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1. INTRODUCTION

This article is concerned with groups of measure-preserving homeomorphisms of non-
compact topological manifolds. Suppose M is a connected n-manifold and w is a good
Radon measure of M with w(0M) = 0. Let H(M) denote the group of homeomorphisms
of M equipped with the compact-open topology, and by H(M;w) C H(M;w-end-reg) we

~ denote the subgroups consisting of w-preserving homeomorphisms and ‘w-end-biregular’
homeomorphisms of M. (When M is compact, the conditions related to ends are redun-
dant and are suppressed from the notations.) For any subgroup G of H(M), the symbol
Go denotes the connected component of idy, in G.

Relations of these groups are studied in {6, 2, 3, 4, 8]. When M is compact, A. Fathi
[6] showed that H(M;w) is a SDR (strong deformation retract) of H(M;w-reg) and that
H(M;w-reg) is HD (homotopy dense) in finite dimension in H#(M). In case n = 2, since
#H(M) is an ANR, this implies that H(M;w-reg) is HD in #(M) and H(M;w) is a SDR
of H(M). When M is non-compact, R. Berlanga [2, 3, 4] extended Fathi’s arguments and
showed that H(M;w) is a SDR of H(M;w-end-reg). In case n = 2, we have shown that
H(M;w-end-reg)o is HD in H (M), and thus H(M;w)o is a SDR of H (M), [8]. However,
we have no general results on relations between H(M;w-end-reg) and H(M) in dimension
n > 3.

A. Fathi [6] also studied the internal structure of #(M;w). When M is compact,
he defined a mass flow homomorphism 6 : Ho(M,w) — Hy(M,R) or 6 : Ho(M,w) —
H;(M,R)/T and studied the existence of a section of § and the perfectness of Kerf. In
this article we consider the non-compact case and study a mass flow homomorphism to-
ward ends [9]. Let Hg(M;w) denote the subgroup consisting of all A € H(M;w) which
fix the ends of M. There is a natural continuous homomorphism J : Hg(M;w) = V,,
‘which measures mass flow toward ends. This quantity has been introduced in [1] as the
end charge ¢, (h € Hg(M;w)), which are finitely additive signed measure on the ends of
M. We use the following presentation of this notion: If h € Hp(M;w) and C is a Borel
subset of M such that FrC is compact, then the mass transfered into C by h is counted

32



by Ji(C) = w(C — h(C)) — w(h(C) — C). The range V,, is the topological vector space of
functions J,, : C +— J,(C), which parametrize mass flow toward ends.

We use deformation of measures by engulfing isotopy in M and show that the mass flow
homomorphism J has a continuous (non-homomorphic) section.

Theorem 1.1. There ezists a continuous map s : V,, > Hs(M,w); such that Js = idy,
and s(0) = idy.

The topological group H z(M,w) acts continuously on V,, by h-a = Jy+a (h € Hg(M,w),
a € V,). The mass flow homomorphism J : Hg(M,w) — V,, coincides with the orbit map
at 0 € V,,. The existence of section for this orbit map and the contractibility of the base
space V,, implies the following consequences.

Corollary 1.1. (1) He(M;w) 2 KerJ x V.
(2) Ker J is a strong deformation retract of Hg(M;w).

In [10] we have obtained a version of Theorem 1.1 for smooth manifolds and volume-
preserving diffeomorphisms. In the succeeding sections we explain definition of the mass

flow homomorphism J toward ends (§§2-4) and give some details of arguments to deduce
Theorem 1.1 (§§5-6).

2. END COMPACTIFICATIONS

2.1. Conventions. Throughout the paper, X denotes a connected, locally connected,
locally compact, separable metrizable space, and the symbols O(X), F(X), K(X), and
C(X) denote the sets of open subsets, closed subsets, compact subsets, and connected
components of X respectively. When A is a subset of X, the symbols Frx A, clxA and
Intx A denote the frontier, closure and interior of A relative to X.

