ulam theorem [7] asserts that if  $\mu, \nu \in \mathcal{M}_g^{\partial}(M)$  and  $\mu(M) = \nu(M)$ , then there exists  $h \in \mathcal{H}_{\partial}(M)_0$  such that  $h_*\mu = \nu$ . A. Fathi [6] extended this theorem to a parametrized version.

**Theorem 3.1.** Suppose  $\mu, \nu: P \to \mathcal{M}_g^{\partial}(M; \omega\text{-reg})_w$  are continuous maps with  $\mu_p(M) = \nu_p(M)$   $(p \in P)$ . Then there exists a continuous map  $h: P \to \mathcal{H}_{\partial}(M; \omega\text{-reg})_1$  such that  $(h_p)_*\mu_p = \nu_p$   $(p \in P)$  and if  $p \in P$  and  $\mu_p = \nu_p$ , then  $h_p = id_M$ .

R. Berlanga [4] obtained a similar theorem in the case that M is noncompact.

3.3. Spaces of Radon measures with direct limit topology.

Suppose  $A \in \mathcal{B}(X)$  and  $\omega \in \mathcal{M}_g^A(X)$ . Let  $\mathcal{B}_{\omega}(X) = \{C \in \mathcal{B}(X) \mid \omega(\operatorname{Fr}_X C) = 0\}$  and  $\mathcal{F}_{\omega}(X) = \mathcal{F}(X) \cap \mathcal{B}_{\omega}(X)$ . For  $\mu, \nu \in \mathcal{M}_g^A(X, \omega\text{-cpt-reg})$  and  $C \in \mathcal{B}(X)$  we define  $(\mu - \nu)(C) \in \mathbb{R}$  by

 $(\mu - \nu)(C) = (\mu - \nu)(C \cap K)$ , where K is any compact subset of X such that  $\mu|_{X-K} = \nu|_{X-K}$ .

For the sake of notational simplicity, we put  $\mathcal{M} = \mathcal{M}_g^A(X, \omega\text{-cpt-reg})$  (as a set). Let  $C \in \mathcal{B}_\omega(X)$ . One can see that the function  $\mathcal{M}_w \times \mathcal{M}_w \to \mathbb{R} : (\mu, \nu) \mapsto (\mu - \nu)(C)$  is not continuous (if X is noncompact). This forces us to introduce the direct limit topology  $\lim$  instead of the weak topology w (cf. [4, p 244]). For each  $K \in \mathcal{K}(X)$  consider the subspace  $\mathcal{M}_{K,w} = \left\{ \mu \in \mathcal{M}_w \ \middle| \ \mu|_{X-K} = \omega|_{X-K} \right\}$  of  $\mathcal{M}_w$ . The family  $\{\mathcal{M}_K\}_{K \in \mathcal{K}(X)}$  is a closed cover of  $\mathcal{M}_w$  (cf. [4, Lemma 3.1]). The topology  $\lim$  on  $\mathcal{M}$  is the finest topology on  $\mathcal{M}$  such that the inclusion  $i_K : \mathcal{M}_{K,w} \subset \mathcal{M}$  is continuous for each  $K \in \mathcal{K}(X)$ . The space  $\mathcal{M}$  equipped with this topology is denoted by  $\mathcal{M}_{\lim} = \mathcal{M}_g^A(X, \omega\text{-cpt-reg})_{\lim}$ . Each  $\mathcal{M}_{K,w}$  is a closed subspace of  $\mathcal{M}_{\lim}$  and a map  $f : \mathcal{M}_{\lim} \to Z$  is continuous iff the composition  $fi_K$  is continuous for each  $K \in \mathcal{K}(X)$ .

**Lemma 3.1.** (1) Suppose  $\mu, \nu : P \to \mathcal{M}_g^A(X, \omega\text{-}cpt\text{-}reg)_{lim}$  are continuous maps and  $C \in \mathcal{B}_{\omega}(X)$ . Then the map  $P \to \mathbb{R} : p \mapsto (\mu_p - \nu_p)(C)$  is continuous.

(2) Suppose  $F \in \mathcal{F}_{\omega}(X)$  and F is regular closed (i.e.,  $F = cl\ U$  for some  $U \in \mathcal{O}(X)$ ). Then the restriction map  $r : \mathcal{M}_g^A(X, \omega\text{-}cpt\text{-}reg)_{lim} \to \mathcal{M}_g^{A\cap F}(F, \omega|_F\text{-}cpt\text{-}reg)_{lim} : r(\mu) = \mu|_F$  is continuous.

