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The purpose of this note is to prove that the Kervaire spheres $\Sigma_{K}^{4k+1}$ where
$4k+4$ is not a power of 2, does not admit any free $S^{1}$-action if $k$ is not divisible
by 4. Recall that the Kervaire sphere $\Sigma_{K}^{4k+1}$ is a homotopy sphere that bounds
a paralelizable $4k+2$ manifold $W^{4k+2}$ with Kervaire invariant $c(W)$ one. The
explicit description of the Kervaire sphere is well known. For example, it can be
expressed as the subset of $\mathbb{C}^{2k+2}$ defined by the system of equations

$z_{1}^{d}+z_{2}^{2}.+\cdots+z_{2k+2}^{2}=0$

$|z_{1}|^{2}+|z_{2}|^{2}+\cdots+|z_{2k+2}|^{2}=1$ ,

where $d$ is any positive integer such that $d\equiv\pm 3$ mod 8. Homotopy spheres
that bound parallelizable manifolds are considered to be “least” exotic among
exotic spheres. From the standpoint of finite group actions, it is known that
every homotopy sphere that bounds a parallelizable manifold admits a free cyclic
group action of arbitrary order. As for compact Lie group actions, every odd
dimensional standard spheres $S^{2n+1}$ has free $S^{1}$-actions and it may seem natural
to expect that Kervaire spheres also admit free $S^{1}$ -actions. But the case is quite
different as to the free action of Lie groups. More than thirty years ago, Brumfiel
showed that -dimensional Kervaire sphere does not have any free $S^{1}$-actions
([1]). Since then, this problem has been left untouched. Brumfiel’s calculation
is essentially the calculation of index surgery obstruction and the relation given
by the vanishing of the surgery obstruction is quite complicated. So it seemed
quite hard to draw any meaningful conclusion by extending his result from furthe
calculations.

In the workshop in 2004 at RIMS, we showed that every Kervaire sphere below
dimension 130 does not admit any free $S^{1}$ actions $\mathrm{b}\mathrm{a}s$ed on computer calculation.
However that was only an experiment and this time for the first time, we have
obtained a partial general result on this problem.

Our main result is the following:

Theorem. The Kervaire sphere of dimension $4k+1$ , where $k+1$ is not a power
of 2, does not any free $S^{1}$-action if $k$ is not divisible by 4.

We shall always assume that $k$ is a positive integer such that $k+1$ is not a
power of two. Under this assumption, it is known that the Kervaire sphere $\Sigma_{K}^{4k+1}$

is not diffeomorphic to the standard sphere $S^{4k+1}$ .

1. SURGERY OBSTRUCTION
We shall translate the statement concerning group actions to the one about

surgery obstructions.
Lemma 1. The following two statements are equivalent.
(a) The Kervaire sphere $\Sigma_{K}^{4k+1}$ does not admit any free $S^{1}$-action.
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(b) If the normal map

$\nu_{M}$

$rightarrow b$
$\xi$

(1) $\downarrow$ $\downarrow$

$hf^{4k+2}arrow f\mathbb{C}P(2k+1)$

has zero 4$k$-dimensional surgery obstruction $s_{4k}=0$ for the surgery data
$f|f^{-1}(\mathbb{C}P(2k)):f^{-1}(\mathbb{C}P(2k))arrow \mathbb{C}P(2k)$

obtained by restriction to the codimension 2 subspace, then the $(4k+2)$-dimensional
surgery obstruction $s_{4k+2}$ of $f$ vanishes.
Proof. Let us prove that (a) implies (b). Suppose there exists a normal map $f$ :
$\mathrm{A}’I^{4k+2}arrow \mathbb{C}P(2k+1)$ such that the surgery obstruction $s_{4k+2}$ of $f$ is nonzero and
the restricted surgery problem to $\mathbb{C}P(2k)$ has zero surgery obstruction $s_{4k}=0$ .
Then we can perform surgery on $f^{-1}(\mathbb{C}P(2k))$ and within the normal cobor-
dism class we may assume that $X=f^{-1}(\mathbb{C}P(2k))arrow \mathbb{C}P(2k)$ is a homo-
topy equivalence. The tubular neighborhood $N$ of $X$ is homotopy equivalent
to $\mathbb{C}P(2k+1)_{0}=\mathbb{C}P(2k+1)-\mathrm{i}\mathrm{n}\mathrm{t}D^{4k+2}$ and its boundary $\partial N$ is homotopy
equivalent to $S^{4k+1}$ . But the remaining part $W=M-\mathrm{i}\mathrm{n}\mathrm{t}(N)$ is a parallelizable
manifold and its surgery obstruction for the normal map $Warrow D^{4k+2}\mathrm{r}\mathrm{e}\mathrm{l}$ . $\partial W$

