On Lie algebras of vector fields of manifolds with singularities

信州大学・理学部 阿部 孝順 (Kōjun Abe)
Faculty of Science, Shinshu University
e-mail: kojnabe@gipac.shinshu-u.ac.jp

アビームコンサルティング株式会社
藤原 卓 (Suguru Fujiwara)
ABeam Consulting Ltd

§1. Introduction

In this talk we shall consider Pursell-Shanks type theorem for some manifolds with singularities.

Let $\mathcal{X}(M)$ be the Lie algebra of smooth vector fields on a connected smooth manifold M with compact support. Then Pursell and Shanks proved the following.

Theorem 1.1 (Pursell-Shanks [PS])

Let M and N be connected smooth manifolds. If $\mathcal{X}(M)$ and $\mathcal{X}(N)$ are isomorphic as a Lie algebra, then M and N are diffeomorphic.

There are many analogous results on the Lie algebra of smooth vector fields which preserve a geometric structures (c.f. [AM], [BA], [FU], [GP], [GR], [OM], [KO]). We extended Theorem 1.1 to the case of smooth orbifold.

Theorem 1.2 (K. Abe [AB2])

Let M and N be connected smooth orbifold. If $\mathcal{X}(M)$ and $\mathcal{X}(N)$ are isomorphic as a Lie algebra, then M and N are diffeomorphic.

Note that a smooth orbifold is locally diffeomorphism to the orbit space V/Γ of a representation space V of a finite group Γ. In this paper we consider when Γ is a discrete subgroup of $SL(2, \mathbb{Z})$.

§2. Statement of the result

Let \mathcal{H} denote the upper half complex plane. Let $SL(2, \mathbb{R})$ be the group of real matrix with determinant 1. Then $SL(2, \mathbb{R})$ acts on \mathcal{H} by the Möbius as the following.

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$, $z \in \mathcal{H}$,

$$g \cdot z = \frac{az + b}{cz + d}.$$
Then $SL(2, \mathbb{R})$ acts transitively on \mathcal{H} and the isotropy subgroup at $i = \sqrt{-1}$ is

$$SL(2, \mathbb{R}), i = SO(2).$$

The kernel of the action is $\mathbb{Z}_2 = \{\pm 1\}$ and $PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm 1\}$ acts effectively on \mathcal{H} and

$$\mathcal{H} \cong SL(2, \mathbb{R})/SO(2).$$

The action can be extended to the Riemannian sphere $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$.

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma, z \in \mathcal{H},$

$$g \cdot z = \begin{cases} \frac{az+b}{cz+d} & (z \neq -\frac{d}{c}, \infty) \\ \infty & (z = -\frac{d}{c}, z = d = 0) \\ \frac{a}{c} & (z = \infty) \end{cases}.$$

Set

$$R_1 = \left\{ \pm \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \mid a > 0 \right\}$$

and

$$R_2 = \left\{ \pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} \right\}.$$

Then each $g \in SL(2, \mathbb{R})$ is conjugate to one of the elements of $SO(2) \cup R_1 \cup R_2$, and $g \neq \pm 1$ is called elliptic, hyperbolic and parabolic if g is conjugate to an element in $SO(2)$, R_1 and R_2, respectively.

Let Γ denote a discrete subgroup of $SL(2, \mathbb{R})$. $z \in \mathcal{H}$ is called elliptic point if there exits an elliptic element $g \in \Gamma$ such that $g \cdot z = z$. $x \in \mathbb{R} \cup \{\infty\}$ is called cusp point if there exists a parabolic element $g \in \Gamma$ such that $g \cdot z = z$.