The symbol # 4(X) denotes the group of homeomorphiéms h of X onto itself with h|s =
id4, equipped with the compact-open topology. This group includes various subgroups.

¢(X) denotes the subgroup consisting of homeomorphisms with compact support. When
X is a polyhedron, HFL(X) denotes the subgroup of PL-homeomorphisms of X. For any
subgroup G of H(X), the symbols G, and G; denote the connected component and the
path-component of idy in G respectively. When G C H®(X), by Gi we denote the
subgroup of G, consisting of h € G which admits an isotopy k¢ € G (t € [0,1]) such that
ho = 1dx, h; = h and there exists K € K(X) with Supph, C K (¢ € [0,1]).

2.2. End compactifications. (cf.[4])

Suppose X is a noncompact, connected, locally connected, locally compact, separable
metrizable space. An end of X is a function e which assigns an e(K) € C(X — K) to
each K € K(X) such that e(K;) D e(K>) if K3 C K,. The set of ends of X is denoted
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by E = Ex. The end compactification of X is the space X = X U E equipped with the
topology defined by the following conditions:

(i) X is an open subspace of X,

(ii) the fundamental open neighborhoods of e € E are given by

N(e,K)=e(K) U {¢ € E|€(K) =e(K)} (K € K(X)).

Then, X is a connected, locally connected, compact, metrizable space, X is a dense open
subset of X and E is a compact 0-dimensional subset of X. We fix a metric d on X. For
any € > 0 there exists a neighborhood U of E in X such that diam;C < ¢ (C € C(U)).

Consider the family § = §(X) = {C C X | Frx C : compact}. For each C € S we set

C =CUEg, Ec={e€ Ex | e(K) C C for some K € K(X)}.
Then, E¢ is open and closed in Ex and C is a neighborhood of E¢ in X.

Lemma 2.1. Let C, D € §(X).
(1) (1) CuDe S(X) and Ecup = Ec U Ep.
(ii) CNnDe S(X) and Ecnp = Ec N Ep.
(i) X — C € S(X) and Ex_¢c = Ex — E¢.
(2) (1) Ec C Ep iff C — D is relatively compact in X (i.e., has the compact closure
inX).
(i) Ec = Ep iff the symmetric difference CAD = (C — D)U (D — C) is relatively
compact in X.

Each h € H(X) has a unique extension h € H(X). The map H(X) > H(X): k=&
is a continuous group homomorphism. We set Haug(X) = {h € Ha(X) | hlg = idg}.

Then Hauve(X)o = Ha(X)o, and if C € S(X) and h € Hg(X), then h(C) € S(X) and
Eh(C) = FE¢.

3. FUNDAMENTAL FACTS ON RADON MEASURES

Next we recall general facts on spaces of Radon measures cf.[4, 6]. Suppose X is a
connected, locally connected, locally compact, separable metrizable space.

3.1. Spaces of Radon measures.

Let B(X) denote the o-algebra of Borel subsets of X. A Radon measure on X is a
measure g on the measurable space (X, B(X)) such that u(K) < oo for any compact subset
K of X. Let M(X) denote the set of Radon measures on X. We say that 4 € M(X) is
good if p(p) = 0 for any point p € X and p(U) > 0 for any nonempty open subset U of X.
For A € B(X) let M2 (X) denote the set of good Radon measures p on X with p(4) = 0.
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The weak topology w on M(X) is the weakest topology such that the function

Qo M(X)—>R: <I>f(u)=/deu

is continuous for any continuous function f: X — R with compact support. The notation
M(X),, denotes the space M(X) equipped with the weak topology w.

For p € M(X) and A € B(X) the restriction u|4 € M(A) is defined by (u]4)(B) = u(B)
(B € B(A)). For any A € F(X) the restriction map MF4(X), = M(A), : u > ulais
continuous, and for any K € K(X) the map MF¥(X), = R : p+— p(K) is continuous
([4, Lemma 2.2)).