**Definition 3.3.** Suppose G is a subgroup of  $\mathcal{H}(X)$ . Consider the following condition (\*) on a map  $h: P \to G$ .

- $(*)_0$  h is continuous.
- (\*)<sub>1</sub> For any  $p \in P$  there exists an open neighborhood U of p in P and  $K \in \mathcal{K}(X)$  such that  $h(U) \subset \mathcal{H}_{X-K}(X)$ .
- (\*)<sub>2</sub> There exists a locally compact  $T_2$  space Q and continuous maps  $f: P \to Q$ ,  $g: Q \to G$  such that h = gf.

Since G is a topological group, if  $h, k : P \to G$  satisfy the condition (\*), then the inverse  $h^{-1} : P \to G : (h^{-1})_p = (h_p)^{-1}$  and the composition  $kh : P \to G : (kh)_p = k_p h_p$  satisfy the same condition.

**Lemma 3.2.** Suppose  $\mu, \nu: P \to \mathcal{M}_g^A(X, \omega\text{-cpt-reg})_{lim}$  are continuous maps and  $h: P \to \mathcal{H}_A^c(X, \omega\text{-reg})$  satisfies the condition (\*).

- (1) For any  $C \in \mathcal{B}_{\omega}(X)$  the map  $\varphi : P \to \mathbb{R} : \varphi(p) = ((h_p)_*\mu_p \nu_p)(C)$  is continuous.
- (2) The map  $\psi: P \to \mathcal{M}_g^A(X, \omega\text{-cpt-reg})_{lim}: \psi(p) = (h_p)_*\mu_p$  is continuous.

# 4. Mass flow homomorphism toward ends

Suppose X is a connected, locally connected, locally compact separable, metrizable space and  $\mu \in \mathcal{M}(X)$ . Let  $\mathcal{S}_b = \mathcal{S}_b(X) = \mathcal{S}(X) \cap \mathcal{B}(X)$ .

**Definition 4.1.** For  $h \in \mathcal{H}_E(X,\mu)$  we define a function  $J_h = J_h^{\mu} : \mathcal{S}_b \to \mathbb{R}$  as follows: Since  $\overline{h}|_E = id$ , for  $C \in \mathcal{S}_b$  it follows that  $E_C = E_{h(C)}$  and that  $C\Delta h(C) = (C - h(C)) \cup (h(C) - C)$  is relatively compact in X (Lemma 2.1 (2)(ii)). Thus  $\mu(C - h(C)), \mu(h(C) - C) < \infty$  and we can set  $J_h(C) = \mu(C - h(C)) - \mu(h(C) - C)$ .

# Lemma 4.1. Let $C, D \in \mathcal{S}_b$ .

- (1) (i) If  $D \subset C \cap h(C)$  and  $cl_X(C-D)$  is compact, then  $J_h(C) = \mu(C-D) \mu(h(C) D)$ .
  - (ii) If  $L \in \mathcal{K}(X)$  and  $C \cup L = h(C) \cup L$ , then  $J_h(C) = \mu(C \cap L) \mu(h(C) \cap L)$ .
- (2) If  $cl_X(C\Delta D)$  is compact (i.e.  $E_C = E_D$ ), then  $J_h(C) = J_h(D)$ .
- (3) If  $C \cap D = \emptyset$ , then  $J_h(C \cup D) = J_h(C) + J_h(D)$ .
- (4) If  $\mu(C) < \infty$ , then  $J_h(C) = 0$ .
- (5)  $J_h(X) = 0$ .

This lemma suggests the next definition of the mass flow homomorphism J.

### Definition 4.2.

(1)  $V_{\mu} = V_{\mu}(X) = \{a : S_b \to \mathbb{R} \mid (*)_1, (*)_2, (*)_3, (*)_4\}$   $(*)_1 \text{ If } C, D \in S_b \text{ and } cl_X(C\Delta D) \text{ is compact (i.e., } E_C = E_D), \text{ then } a(C) = a(D).$   $(*)_2 \text{ If } C, D \in S_b \text{ and } C \cap D = \emptyset, \text{ then } a(C \cup D) = a(C) + a(D).$   $(*)_3 \text{ If } C \in S_b \text{ and } \mu(C) < \infty, \text{ then } a(C) = 0.$   $(*)_4 a(X) = 0$  $(2) J : \mathcal{H}_E(X, \mu) \to V_{\mu} : h \mapsto J_h.$ 