Proposition 2.1

1. If z is a elliptic point, then Γ_z is a cyclic group which is conjugate to a cyclic subgroup of $SO(2)$.

2. If x is a cusp point, then Γ_x is isomorphic to \mathbb{Z} which is conjugate to a subgroup of the group

$$\Gamma_\infty = \left\{ \pm \begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\} \quad (\exists k \in \mathbb{Z}).$$

Let E_Γ denote the set of all elliptic points in \mathcal{H} and C_Γ be the set of cusp points of Γ. Set $\mathcal{H}^* = \mathcal{H} \cup C_\Gamma,$
We shall give the following topology on \mathcal{H}^*.

(1) We give the canonical topology on \mathcal{H}.
(2) Let $x \in C_{\Gamma}$.

(2.1) If $x \neq \infty$, then we take all the family of the form
\[
\{x\} \cup \{\text{the interior of a circle in } \mathcal{H} \text{ tangent to the real axis at } x\}
\]
as a fundamental system of open neighborhoods of x.

(2.2) If $x = \infty$, then
\[
\{\infty\} \cup \cup_{c>0}\{z \in \mathcal{H} | \Im z > c\}
\]
as a fundamental system of open neighborhood of the point ∞. Then Γ acts on \mathcal{H}^* as a topological transformation group. Set
\[
\mathcal{R}_{\Gamma} = \mathcal{H}^*/\Gamma = \mathcal{H}/\Gamma \cup C_{\Gamma}/\Gamma
\]
Then \mathcal{R}_Γ is a Hausdorff space.

Lemma 2.2 For each $x \in C_{\Gamma}$, there exists an open neighborhood \tilde{U}_x of x in \mathcal{H}^* such that
\[
\Gamma_x = \{\gamma \in \Gamma | \gamma \cdot \tilde{U}_x \cap \tilde{U}_x \neq \emptyset\}.
\]
Take $x \in C_{\Gamma}$. Let $\iota_x : \tilde{U}_x/\Gamma_x \rightarrow \mathcal{R}_\Gamma$ be a map defined by $\iota_x(\Gamma_x \cdot z) = \Gamma \cdot z$ for $z \in \tilde{U}_x$. Put $p = \Gamma \cdot x$. Then $U_p = \iota_x(\tilde{U}_x/\Gamma_x)$ is an open neighborhood of p in \mathcal{R}_Γ. For $x \in C_{\Gamma}$, there exist $g \in SL(2, \mathbb{R})$ and integer k such that $g \cdot x = \infty$ and
\[
g\Gamma_x g^{-1} = \left\{ \pm \begin{pmatrix} 1 & nk \\ 0 & 1 \end{pmatrix} \mid n \in \mathbb{Z} \right\}.
\]

Proposition 2.3 Let $\varphi_p : \tilde{U}_x/\Gamma_x \rightarrow \mathbb{C}$ be a map given by
\[
\varphi_p(\Gamma_x z) = \begin{cases} \exp\left(\frac{2\pi\sqrt{-1}}{k} (g \cdot z)\right) & (z \in \tilde{U}_x \setminus \{x\}), \\ 0 & (z = x). \end{cases}
\]
Then φ_p is homeomorphic to an open subset W_p of \mathbb{C}.

By Proposition 2.3, the map $\psi_p = \varphi_p \circ \iota_x^{-1} : U_p \rightarrow \tilde{U}_x/\Gamma_x \rightarrow W_p$ is regarded as a local coordinate of \mathcal{R}_Γ around p.

$\bar{C}_\Gamma = C_{\Gamma}/\Gamma$

Definition 2.4 $f : \mathcal{R}_\Gamma \rightarrow \mathbb{R}$ is defined to be smooth if
(1) $f \circ \pi_\Gamma$ is smooth, where $\pi_\Gamma : \mathcal{H} \rightarrow \mathcal{H}/\Gamma$ is the natural projection,
(2) for each $p \in \bar{C}_\Gamma$, $f \circ \psi_p^{-1}$ is smooth.
Definition 2.4 (2) does not depend on the choice of \(x \) with \(\Gamma \cdot x = p \).

Let \(C^\infty(\mathcal{R}_\Gamma) \) denote the set of all real valued smooth functions on \(\mathcal{R}_\Gamma \).