3.2. Action of homeomorphism groups.
Suppose A € B(X) and w € M(X).

Definition 3.1. p € M(X) is said to be
(i) w-biregular if u and w have same null sets (i.e., u(B) = 0 iff w(B) = 0 for any
B € B(X)),
(i) w-mass-biregular if u is w-biregular and p(X) = w(X),
(iii) w-cpt-biregular if u is w-biregular and p|x_x = w|x-x for some K € K(X).
The corresponding subspaces are denoted by the following symbols respectively:
M(X,w-reg), M(X,w-mass-reg), M(X,w-cpt-reg).
Definition 3.2. h € H(X) is said to be
(i) w-preserving if hhw =w (i.e., w(h(B)) = w(B) for any B € B(X)),
(ii) w-biregular if h,w and w have the same null sets
| (i.e., w(h(B)) = 0 iff w(B) = 0 for any B € B(X)) ([6]).
The corresponding subgroups are denoted by the following symbols:

H(X;w) = {h € H(X) | h : w-preserving}, H(X;w-reg) = {h € H(X) | h: w-biregular}.

The group #(X) acts continuously on M(X)y by h-p = hop (h € H(X), p € M(X)).
The orbit map at w € M(X) is defined by 7, : H(X) - M(X), 7,(h) = huw. The
subgroup H(X;w) coincides with the stabilizer of w under this action.

Suppose M is a compact connected n-manifold. The von Neumann-Oxtoby-Ulam the-
orem [7] asserts that if y,v € MS(M) and u(M) = v(M), then there exists h € Ha(M)o
such that h,u = v. A.Fathi [6] extended this theorem to a parametrized version.

Theorem 3.1. Suppose p,v : P — MS(M;w-reg), are continuous maps with (M) =
V(M) (p € P). Then there ezists a continuous map h : P — Ha(M;w-reg); such that
(hp)sttp =, (p € P) and if p € P and p, = vy, then hy = idy.

R. Berlanga [4] obtained a similar theorem in the case that M is noncompact.
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3.3. Spaces of Radon measures with direct limit topology.

Suppose A € B(X) and w € M (X). Let B,(X) = {C € B(X) | w(Frx C) = 0}
and F,(X) = F(X) N B,(X). For p,v € MA(X,w-cpt-reg) and C € B(X) we define
(b —v)(C) €eR by

(b =v)(C) = (p-v)(CNK), where K is any compact subset of X such that u|x_x =

v|x-k-
For the sake of notational simplicity, we put M = M;‘(X ,w-cpt-reg) (as a set). Let
C € B,(X). One can see that the function My, x My = R : (y,v) = (p — v)(C) is not
continuous (if X is noncompact). This forces us to introduce the direct limit topology lim
instead of the weak topology w (cf. [4, p244]). For each K € X(X) consider the subspace
Mgw = {u € M, ‘ plx-x = wlx-x} of My. The family {Mxk}kex(x) is a closed
cover of M,, (cf.[4, Lemma 3.1}). The topology 4m on M is the finest topology on M
such that the inclusion ix : Mg, C M is continuous for each K € K(X). The space M
equipped with this topology is denoted by My, = M;‘(X , w-cpt-reg) ;im. Each Mk, is a
closed subspace of M, and a map f : My, — Z is continuous iff the composition fix
is continuous for each K € K(X).

Lemma 3.1. (1) Suppose u,v: P — MA(X w-cpt-reg)im are continuous maps and C €
B.(X). Then the map P = R : p— (u, — 1)(C) is continuous.

(2) Suppose F € F,(X) and F is regular closed (i.e., F = clU for some U € 0(X)).
Then the restriction map v : M2 (X, w-cpt-reg)m — M‘;”F (F,w|p-cpt-reg)iim : (1) = pl5
18 continuous.

Definition 3.3. Suppose G is a subgroup of H(X). Consider the following condition (*)
onamap h: P —G.
(*)o h is continuous.
(¥)1 For any p € P there exists an open neighborhood U of p in P and K € K(X) such
that A(U) C Hx-x(X).
(*)2 There exists a locally compact T, space Q and continuous maps f : P — Q,
g: @ — G such that h=gf.