For  $a, b \in V_{\mu}$  and  $\alpha, \beta \in \mathbb{R}$ , we define  $\alpha a + \beta b \in V_{\mu}$  by  $(\alpha a + \beta b)(C) = \alpha a(C) + \beta b(C)$   $(C \in \mathcal{S}_b)$ . Then  $V_{\mu}$  is a real vector space under these addition and scalar product. We equip  $V_{\mu}$  the product topology, that is, the topology induced by the projections  $\pi_C : V_{\mu} \to \mathbb{R}$  :  $\pi_C(a) = a(C)$   $(C \in \mathcal{S}_b)$ . Thus, a map  $f : Y \to V_{\mu}$  is continuous iff  $\pi_C f : Y \to \mathbb{R}$  is continuous for each  $C \in \mathcal{S}_b$ . With this topology  $V_{\mu}$  is a topological vector space.

## **Lemma 4.2.** *J* is a continuous group homomorphism.

#### 5. Deformation of measures by engulfing isotopy

Throughout this section we suppose  $M^n$  is a connected separable metrizable PL n-manifold, d is any metric on the end compactification  $\overline{M}$ , and  $\omega \in \mathcal{M}_g^{\partial}(M)$ . As a consistency condition between the PL-structure of M and the measure  $\omega$ , we assume that

 $\mathcal{H}^{\mathrm{PL}}_{\partial}(M) \subset \mathcal{H}(M; \omega\text{-reg})$ . It follows that  $\omega(K) = 0$  for any subpolyhedron K of M with  $\dim K \leq n-1$ .

# 5.1. Deformation of measures by engulfing isotopy.

Consider a decomposition  $M = L \cup_S N$  such that

- (i) L and N are connected PL n-submanifolds of M with  $S = L \cap N = \operatorname{Fr}_M L = \operatorname{Fr}_M N$ ,
- (ii) S is a compact proper PL (n-1)-submanifold of M.

**Lemma 5.1.** There exists a continuous map  $f:(-\infty,\infty)\to\mathcal{H}^{\mathrm{PL,c}}_{\partial}(M)_1^*$  such that

- (i) (a)  $f_0 = id$ , (b)  $f_s(L) \subsetneq f_t(L)$  (s < t),
  - (c) there exists a subpolyhedron F of M such that dim  $F \leq n-1$ ,  $\partial M \subset F$ , and for any  $K \in \mathcal{K}(M-F)$  there exist  $-\infty < s < t < \infty$  with  $K \subset f_t(L) f_s(L)$ ,
- (ii) f satisfies the condition (\*),
- (iii)  $\{f_t\}_{-\infty < t < \infty}$  is equi-continuous with respect to  $d|_M$ .

This engulfing isotopy  $f_t$  can be used to deform measures. Let  $h_t = f_t^{-1}$ . Then, for any  $\mu \in \mathcal{M}_g^{\partial}(M, \omega\text{-reg})$  the function  $(-\infty, \infty) \longrightarrow (-\mu(L), \mu(N)) : t \longmapsto ((h_t)_*\mu - \mu)(L)$  is a monotonically increasing homeomorphism. Consider the map

$$\lambda: \mathcal{M}_g^{\partial}(M, \omega\text{-cpt-reg})_{lim}^2 \times \mathbb{R} \to \mathbb{R}: \ \lambda(\mu, \nu, t) = ((h_t)_*\mu - \nu)(L).$$

By Lemma 3.2 (1)  $\lambda$  is continuous. Since  $((h_t)_*\mu - \nu)(L) = ((h_t)_*\mu - \mu)(L) + (\mu - \nu)(L)$ , for any  $\mu, \nu \in \mathcal{M}_g^{\partial}(M, \omega\text{-cpt-reg})$ , the function  $\lambda(\mu, \nu, *) : \mathbb{R} \to (-\mu(L), \mu(N)) + (\mu - \nu)(L)$  is a monotonically increasing homeomorphism. When  $\mu(M) < \infty$ , we have that  $a \in (-\mu(L), \mu(N)) + (\mu - \nu)(L)$  iff  $0 < a + \nu(L) < \mu(M)$ . We need the inverse of the above homeomorphism.