Definition 2.5 For discrete subgroups \(\Gamma, \Gamma' \) of \(SL(2, \mathbb{R}) \), \(h : \mathcal{R}_\Gamma \to \mathcal{R}_{\Gamma'} \) is said smooth if for each real valued smooth function \(f : \mathcal{R}_{\Gamma'} \to \mathbb{R} \) \(f \circ h \) is smooth. \(h \) is said diffeomorphic if \(h \) and \(h^{-1} \) are smooth.

Definition 2.6 A derivation \(\mathcal{X} \) of \(C^\infty(\mathcal{R}_\Gamma) \) is called a smooth vector field on \(\mathcal{R}_\Gamma \) if \(\mathcal{X} \) vanishes on \(C_\Gamma \). Let \(\mathcal{L}(\mathcal{R}_\Gamma) \) denote the set of all smooth vector field on \(\mathcal{R}_\Gamma \) and let \(\mathcal{X}(\mathcal{R}_\Gamma) \) be the subalgebra of \(\mathcal{L}(\mathcal{R}_\Gamma) \) which consists of vector fields with compact support.

Then we have the following.

Theorem 2.7 Let \(\Gamma \) and \(\Gamma' \) be discrete subgroups of \(SL(2, \mathbb{R}) \). Then \(\mathcal{R}_\Gamma \) and \(\mathcal{R}_{\Gamma'} \) are diffeomorphic if and only if \(\mathcal{X}(\mathcal{R}_\Gamma) \) and \(\mathcal{X}(\mathcal{R}_{\Gamma'}) \) are isomorphic as a Lie algebra.

§3. Maximal ideals of \(\mathcal{X}(\mathcal{R}_\Gamma) \)

In order to prove Theorem 2.7 we investigate the maximal ideals of \(\mathcal{X}(\mathcal{R}_\Gamma) \). Let \(\Gamma \) be a discrete subgroup of \(SL(2, \mathbb{R}) \). Let \(\mathcal{E}_\Gamma = E_\Gamma/\Gamma \) and \(\mathcal{C}_\Gamma \) denote the set of elliptic singularities and cusp singularities in \(\mathcal{R}_\Gamma \), respectively. Set \(\mathcal{S}_\Gamma = \mathcal{E}_\Gamma \cup \mathcal{C}_\Gamma \) which is the set of singularities in \(\mathcal{R}_\Gamma \). We abbreviate \(\mathcal{R}_\Gamma, \mathcal{S}_\Gamma \) and \(\mathcal{E}_\Gamma \) to \(\mathcal{R}, \mathcal{S} \) and \(\mathcal{E} \), respectively. Let \(\mathcal{R}_1 = \mathcal{R} \setminus \mathcal{S} \) be the set of regular points of \(\mathcal{R} \). For each \(p \in \mathcal{R}_1 \), set

\[
\mathcal{X}_p(\mathcal{R}) = \{ X \in \mathcal{X}(\mathcal{R}) | X(p) = 0 \}.
\]

Proposition 3.1 For each \(p \in \mathcal{R}_1 \), there exists a unique maximal ideal \(\mathcal{M}_p \) of \(\mathcal{X}(\mathcal{R}) \) which is contained in \(\mathcal{X}_p(\mathcal{R}) \). Moreover \(\mathcal{M}_p \) is an infinite codimensional subalgebra in \(\mathcal{X}(\mathcal{R}) \).

Next we shall find the maximal ideals of \(\mathcal{X}(\mathcal{R}) \) which correspond to the singularities in \(\mathcal{R} \). Here we recall the results by Bierstone and Schwarz. Let \(G \) be a finite group and \(V \) be a representation space of \(G \). Let \(\pi : V \to V/G \) be the natural projection. \(\mathcal{X}_G(V) \) denotes the Lie algebra of \(G \)-invariant smooth vector fields on \(V \) with compact support.