Since G is a topological group, if h, k : P — G satisfy the condition (*), then the inverse
hl:P—G: (h'), = (hy)~! and the composition kh : P — G : (kh), = k,h, satisfy
the same condition.

Lemma 3.2. Suppose p,v: P — MQ(X ,w-cpt-reg)im are continuous maps and h: P —
HS (X, w-reg) satisies the condition ().
(1) For any C € B,(X) the map ¢ : P = R : ¢(p) = ((hp)sttp — 1,)(C) is continuous.
(2) The map ¢ : P — M} X, w-cpt-reg)iim : ¥(p) = (hp)«pip is continuous.

36



37

4. MASS FLOW HOMOMORPHISM TOWARD ENDS

Suppose X is a connected, locally connected, locally compact separable, metrizable space
and p € M(X). Let S, = Sp(X) = S(X) N B(X).

Definition 4.1. For h € Hg(X, u) we define a function J, = J} : Sy — R as follows:
Since h|g = id, for C € S, it follows that E¢ = Ejpc) and that CAh(C) = (C — h(C)) U
(h(C)—C) is relatively compact in X (Lemma 2.1 (2)(ii)). Thus u(C—h(C)), u(h(C)-C) <
oo and we can set J,(C) = u(C — h(C)) — u(h(C) - C).
Lemma 4.1. Let C,D € S;,.
(1) () If D ¢ CNA(C) and clx(C — D) is compact, then Jo(C) = p(C — D)~ u(h(C)—
D). '
(ii) If L € K(X) and CUL = h(C) UL, then J5(C) = u(CN L) — u(h(C) N L).
(2) If clx(CA D) is compact (i.e. Ec = Ep), then Jy(C) = Jn(D).
(3) FCN D =0, then Ju(C U D) = Ju(C) + Ju(D).
(4) If u(C) < o0, then Jn(C) = 0.
(5) h(X) =0.

This lemma suggests the next definition of the mass flow homomorphism J.
Definition 4.2.

(1) Vu=Vu(X) ={a: 8 = R | (*)1, (¥)2, (¥)3, (*)4}
(*);1 C,D € S and clx(CAD) is compact (i.e., Ec = Ep), then a(C) = a(D).
(x)o C,D € 8 and C N D =, then a(C U D) = a(C) + a(D).
(¥); If C € Sy and u(C) < oo, then a(C) = 0.
(*)e a(X) =0

(2) J:He(X,p) >V, h— Jh.

For a,b € V, and o, 8 € R, we define aa + 8b € V,, by (aa + 8b)(C) = aa(C) + Bb(C)
(C € S). Then V,, is a real vector space under these addition and scalar product. We equip
V. the product topology, that is, the topology induced by the projections ¢ : V, = R
: mo(a) = a(C) (C € &). Thus, amap f:Y — V, is continuous iff m¢f : Y — R is
continuous for each C' € S,. With this topology V,, is a topological vector space.

Lemma 4.2. J is a continuous group homomorphism.

5. DEFORMATION OF MEASURES BY ENGULFING ISOTOPY

Throughout this section we suppose M" is a connected separable metrizable PL n-
manifold, d is any metric on the end compactification M, and w € Mz(M )- As a con-
sistency condition between the PL-structure of M and the measure w, we assume that



HEL(M) C H(M;w-reg). It follows that w(K) = 0 for any subpolyhedron K of M with
dimK <n-—1.

5.1. Deformation of measures by engulfing isotopy.
Consider a decomposition M = L Ug N such that

(i) L and N are connected PL n-submanifolds of M with S = LNN = Fry L = Fry N,
(ii) S is a compact proper PL (n — 1)-submanifold of M.

Lemma 5.1. There ezists a continuous map f : (—00,00) — Hy (M)} such that

i) (@) fo=1id, (b) fs(L) G fiL) (s <),
(c) there exists a subpolyhedron F of M such that dimF <n—1, 8M C F, and

- for any K € K(M — F) there erist —00 < s < t < oo with K C fi(L) — f,(L),
(i) f satisfies the condition (x), .
(i) {fe}-coct<oo 18 equi-continuous with respect to d|ps.