**Definition 5.1.** We define a map  $t: \mathcal{V} \to \mathbb{R}$  as follows:

(1) 
$$\mathcal{V} = \mathcal{V}_g^{\partial}(M, \omega\text{-cpt-reg})_{lim}$$
  

$$= \left\{ (\mu, \nu, a) \in \mathcal{M}_g^{\partial}(M, \omega\text{-cpt-reg})_{lim}^2 \times \mathbb{R} \mid a \in (-\mu(L), \mu(N)) + (\mu - \nu)(L) \right\}$$

(2) 
$$t: \mathcal{V} \to \mathbb{R}: t(\mu, \nu, a) = \lambda(\mu, \nu, *)^{-1}(a)$$
 (i.e.,  $t = t(\mu, \nu, a)$  iff  $a = \lambda(\mu, \nu, t)$ )

Then (i)  $t: \mathcal{V} \to \mathbb{R}$  is continuous, and (ii)  $(\mu - \nu)(L) = a$  iff  $t(\mu, \nu, a) = 0$ .

**Lemma 5.2.** The map  $H: \mathcal{V} \to \mathcal{H}^{\mathrm{PL,c}}_{\partial}(M)_1^*$ ,  $H_{(\mu,\nu,a)} = h_{t(\mu,\nu,a)}$  has the following properties:

- (i) H satisfies the condition (\*).
- (ii)  $(H_{(\mu,\nu,a)})_*\mu: \mathcal{V} \to \mathcal{M}_g^{\partial}(M,\omega\text{-}cpt\text{-}reg)_{lim}: (\mu,\nu,a) \mapsto (H(\mu,\nu,a))_*\mu \text{ is continuous.}$
- (iii) (a)  $((H_{(\mu,\nu,a)})_*\mu \nu)(L) = a$ , (b)  $(\mu \nu)(L) = a$  iff  $H_{(\mu,\nu,a)} = id$ .
- (iv)  $\{H_{(\mu,\nu,a)}^{-1}\}_{(\mu,\nu,a)\in\mathcal{V}}$  is equi-continuous with respect to  $d|_{M}$ .

**Lemma 5.3.** Suppose  $\mu, \nu: P \to \mathcal{M}_g^{\partial}(M, \omega\text{-}cpt\text{-}reg)_{lim}$  and  $a: P \to \mathbb{R}$  are continuous maps such that  $a_p \in (-\mu_p(L), \mu_p(N)) + (\mu_p - \nu_p)(L)$   $(p \in P)$ . Then the map  $h: P \to \mathcal{H}_{\partial}^{\mathrm{PL,c}}(M, \omega\text{-}reg)_1$ ,  $h_p = H_{(\mu_p,\nu_p,a_p)}$  has the following properties:

- (i) h satisfies the condition (\*),
- (ii) The map  $h_*\mu: P \to \mathcal{M}_a^{\partial}(M, \omega\text{-}cpt\text{-}reg)_{lim}: p \mapsto (h_p)_*\mu_p$  is continuous.
- (iii) (a)  $((h_p)_*\mu_p \nu_p)(L) = a_p$ , (b)  $(\mu_p \nu_p)(L) = a_p$  iff  $h_p = id_M$ .
- (iv)  $\{h_p^{-1}\}_p$  is equi-continuous with respect to  $d|_M$ .

### 5.2. Fundamental deformation lemma.

Consider a decomposition  $M = N \cup A$ ,  $A = A_1 \cup \cdots \cup A_m$ , such that

- (i) N is a connected PL n-submanifold of M such that  $Fr_M N$  is a compact PL (n-1)-submanifold of M.
- (ii)  $A_1, \dots, A_m \in \mathcal{C}(cl(M-N))$ .

Since  $\operatorname{Fr}_M N$  is assumed to be compact, we have  $E_M = E_N \cup E_{A_1} \cup \cdots \cup E_{A_m}$ .

Suppose  $\mu, \nu: P \to \mathcal{M}_g^{\theta}(M, \omega\text{-cpt-reg})_{lim}$  and  $a(i): P \to \mathbb{R}$   $(i = 1, \dots, m)$  are continuous maps which satisfies the following conditions: for any  $p \in P$ 

$$(\#)_1 \ a_p(i) > -\nu_p(A_i) = -\mu_p(A_i) + (\mu_p - \nu_p)(A_i) \quad (i = 1, \dots, m),$$