is nonzero. Therefore $W$ has nonzero Kervaire obstruction and its boundary
$\partial W=\partial N$ is the Kervaire sphere. Since $\partial N$ is the total space of an $S^{1}$-bundle,
this implies that the Kervaire sphere admits a free $S^{1}$ -action.

Conversely, suppose that (b) holds, but (a) does not hold. If the Kervaire
sphere $\Sigma_{K}^{4k+1}$ admits a free $S^{1}$-action, the quotient space of the $S^{1}$-action $X^{4k}=$

$\Sigma^{4k+1}/S^{1}$ is homotopy equivalent to the complex projective space $\mathbb{C}P(2k)$ and
the associated $D^{2}$-bundle $N^{4k+2}=(\Sigma_{K}^{4k+1}\cross D^{2})/S^{1}$ is homotopy equivalent to
$\mathbb{C}P(2k+1)_{0}=(S^{4k+1}\cross D^{2})/S^{1}$ where the $S^{1}\subset \mathbb{C}$ acts on $S^{4k+1}\subset \mathbb{C}^{2k+1}$

and on $D^{2}\subset \mathbb{C}$ by complex number multiplication. Let $W^{4k+2}$ be a smooth
parallelizable manifold with $\partial W=\Sigma_{K}^{4\mathrm{k}+1}$ and Kervaire invariant $\mathrm{c}(W)=1$ . Then
by gluing $N$ and $W$ along the common boundary $\Sigma_{K}$ , we obtain a normal map
$f$ : $M^{4k+2}=N \bigcup_{\Sigma_{K}}Warrow \mathbb{C}P(2k+1)$ with an appropriate vector bundle, and
its surgery obstruction $s_{4k+2}$ is equal to $c(\mathrm{t}’V)=1$ . Hence we have a normal map
$f$ with target space $\mathbb{C}P(2k+1)$ with nonzero Kervaire surgery obstruction, but
the codimension 2 surgery problem obtained by restricting the target manifold to
$\mathbb{C}P(2k)$ has zero surgery obstruction $s_{4k}=0$ , since $f|X^{4k}$ : $X^{4k}arrow \mathbb{C}P(2k)$ is a
homotopy equivalence. This contradicts the assumption (b). This completes the
proof of Lemma 1.

Our objective of this note is to show that the statement (b) in Lemma 1 is
true. To do so, we must deal with all possible vector bundles that appear in (1).
We point out the following four it$e\mathrm{m}\mathrm{s}$ that needs consideration:

Bundle data: The stable bundle difference $\zeta=\nu_{\mathrm{C}P(2k+1)}-\xi$ is fiber homo-
topically trivial, namely it belongs to the kernel of the J-homomorphism
$J$ : $\overline{KO}(\mathbb{C}P(2k+1))arrow\tilde{J}(\mathbb{C}P(2k+1))$ . The generators of the kernel
can be expressed by Adams operations in $\mathrm{K}\mathrm{O}$-theory. The solution of the
Adams conjecture imply that 2-local generators are given by the images
of $\psi_{\mathrm{R}}^{3}-1$ $([5]\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{m} 11.4.1)$ .
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The surgery obstruction $s_{4k}$ in dimension $4k$ : In dimension $4k$ , the
surgery obstruction is given by the ind$e\mathrm{x}$ obstruction, which can be com-
puted using Hirzebruch’s $L$ classes. However, the exact form of the ob-
struction gets complicat$e\mathrm{d}$ and requires simplified treatment.