Theorem 3.2 (Bierstone [BI] and Schwarz [SC])

The induced map \(\pi_* : \mathcal{X}_G(V) \to \mathcal{X}(V/G) \) is a Lie algebra isomorphism.
For each \(p \in \overline{E} \), take \(x_p \in E \) with \(\Gamma \cdot x_p = p \). Let \(V_{x_p} \) be the linear slice at \(x_p \). Then \(V_{x_p} \) is a \(\Gamma_{x_p} \)-module. Let

\[
(\pi_{x_p})_* : \mathcal{X}_{\Gamma_{x_p}}(V_{x_p}) \rightarrow \mathcal{X}(V_{x_p}/\Gamma_{x_p}) \hookrightarrow \mathcal{X}(\mathcal{R})
\]

be the natural Lie algebra homomorphism. By Theorem 3.2, for each \(X \in \mathcal{X}(\mathcal{R}) \) there exists \(Y_{x_p} \in \mathcal{X}_{\Gamma_{x_p}}(V_{x_p}) \) such that \((\pi_{x_p})_*(Y_{x_p}) = X \) on a neighborhood of \(p \) in \(\mathcal{R} \). Let \(\mathfrak{gl}_{\Gamma_{x_p}}(V_{x_p}) \) be the set of \(\Gamma_{x_p} \)-invariant linear endmorphisms. Let

\[
J_p : \mathcal{X}(\mathcal{R}) \rightarrow \mathfrak{gl}(2, \mathbb{R})
\]

be the homomorphism defined by \(J_p(X) = j_{x_p}^1(X|_{U_p}) \), where \(j_{x_p}^1(X|_{U_p}) \) is the 1-jet of \(Y_{x_p} \) at \(x_p \).

(II) For \(p \in \overline{C} \) there is a chart \(\psi_p : U_p \rightarrow W_p \subset \mathbb{C} = \mathbb{R}^2 \) around the open neighborhood \(U_p \) of \(p \) in \(\mathcal{R} \). Let

\[
J_p : \mathcal{X}(\mathcal{R}) \rightarrow \mathfrak{gl}(2, \mathbb{R})
\]

be the Lie algebra homomorphism defined by \(J_p(X) = j_{x_p}^1(X|_{U_p}) \).

Combining (I) and (II) we set

\[
J(\mathcal{R}) = \bigoplus_{p \in \overline{E}} \mathfrak{gl}_{\Gamma_{x_p}}(V_{x_p}) \oplus \bigoplus_{p \in \overline{C}} \mathfrak{gl}(2, \mathbb{R}).
\]

Let \(J : \mathcal{X}(\mathcal{R}) \rightarrow J(\mathcal{R}) \) be a Lie algebra homomorphism defined by

\[
J(X) = \bigoplus_{p \in \overline{E}} J_p(X) \oplus \bigoplus_{p \in \overline{C}} J_p(X).
\]

Lemma 3.3 \(J \) is an onto Lie algebra homomorphism.

Proposition 3.4 If \(\mathfrak{M} \) is a maximal ideal of \(\mathcal{X}(\mathcal{R}) \), then we have the following.

1. If \(\mathfrak{M} \) is contained in \(\mathcal{X}_p(\mathcal{R}) \) for some \(p \in \mathcal{R}_1 \), then \(\mathfrak{M} = \mathfrak{M}_p \), and \(\mathfrak{M} \) is an infinite codimensional subalgebra of \(\mathcal{X}(\mathcal{R}) \).
2. If \(\mathfrak{M} \not\subset \mathcal{X}_p(\mathcal{R}) \) for any \(p \in \mathcal{R}_1 \), then there exists a maximal ideal \(\mathfrak{L} \) of \(J(\mathcal{R}) \) such that \(\mathfrak{M} = J^{-1}(\mathfrak{L}) \), and \(\mathfrak{M} \) is a finite codimensional subalgebra of \(\mathcal{X}(\mathcal{R}) \).
§4. Stone topology of the maximal ideals

Let \mathcal{R}^* be the set of all maximal ideals of $\mathcal{X}(\mathcal{R})$.