$$(\#)_2 \sum_{i=1}^m a_p(i) < (\mu_p - \nu_p)(M) + \nu_p(N).$$

**Lemma 5.4.** There exists a map  $\varphi: P \to \mathcal{H}^{\mathrm{PL,c}}_{\partial}(M)_1^*$  such that

- (1)  $\varphi$  satisfies the condition (\*),
- (2)  $\varphi_*\mu: P \to \mathcal{M}_q^{\partial}(M, \omega\text{-}cpt\text{-}reg)_{lim}$  is continuous,
- (3)  $((\varphi_p)_*\mu_p \nu_p)(A_i) = a_p(i) \ (p \in P, i = 1, \dots, m),$
- (4)  $\{\varphi_p^{-1}\}_p$  is equi-continuous with respect to  $d|_M$ ,
- (5) (a) For any  $p \in P$ , "if  $(\mu_p \nu_p)(A_i) = a_p(i)$   $(i = 1, \dots, m)$ , then  $\varphi_p = id$ ",
  - (b) for any  $i \in \{1, \dots, m\}$ , "if  $(\mu_p \nu_p)(A_i) = a_p(i)$   $(p \in P)$ , then  $\varphi_p|_{A_i} = id|_{A_i}$   $(p \in P)$ ".

(6) if 
$$p \in P$$
 and  $\sum_{i=1}^{m} a_p(i) = (\mu_p - \nu_p)(M)$ , then  $((\varphi_p)_* \mu_p - \nu_p)(N) = 0$ .

The condition (#) on a(i) is necessary to achieve the condition (3). In the sequal we write as  $(\mu - \nu)(A_i) = a(i)$  or  $\varphi|_{A_i} = id|_{A_i}$  instead of  $(\mu_p - \nu_p)(A_i) = a_p(i)$   $(p \in P)$  or  $\varphi_p|_{A_i} = id|_{A_i}$   $(p \in P)$  (we regard them as the identity of functions in  $p \in P$ ).

#### 6. Realization of mass flow toward ends

### 6.1. Topological manifold-case.

Main Theorem 1.1 is a consequence of the following realization theorem.

**Theorem 6.1.** Suppose  $M^n$  is a noncompact connected separable metrizable n-manifold,  $\omega \in \mathcal{M}_g^{\partial}(M)$ ,  $\mu, \nu : P \to \mathcal{M}_g^{\partial}(M, \omega\text{-}cpt\text{-}reg)_{lim}$  and  $a : P \to V_{\omega}$  are continuous maps with  $(\mu_p - \nu_p)(M) = 0$   $(p \in P)$ . Then there exists a continuous map  $h : P \to \mathcal{H}_{\partial}(M, \omega\text{-}reg)_1$  such that

- (1)  $(h_p)_*\mu_p = \nu_p \ (p \in P),$
- (2) if  $p \in P$  and  $\mu_p = \nu_p$ , then  $h_p \in \mathcal{H}_{\partial}(M, \mu_p)_1$  and  $J_{h_p}^{\mu_p} = a_p$ ,
- (3) if  $p \in P$ ,  $\mu_p = \nu_p$  and  $a_p = 0$ , then  $h_p = id_M$ .

According to the usual strategy, the proof of Theorem 6.1 can be reduced to the PL-manifold case by the next mapping theorem. We use the following notations:  $I = [0, 1], I^n$  is the *n*-hold product of I and  $I_1 = \{(t, 1/2, \dots, 1/2, 1) \in I^n \mid t \in [1/3, 2/3]\}$ . m denotes the Lebesgue measure on  $I^n$ .

**Proposition 6.1.** ([4, Proposition 4.2]) There exists a compact 0-dimensional subset  $E \subset \partial I^n$  ( $E \subset I_1$  if  $n \geq 2$ ) and a continuous proper surjection  $\pi: I^n - E \to M$  which satisfies the following conditions:

- (i)  $U \equiv \pi(\operatorname{Int} I^n)$  is an open dense subset of  $\operatorname{Int} M$  and  $\pi|_{\operatorname{Int} I^n}: \operatorname{Int} I^n \to U$  is a homeomorphism.
- (ii)  $F \equiv \pi(\partial I^n E) = M U$  and  $\omega(F) = 0$ .
- (iii) (Since  $I^n$  is the end compactification of  $I^n E$ , the map  $\pi$  has the natural extension  $\overline{\pi}: I^n \to \overline{M}$ .) The restriction  $\overline{\pi}|_E: E \to E_M$  is a homeomorphism.
- (v)  $\widetilde{\omega} = \pi^* \omega$  is  $m|_{I^n E}$ -biregular.