This engulfing isotopy f; can be used to deform measures. Let h; = f;"'. Then, for any
W E Mg(M, w-reg) the function (—o0,00) — (—p(L), u(N)) : t — ((he)spt — p)(L) is a
monotonically increasing homeomorphism. Consider the map

X : MM, w-cpt-reg)iim” X R = R: A, v, 1) = ((he)s — v)(L).

By Lemma 3.2 (1) X is continuous. Since ((he)ups—v)(L) = ((he)up — p)(L) + (u—v)(L),
for any p,v € MZ(M,w-cpt-reg), the function A(u,v,*) : R = (—pu(L), u(N))+ (u—v)(L)
is a monotonically increasing homeomorphism. When p(M) < oo, we have that a €

(=p(L), u(N)) + (u — v)(L) iff 0 < a + v(L) < u(M). We need the inverse of the above
homeomorphism.

Definition 5.1. We define a map ¢: V — R as follows:
1) V = V2(M,w-cpt-reg)sm
= {(1.0) € MO, wmcptoreg)in® x R | @ € (<L), s(V)) + (1~ )(D)}
(2) t:V-=R: t(u,v,a) = A(u,v,*x)"(a) (e, t=t(p,v,a)iff a = A, v,1))
Then (i) ¢ : V — R is continuous, and (ii) (x — v)(L) = a iff t(u,v,a) = 0.
Lemma 5.2. The map H : V — Hp" (M)}, Hupa) = he(up.a) has the following properties:
(i) H satisfies the condition (x).
(il) (Hupa))ett: V = ME(M, w-cpt-reg)im : (1, v,a) = (H(w,v,a)).p is continuous.

(111) (a) ((H(p,u,a))*ll‘ - V)(L) =aq, (b) (/‘ - V)(L) =a zﬁ H(u,u,a.) =1d.
(iv) {H{upa) " Humaev i equi-continuous with respect to d|a.
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Lemma 5.3. Suppose p,v : P — Mg(M,w—cpt—reg)um and a : P — R are continuous
maps such that a, € (—up(L), pp(N)) + (up — vp)(L) (p € P). Then the map h : P —
’HgL’C(M yw-reg)1, hp = H, ., q,) has the following properties:

(1) h satisfies the condition (*),

(ii) The map h,pu: P — MS(M,w-cpt-reg)h-m s p > (hp)uptp 28 continuous.

(iii) (a) ((hp)xttp — vp)(L) = ap, (b) (1p — ¥p)(L) = ap iff by = 1d.

(iv) {h;'}, is equi-continuous with respect to d|u.

5.2. Fundamental deformation lemma.
Consider a decomposition M = NUA, A= A;U---UA,, such that ,
(i) N is a connected PL n-submanifold of M such that Frp N is a compact PL (n—1)-
submanifold of M.
(ii) Ay,---,An € C(cl(M — N)).
Since FrpsN is assumed to be compact, we have Eyy = ENU E4, U~ U Ey .
Suppose u,v : P — MS(M, w-cpt-reg)m and a(i) : P — R (i = 1,--- ,m) are continu-
ous maps which satisfies the following conditions: for any p € P

(#h ap(8) > —vp(Ai) = —pp(Ad) + (p — 1) (A)) (i =1,---,m),
(#)2 Zap(i) < (pp = vp) (M) + vp(N).