Surgery obstruction $s_{4k+2}$ in dimension $4k+2$ : The surgery obstruc-
tion $s_{4k+2}$ in dimension $4k+2$ can be dealt with by the results of Stolz$([4])$

or $[2],[3]$ . In fact, the obstruction $s_{4k+2}$ is equal to the two dinensional ob-
struction $s_{2}$ for the surgery data $s_{2}$ , which is essentially the 2-dimensional
Kervaire class $K_{2}$ .

Relation of $K_{2}$ and the first Pontrjagin class $p_{1}$ : From the result orig-
inally due to Sullivan, the square of $K_{2}$ for the bundle data $\zeta$ is equal to
$p_{1}(\zeta)/8$ mod 2 (see [6], $14\mathrm{C}$). This fact gives the bridge connecting inte-
gral index obstruction and the mod 2 Kervaire obstruction.

2. INDEX OBSTRUCTION IN DIMENSION $4k$

The kernel of the 2-local $J$-homomorphism $J:\overline{KO}(\mathbb{C}P(2k+1))arrow\overline{J}(\mathbb{C}P(2k+$

$1))$ is generated by Image$(\psi_{\mathrm{R}}^{3}-1)$ . The additive generators of $\overline{KO}(\mathbb{C}P(2k+1))$

are given by $\omega^{j}(1\leq j\leq k+1)$ where $\omega$ is the realification of the complex virtual
vector bundle $\eta_{\mathbb{C}}-1_{\mathbb{C}}$ . The Adams operation $\dot{\psi}_{\mathrm{R}}$ on $\omega$ is given by the formula

(2) $\dot{\psi}_{\mathrm{R}}(\omega)=T_{j}(\omega)$

where $T_{j}(z)$ is a polynomial of degree $j$ characterized by

(3) $T_{j}(t+t^{-1}-2)=\dot{\rho}+t^{-j}-2$ .
Since the coefficient of $z^{j}$ in $T_{j}(z)$ is one, we may take $T_{j}(\omega)$ $(1\leq j\leq k+1)$

as generators of $\overline{KO}(\mathbb{C}P(2k+1))$ . However, when restricted on $\mathbb{C}P(2k)$ , we
have $\omega^{\mathrm{k}*1}=0$ and we may safely discard $\omega^{k+1}$ in the actual computation. In our
argument, we have only to know the 2-local kernel of the $J$-map $J$ : $\overline{KO}(\mathbb{C}P(2k+$

$1))arrow\overline{J}(\mathbb{C}P(2k+1))$ . The 2-local generators of the $\mathrm{k}e$rnel of $J$ are
(4) $\zeta_{j}=(\psi_{\mathrm{R}}^{3}-1)\dot{\psi}_{\mathbb{R}}(\omega)$ $(j=1,2, \ldots, k)$

and any element in the 2-local kernel of the $J$-homomorphism has the form

(5) $\zeta=\sum_{j=1}^{k}m_{j}\zeta_{j}$

where $m_{j}$ are integers.
The surgery obstruction $s_{4k}$ of the surgery data (1) when restricted on $\mathbb{C}P(2k)$

is given by
(6) $8s_{4k}=(\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(M)-\mathrm{I}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{x}(\mathbb{C}P(2k)))=((\mathcal{L}(\zeta)-1)\mathcal{L}(\mathbb{C}P(2k)))[\mathbb{C}P(2k)]$

where $\mathcal{L}$ is the multiplicative class defined by the power series

(7) $h(x)= \frac{x}{\tanh x}=1+\sum_{i\geq 1}\frac{(-1)^{i+1}2^{2i}B_{\mathfrak{i}}}{(2i)!}x^{2i}$

where $B_{i}$ is the i-th Bernoulli number. Remark that all the coefficients of $h(x)$

belong to $\mathbb{Z}_{(2)}$ the rational numbers with odd denominator because all the de-
nominators of Bernoulli numbers are even but not divisible by four. If the total
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Pontrjagin class of a bundle $\xi$ is given by $p( \xi)=\prod_{i}(1+x_{i}^{2}),$ $\mathcal{L}(\xi)$ is given by
$\prod_{i}h(x_{i})$ and when $JVI$ is a manifold, we define $\mathcal{L}(M)=\mathcal{L}(\tau_{\mathrm{A}I})$ .