# 6.2. PL-manifold case.

By Proposition 6.1 we may assume that  $M^n$  is a noncompact connected PL n-manifold,  $\omega \in \mathcal{M}_g^{\partial}(M)$  and  $\mathcal{H}_{\partial}^{\operatorname{PL}}(M) \subset \mathcal{H}(M; \omega\text{-reg})$ . Under this assumption Theorem 6.1 is proved in a series of lemmas. By  $\mathcal{N}(E_M)$  we denote the set of PL n-submanifolds of M of the form A = cl(M-N), where N is a compact, connected PL n-submanifold of M such that each  $C \in \mathcal{C}(A)$  is noncompact. Let d be a fixed metric on  $\overline{M}$ . For any neighborhood U of  $E_M$  in  $\overline{M}$  and any  $\varepsilon > 0$  there exists  $A \in \mathcal{N}(E_M)$  such that  $A \subset U$  and  $\operatorname{diam}_d C < \varepsilon$   $(C \in \mathcal{C}(A))$ .

The next statement follows from Lemma 5.4.

Lemma 6.1. Suppose  $A, B \in \mathcal{N}(E_M)$ ,  $B \subset \operatorname{Int}_M A$ , L = cl(M - A), N = cl(M - B), and  $C(A) = \{A_1, \dots, A_m\}$ . We assume that  $N_i = cl(A_i - B)$  is connected  $(i = 1, \dots, m)$  and  $(\mu_p - \nu_p)(A_i) = a_p(A_i)$   $(p \in P, i = 1, \dots, m)$ . Then there exists a continuous map  $\varphi : P \to \mathcal{H}^{\operatorname{PL},c}_{\partial \cup L}(M)_1^*$  such that

- (1)  $\varphi$  satisfies the condition (\*),
- (2)  $\varphi_p(A_i) = A_i \ (p \in P, \ i = 1, \dots, m),$

- (3) (a)  $((\varphi_p)_*\mu_p)(N_i) = \nu_p(N_i) \ (p \in P, i = 1, \dots, m),$ 
  - (b)  $(\varphi_{p*}\mu_p \nu_p)(B_j) = a_p(B_j)$  for each  $B_j \in \mathcal{C}(B)$ ,
- (4)  $\{\varphi_p^{-1}\}_{p\in P}$  is equi-continuous with respect to  $d|_M$ ,
- (5) (a) for any  $A_i \in \mathcal{C}(A)$  and  $p \in P$  "if  $(\mu_p \nu_p)(B_j) = a_p(B_j)$  for each  $B_j \in \mathcal{C}(B \cap A_i)$ , then  $\varphi_p|_{A_i} = id_{A_i}$ "
  - (b) for any  $B_j \in \mathcal{C}(B)$  "if  $(\mu_p \nu_p)(B_j) = a_p(B_j)$   $(p \in P)$ , then  $\varphi_p|_{B_j} = id_{B_j}$   $(p \in P)$ "

Let  $\mu^0 = \mu$ ,  $\nu^0 = \nu$ , and  $B^0 = M$ . By the assumption we have  $(\mu^0 - \nu^0)(B^0) = 0$ . By the repeated application of Lemma 6.1 we obtain the following sequence of maps.

**Lemma 6.2.** For  $k = 1, 2, \cdots$  there exist

$$(k)_A: A^k \in \mathcal{N}(E), \ \varphi^k: P \to \mathcal{H}^{\mathrm{PL,c}}_{\partial \cup N^{k-1}}(M)_1^*, \ \mu^k: P \to \mathcal{M}_g^{\partial}(M; \omega\text{-}cpt\text{-}reg)_{lim}$$
 such that