i=1
Lemma 5.4. There exists a map @ : P — Hy°(M)} such that
(1) ¢ satisfies the condition (x),
(2) pupp: P> Mg(M , W-cpt-req) im 18 continuous,
(3) ((@p)sbtr — 1p)(Ai) = ap(3) (PE Pi=1,--- ,m),
(4) {w;'}p is equi-continuous with respect to d|u,
(5) (a) For anyp € P, “if (1 — vp)(Ai) = ap(?) (i =1,--- ,m), then p, =1id”,
(b) for any i € {1,---,m}, “Uf (up — 1p)(4i) = a,(i) (p € P), then ppla; = 1d|4,
(pe P)”,
m
(6) ifp€ P and Zap(i) = (kp — vp)(M), then ((p)sttp — vp)(N) = 0.
i=1
The condition (#) on a(i) is necessary to achieve the condition (3). In the sequal we
write as (1 — v)(A;) = a(4) or p|a, = id|a, instead of (up — 1p)(Ai) = ap(é) (p € P) or
©pla; = 1d|a; (p € P) (we regard them as the identity of functions in p € P).

6. REALIZATION OF MASS FLOW TOWARD ENDS

6.1. Topological manifold-case.

Main Theorem 1.1 is a consequence of the following realization theorem.
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Theorem 6.1. Suppose M™ is a noncompact connected separable metrizable n-manifold,
wE Mg(M), u,v: P — Mg(M,w—cpt—reg)lim and a : P =V, are continuous maps with
(o — vp)(M) = 0 (p € P). Then there ezists a continuous map h : P — Ha(M,w-reg);
such that

(1) (hp)uttip =1, (p € P),
(2) if p € P and pp = vy, then hy, € Ha(M, pp)1 and J#: = a,,
(3) if pe P, uy, = v, and ap, =0, then hy = idy.

According to the usual stfategy, the proof of Theorem 6.1 can be reduced to the PL-
manifold case by the next mapping theorem. We use the following notations: I =[0,1], I"
is the n-hold product of I and I = {(¢,1/2,---,1/2,1) € I" | t € [1/3,2/3]}. m denotes
the Lebesgue measure on I™. ’

Proposition 6.1. ([4, Proposition 4.2]) There ezists a compact 0-dimensional subset E C
oI" (E C I if n > 2) and a continuous proper surjection w : I™ — E — M which satisfies
the following conditions: |
(i) U = n(IntI") is an open dense subset of Int M and 7|t~ : IntI™* — U is a
homeomorphism.
(i) F=r(@I"-E)=M-U and w(F) =0.
(iii) (Since I™ is the end compactification of I" — E, the map 7 has the natural extension
7 : I" = M.) The restriction 7| : E — Ey is a homeomorphism.
(v) @ = m*w is m|;a_g-biregular. |

6.2. PL-manifold case.

By Proposition 6.1 we may assume that M™ is a noncompact connected PL n-manifold,
w € MZ(M) and HZH(M) C H(M;w-reg). Under this assumption Theorem 6.1 is proved
in a series of lemmas. By N (E)) we denote the set of PL n-submanifolds of M of the
form A = c¢l(M — N), where N is a compact, connected PL n-submanifold of M such that
each C € C(A) is noncompact. Let d be a fixed metric on M. For any neighborhood U
of Ey in M and any € > 0 there exists A € N(E)s) such that A C U and diam4C < ¢
(C € C(A)).

The next statement follows from Lemma 5.4.

Lemma 6.1. Suppose A,B € N(Ey), B C Intyy A, L = cl(M — A), N = cl(M - B),
and C(A) = {A1, -+ ,An}. We assume that N; = cl(A; — B) is connected (i = 1,--- ,m)
and (up — vp)(A;i) = ap(Ai) (p € P, i =1,---,m). Then there ezists a continuous map
@ : P — Haif (M)} such that

(1) ¢ satisfies the condition (x),

(2) ‘Pp(Ai) = A; (pE P’ i=1,-- ,M),
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(3) (@) ((2p)eip) (V) = 5p(N) (PE P, i =1, ,m),
(b) (Ppetty — )(B5) = ap(By) for cach B € C(B),
(4) {97 }pep is equi-continuous with respect to d|u,
(5) (a) for any A; € C(A) and p € P “if (up — vp)(B;) = ap(B;) for each B; €
C(BNA;), then @,|a, =ida,”
(b) for any B; € C(B) “if (kp — vp)(B;) = ap(B;) (p € P), then |, = idp,
(peP)”

Let u® = p, v° = v, and B® = M. By the assumption we have (u® — 1°)(B%) = 0. By
the repeated application of Lemma 6.1 we obtain the following sequence of maps.