It is not difficult to show that the total Pontrjagin class of $\dot{\psi}_{\mathrm{R}}(\omega)$ is $1+j^{2}x^{2}$ ,
where $x$ is the generator of $H^{2}(\mathbb{C}P(2k+1))$ . For the virtual bundle $\zeta$ in (5), we
have

(8) $L( \zeta)=\prod_{j=1}^{k}(\frac{3j_{X}}{\tanh 3jx}\frac{\tanh jx}{jx})^{m_{j}}$

Given a power series $f(x)$ in $x$ , let us express the the coefficient of $x^{n}$ in $f(x)$ by
$(f(x))_{n}$ . The $4k$-dimensional obstruction $s_{4k}$ is given by

(9) $(( \mathcal{L}(\zeta)-1)(\frac{x}{\tanh x})^{2k+1})_{2k}/8$ .

To calculate this, we put

(10) $g(x)=( \frac{3x}{\tanh 3x}\frac{\tanh x}{x})-1$ .

Lemma 2. All the coefficients of $g(x)$ is divisible by 8 in $\mathbb{Z}_{(2)}$ .

Proof. From the expansion (7), we have

$\frac{3x}{\tanh 3x}\equiv\frac{x}{\tanh x}$ mod 8 in $\mathbb{Z}_{(2)}[[x]]$ .
Noting that $x/\tanh x$ is invertible in $\mathbb{Z}_{\langle 2)}[[x]]$ , we have

$3x$ $\tanh x$

$\overline{\tanh 3x}\overline{x}\equiv 1$ mod 8 in $\mathbb{Z}_{(2)}[[x]]$ .
and the assertion follows.

Let $j$ be an integer. If $j$ is even we have $g(jx)\equiv 0$ mod 32, and if $j$ is odd,
we have $g(jx)\equiv g(x)$ mod 64 since the coeffici$e\mathrm{t}\mathrm{s}$ of $g(x)$ ar$e$ all divisible by 8.
Hence we have

$L( \zeta)-1=\prod_{j}(1+g(jx))^{m_{j}}-1$

$\equiv\prod(1+g(x))^{m_{j}}-1$ mod 32
$j:\mathrm{o}\mathrm{d}\mathrm{d}$

$\equiv(\sum_{:\mathrm{o}\mathrm{d}\mathrm{d}}m_{j})g(x)$ mod 64.

From this, if we want to calculate the $4k$-dimensional surgery obstruction $8s_{4k}$ ,
we can get it as the coefficient of $x^{2k}$ in

$(\mathcal{L}(\zeta)-1)h(x)^{2k+1}\equiv mg(x)(h(x))^{2k+1}$ mod 32

$=m( \frac{3\tanh x}{\tanh 3x}-1)(\frac{x}{\tanh x})^{2k+1}$

$= \frac{8m}{3}\sum_{i\geq 1}(\frac{-1}{3})^{i-1}\tanh^{2i}x(\frac{x}{\mathrm{t}\mathrm{a}\mathrm{h}x})^{2k+1}$
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The coefficient of $x^{2k}$ can be calculated using the residue theory:

$(mg(x)h(x)^{2k+1})_{2k}=( \frac{8m}{3}\sum_{i\geq 1}(\frac{-1}{3})^{i-1}\tanh^{2i}x(\frac{x}{\tanh x})^{2k\neq 1})_{2k}$

$= \frac{8m}{3}{\rm Res}(\frac{1}{\tanh^{2k+1}x}\sum_{i\geq 1}(\frac{-1}{3})^{i-1}\tanh^{2i}x;x=0)$ .