- (0)  $\varphi^k$  and  $\mu^k$  are continuous,
- (1) (a)  $A^k \subset \operatorname{Int}_M B^{k-1}$ ,  $N^{k-1} \equiv cl(M B^{k-1})$ ,
  - (b)  $L_j^k \equiv cl(B_j^{k-1} A^k)$  is connected  $(B_j^{k-1} \in \mathcal{C}(B^{k-1}))$ ,
  - (c) diam  $A_i^k \leq \frac{1}{2^k}$ , diam  $(\psi_p^{k-1} \cdots \psi_p^1)^{-1} (A_i^k) \leq \frac{1}{2^k} \ (A_i^k \in \mathcal{C}(A^k))$ ,
- (2)  $\varphi_n^k(B_i^{k-1}) = B_i^{k-1} (B_i^{k-1} \in \mathcal{C}(B^{k-1})),$
- (3) (a)  $\mu_p^k \equiv (\varphi_p^k)_* \mu_p^{k-1}$ , (b)  $\mu_p^k(L_j^k) = \nu_p^{k-1}(L_j^k)$ ,  $(\mu_p^k \nu_p^{k-1})(A_i^k) = a_p(A_i^k)$   $(A_i^k \in \mathcal{C}(A^k))$ ,
- (4)  $\{(\varphi_p^k)^{-1}\}_p$  is equi-continuous with respect to  $d|_M$ ,
- (5) (a) for any  $B_j^{k-1} \in \mathcal{C}(B^{k-1})$  and any  $p \in P$  "if  $(\mu_p^{k-1} \nu_p^{k-1})(A_i^k) = a_p(A_i^k)$   $(A_i^k \in \mathcal{C}(A^k \cap B_j^{k-1}))$ , then  $\varphi_p^k|_{B_j^{k-1}} = id_{B_j^{k-1}}$ ",
  - (b) for any  $A_i^k \in \mathcal{C}(A^k)$  "if  $(\mu_p^{k-1} \nu_p^{k-1})(A_i^k) = a_p(A_i^k)$   $(p \in P)$ , then  $\varphi_p^k|_{A_i^k} = id_{A_i^k}$   $(p \in P)$ ",

$$(k)_B: B^k \in \mathcal{N}(E), \ \psi^k: P \to \mathcal{H}^{\mathrm{PL,c}}_{\partial \cup L^k}(M)_1^*, \ \nu^k: P \to \mathcal{M}^{\partial}_g(M; \omega\text{-}cpt\text{-}reg)_{lim}$$
 such that

- (0)  $\psi^k$  and  $\nu^k$  are continuous,
- (1) (a)  $B^k \subset \operatorname{Int}_M A^k$ ,  $L^k \equiv cl(M A^k)$ ,
  - (b)  $N_i^k = cl(A_i^k B^k)$  is connected  $(A_i^k \in \mathcal{C}(A^k))$
  - (c) diam  $B_j^k \leq \frac{1}{2^k}$ , diam  $(\varphi_p^k \cdots \varphi_p^1)^{-1}(B_j^k) \leq \frac{1}{2^k}$   $(B_j^k \in \mathcal{C}(B^k))$ ,
- (2)  $\psi_p^k(A_i^k) = A_i^k \ (A_i^k \in \mathcal{C}(A^k)),$
- $\text{(3) (a) } \nu_p^k \equiv (\psi_p^k)_* \nu_p^{k-1}, \text{ (b) } \nu_p^k(N_i^k) = \mu_p^k(N_i^k), \ \ (\mu_p^k \nu_p^k)(B_j^k) = a(B_j^k) \ \ (B_j^k \in \mathcal{C}(B^k)),$

- (4)  $\{(\psi_p^k)^{-1}\}_p$  is equi-continuous with respect to  $d|_M$ ,
- (5) (a) for any  $A_i^k \in \mathcal{C}(A^k)$  and any  $p \in P$  "if  $(\mu_p^k - \nu_p^{k-1})(B_j^k) = a_p(B_j^k) \ (B_j^k \in \mathcal{C}(B^k \cap A_i^k))$ , then  $\psi_p^k|_{A_i^k} = id_{A_i^k}$ ",
  - (b) for any  $B_j^k \in \mathcal{C}(B^k)$  "if  $(\mu_p^k \nu_p^{k-1})(B_j^k) = a_p(B_j^k)$   $(p \in P)$ , then  $\psi_p^k|_{B_j^k} = id_{B_j^k}$   $(p \in P)$ ".

The next assertions follow from the conditions  $(k)_A$   $(0) \sim (5)$  and  $(k)_B$   $(0) \sim (5)$ .