Lemma 6.2. For k=1,2,--- there exist
(k)a : A* € N(E), o : P > HLL8, (M), p*: P — ME(M;w-cpt-reg)im
such that

(0) ¢* and u* are continuous,
() (&) 4 C Intyg B, NE-L = cl(M — B,

(b) Lk = cl(Bf ™' — A¥) is connected (Bf™' € C(BF1)),

1 .. _ 1

(c) dlamAic < 5 diam (" - - - 7)1 (A4f) < 5 (AF € c(AY)),
) GBI = B (B e c(BHY),
(3) (a) py = (@f)epy™, (b) py(Lf) = 572 (LF), (up — vy *)(AF) = ap(AF) (AF €

C(4%)),
(4) {(go’;)_l} is equi-continuous with respect to d|,

14
(5) (a) for any Bf™* € C(B*!) and anyp € P
“if (uh=t — vE1)(AF) = ap(AF) (A} € C(A¥N B™)), then 80’;.'3;-1 = idgs-1”,
(b) for any A¥ € C(A¥)
i (U — VAT (AF) = 0, (AF) (p € P), then ¢k {Au idg (p € P)”,
(k)p : BX€ N(E), ¢*: P - H -0 (M);, vF: P — M2(M;w-cpt-reg) im
such that

(0) ¥* and v* are continuous,
(1) (a) B* C Inty A%, LF = cl(M — A%),

(b) N¥ = cl(A¥ — B*) is connected (AF € C(Ak))

1 .

(c) diam B’c L diam (gog : S p)” (Bk) < Eﬂ- (B¥ e C(B*)),

(2) ¥y(Af) = A (Af € C(4%),

(3) (@) v = ()™, (b) vp(NF) = up(NF), (uf—v;)(Bf) = a(B5) (B € C(BY)),
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(4) {(zb’“)_l} is equz’-continuous with respect to d|y,
(5) (a) for any A¥ € C(AF) and anype P

“if (uy — v; 7" )(BS) = ap(B}) (B} € C(B* N Af)), then | s = ide”,
(b) for any B'c € C(B¥)
“if (y — v;7')(B}) = ap(B}) (p € P), then y5|p = idps (p € P)”.

The next assertions follow from the conditions (k)4 (0) ~ (5) and (k)5 (0) ~ (5).
Lemma 6.3.

(1) (i) For any p € P the sequence ¢k - - @, (k=1,2,---) converges d|r-uniformly
to some @, in HEL(M);.
(ii) The map ¢ : P — HEL(M); : p > ¢, is continuous.
(i) 5 |ve = (5 -+ 0p) " e and ((p)stp)lnr = piglwe (k=1,2,--).
(2) (i) For any p € P the sequence Y5 -y} (k =1,2,---) converges d|p-uniformly
to some ¢, in HEL(M);.
(ii) The map ¢ : P — HEL (M), : p— ¢, is continuous.
(ii) 5 pe = (WF~1 - 0p) e and ((p)avp)|e = A (K=1,2,--+).
(3) For anyC = L% € C(cl(B*~'—A*)) and Nf € C(cl(A*—B*)) we have ((¢p).tp)(C) =
((%p)s15)(C) (p € P).

The next lemma follows from Theorem 3.1.

Lemma 6.4. There exists a continuous map x : P — Ha(M,w-req), such that

(i) (x@)sk = v
(i) x(C)=C for any C = Lk € C(cl(B*™! — A¥)) and N} € C(cl(A* — B*))
(i) if p € P and (pp)upip = ("f’p) Vp, then xp = idy.

Proof of Theorem 6.1. The required map h : P = Hs(M,w-reg), is defined by h, =
(/ “Xp¢p (p € P). This completes the proof of Theorem 6.1 and Theorem 1.1. O
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