By changing variables $y=\tanh x$ , this residue value is equal to

$\frac{8m}{3}{\rm Res}(\frac{1}{y^{2k+1}(1-y^{2})}\sum_{i\geq 1}(\frac{-1}{3})^{;-1}y^{2i};y=0)$

$= \frac{8m}{3}\sum_{i=1}^{k}(\frac{-1}{3})^{:-1}=\frac{2m(3^{k}-(-1)^{k})}{3^{k}}$

Thus we have shown that the surgery obstruction $s_{4k}$ satisfies

(11) $8s_{4k} \equiv\frac{2m(3^{k}-(-1)^{k})}{3^{k}}$ mod 32

where $m= \sum_{j:\mathrm{o}\mathrm{d}\mathrm{d}}m_{j}$ .
Given an integer a, let us denote by $\nu_{2}(a)$ the 2-order of $a$ . The following is an

easy exercise in elementary number theory.
Lemma 3. We have

$\nu_{2}(3^{k}-(-1)^{k})=\nu_{2}(k)+2$ .
Lemma 4. If the 4$k$-dimensional surgery obstruction $s_{4k}$ vanishes and suppose
that $k$ is not divisible by 4, then $m= \sum_{j:\mathrm{o}\mathrm{d}\mathrm{d}}m_{j}$ is even.
Proof. If $s_{4k}=0$ , then $\nu_{2}(2m(3^{k}-(-1)^{k}))\geq 5$ . Suppose $\nu_{2}(k)\leq 1$ , then
$\nu_{2}(3^{k}-(-1)^{k})\leq 3$, and $m$ must be even.

3. FIRST PONTRJAGIN CLASS AND KERVAIRE SURGERY OBSTRUCTION

In the normal map (1), let $\zeta=\nu_{\mathrm{C}P(2k+1)}-\xi$, then it can be written (2-1ocally)
$\zeta=\sum_{j=1}^{k}m_{j}\zeta_{j}$ where $\zeta_{j}=(\psi_{\mathrm{R}}^{3}-1)\dot{\psi}_{\mathrm{R}}(\omega)$ . The total Pontrjagin class of $\psi_{\mathrm{R}}^{m}(\omega)$

is given by
$p(\psi_{\mathrm{R}}^{m}(\omega))=1+m^{2}x^{2}$

and we have

$p( \zeta_{j})=\frac{1+9j^{2}x^{2}}{1+j^{2_{X}2}}$

$p(()= \prod_{j}(\frac{1+9j^{2}x^{2}}{1+j^{2}x^{2}})^{m_{j}}$

For the first Pontrjagin class, we have

(12) $p_{1}(()/8=( \sum_{j}j^{2}m_{j})x^{2}$ .
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We know that the 2-dimensional surgery obstruction $s_{2}$ for $f|f^{-1}(\mathbb{C}P(1))$ is equal
to $\sum_{j}j^{2}m_{j}$ mod 2 since in the complex projective space surgery theory, the mod
2 reduction of $p_{1}(\zeta)$ coincides with the square of the $2-\dim e$nsional Kervaire class
for the given normal map (see Wall’s book [6, Chap 13.]). And it is known that if
$k+1$ is not a power of 2, then $(4k+2)-\dim e$nsional surgery obstruction coincides
with the 2-dimensional surgery obstruction $([4],[2],[3])$ . From these facts we have
Lemma 5. If $\sum_{j:odd}m_{j}$ is even, then the surgery obstruction $s_{4k+2}$ vanishes.

4. PROOF OF THE MAIN THEOREM

Let us suppose that $k$ is not divisible by 4. Take any normal map with target
manifold $\mathbb{C}P(2k+1)$ and its vector bundle data ( $= \sum_{j}\zeta_{j}$ . Suppose that its
codimension 2 surgery obstruction $s_{4k}$ vanishes. Then from Lemma 4, $m=$
$\sum_{j:\mathrm{o}\mathrm{d}\mathrm{d}}m_{j}$ is even. Then by Lemma 5, the surgery obstruction $s_{4k+2}$ vanishes.
In view of Lemma 1, this proves our theor$e\mathrm{m}$ .
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