# Lemma 6.3.

- (1) (i) For any  $p \in P$  the sequence  $\varphi_p^k \cdots \varphi_p^1$   $(k = 1, 2, \cdots)$  converges  $d|_{M}$ -uniformly to some  $\varphi_p$  in  $\mathcal{H}^{\operatorname{PL}}_{\partial}(M)_1$ .
  - (ii) The map  $\varphi: P \to \mathcal{H}^{\mathrm{PL}}_{\partial}(M)_1: p \mapsto \varphi_p$  is continuous.
  - (iii)  $\varphi_p^{-1}|_{N^k} = (\varphi_p^k \cdots \varphi_p^1)^{-1}|_{N^k}$  and  $((\varphi_p)_*\mu_p)|_{N^k} = \mu_p^k|_{N^k}$   $(k = 1, 2, \cdots)$ .
- (2) (i) For any  $p \in P$  the sequence  $\psi_p^k \cdots \psi_p^1$   $(k = 1, 2, \cdots)$  converges  $d|_{M}$ -uniformly to some  $\psi_p$  in  $\mathcal{H}^{PL}_{\partial}(M)_1$ .
  - (ii) The map  $\psi: P \to \mathcal{H}^{\operatorname{PL}}_{\partial}(M)_1: p \mapsto \psi_p$  is continuous.
  - (iii)  $\psi_p^{-1}|_{L^k} = (\psi_p^{k-1} \cdots \psi_p^1)^{-1}|_{L^k}$  and  $((\psi_p)_*\nu_p)|_{L^k} = \nu_p^{k-1}|_{L^k}$   $(k = 1, 2, \cdots)$ .
- (3) For any  $C = L_j^k \in \mathcal{C}(cl(B^{k-1} A^k))$  and  $N_i^k \in \mathcal{C}(cl(A^k B^k))$  we have  $((\varphi_p)_*\mu_p)(C) = ((\psi_p)_*\nu_p)(C)$   $(p \in P)$ .

The next lemma follows from Theorem 3.1.

**Lemma 6.4.** There exists a continuous map  $\chi: P \to \mathcal{H}_{\partial}(M, \omega\text{-reg})_1$  such that

- (i)  $(\chi \varphi)_* \mu = \psi_* \nu$
- (ii)  $\chi(C) = C$  for any  $C = L_j^k \in \mathcal{C}(cl(B^{k-1} A^k))$  and  $N_i^k \in \mathcal{C}(cl(A^k B^k))$
- (iii) if  $p \in P$  and  $(\varphi_p)_*\mu_p = (\psi_p)_*\nu_p$ , then  $\chi_p = id_M$ .

**Proof of Theorem 6.1.** The required map  $h: P \to \mathcal{H}_{\partial}(M, \omega\text{-reg})_1$  is defined by  $h_p = \psi_p^{-1}\chi_p\varphi_p$   $(p \in P)$ . This completes the proof of Theorem 6.1 and Theorem 1.1.

#### REFERENCES

- [1] S. R. Alpern and V. S. Prasad, Typical dynamics of volume-preserving homeomorphisms, Cambridge Tracts in Mathematics, Cambridge University Press, (2001).
- [2] R. Berlanga and D. B. A. Epstein, Measures on sigma-compact manifolds and their equivalence under homeomorphism, J. London Math. Soc. (2) 27 (1983) 63 74.
- [3] R. Berlanga, A mapping theorem for topological sigma-compact manifolds, Compositio Math., 63 (1987) 209 216.
- [4] R. Berlanga, Groups of measure-preserving homeomorphisms as deformation retracts, J. London Math. Soc. (2) 68 (2003) 241 - 254.
- [5] M. Brown, A mapping theorem for untriangulated manifolds, Topology of 3-manifolds and related topics (ed. M. K. Fort), Prentice Hall, Englewood Cliffs (1963) pp. 92 94.
- [6] A. Fathi, Structures of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. scient. Ec. Norm. Sup. (4) 13 (1980) 45 93.

- [7] J. Oxtoby and S. Ulam, Measure preserving homeomorphisms and metrical transitivity, Ann. of Math., 42 (1941) 874 920.
- [8] T. Yagasaki, Groups of measure-preserving homeomorphisms of noncompact 2-manifolds, to appear in Proceedings of 3rd Japan-Mexico Joint Meeting on Topology and its Applications (a special issue in Topology Appl.), arXiv math.GT/0507328.
- [9] T. Yagasaki, Measure-preserving homeomorphisms of noncompact manifolds and mass flow toward ends, arXiv math.GT/0512231.
- [10] T. Yagasaki, Groups of volume-preserving diffeomorphisms of noncompact manifolds and mass flow toward ends, preprint.

DIVISION OF MATHEMATICS, DEPARTMENT OF COMPREHENSIVE SCIENCE, KYOTO INSTITUTE OF TECHNOLOGY, MATSUGASAKI, SAKYOKU, KYOTO 606-8585, JAPAN *E-mail address*: yagasaki@kit.ac.jp