Definition 4.1 The Stone topology on \mathcal{R}^* is defined by the closure operator Cl as following.

1. $\text{Cl}(\emptyset) = \emptyset$,
2. For a subset B of \mathcal{R}^* with $B \neq \emptyset$,

 $$\text{Cl}(B) = \left\{ \mathfrak{M} \in \mathcal{R}^* \mid \mathfrak{M} \supset \bigcap_{\mathfrak{M}' \in B} \mathfrak{M}' \right\}.$$

Let $\mathcal{O}(S)$ denote the family of all subsets of S. We define a map

$$\tau_{\mathcal{R}} : \mathcal{R}^* \to \mathcal{R}_1 \cup \mathcal{O}(S)$$

by the following way.

1. For $p \in \mathcal{R}_1$, $\tau_{\mathcal{R}}(\mathcal{M}_p) = p$.
2. If $\mathfrak{M} \in \mathcal{R}^*$ such that $\mathfrak{M} \not\subset \mathcal{X}_p(\mathcal{R})$ for any $p \in \mathcal{R}_1$, then

 $$\tau_{\mathcal{R}}(\mathfrak{M}) = \{p \in S \mid J(\mathfrak{M}) \not\supset J_p(\mathcal{X}(\mathcal{R}))\}.$$

Set $\mathcal{R}_1^* = \{\mathcal{M}_p \in \mathcal{R}^* \mid p \in \mathcal{R}_1\}$.

Proposition 4.2

The map $\tau_{\mathcal{R}} : \mathcal{R}_1^* \to \mathcal{R}_1$ is homeomorphic.

Definition 4.3 (End)

Let $\mathcal{A}(\mathcal{R}_1) = \{K_i \mid i \in I\}$ denote the family of compact subset in \mathcal{R}_1. For each $K \in \mathcal{A}(\mathcal{R}_1)$, let $C_K : \text{be the set of connected component of } \mathcal{R}_1 \setminus K$.

$$\prod_{K_i \in \mathcal{A}(\mathcal{R}_1)} C_{K_i} \in \prod_{K_i \in \mathcal{A}(\mathcal{R}_1)} \mathcal{E}_{K_i}$$

is said to be an end of \mathcal{R}_1 if $C_{K_i} \subset C_{K_j}$ for any pair $i, j \in I$ with $K_j \subset K_i$.

$\mathcal{E}(\mathcal{R}_1)$: the set of all ends of \mathcal{R}_1

For each $p \in S$ there exists a unique end $\mathcal{E}_p = \prod_{K_i \in \mathcal{A}(\mathcal{R}_1)} C_{K_i}$ in \mathcal{R}_1 such that

$$\bigcap_{K_i \in \mathcal{A}(\mathcal{R}_1)} \text{cl}(C_{K_i}) = \{p\},$$

where $\text{cl}(C_{K_i})$ is the closure of C_{K_i} in \mathcal{R}. Set

$$\mathcal{E}_0(\mathcal{R}_1) = \{\mathcal{E}_p \mid p \in S\}, \quad \bar{\mathcal{R}}_1 = \mathcal{R}_1 \cup \mathcal{E}(\mathcal{R}_1).$$
Then $\overline{\mathcal{R}}_1$ has the natural topology such that

$$\{C_{K_j} \cup \prod_{K_i \in \mathcal{R}(\mathcal{R}_1)} C_{K_i} | K_j \in \mathcal{R}(\mathcal{R}_1)\}$$

is the fundamental system of neighborhood of a point $\prod_{K_i \in \mathcal{R}(\mathcal{R}_1)} C_{K_i} \in \mathcal{E}(\mathcal{R}_1)$.

Put $\overline{\mathcal{R}}_0 = \mathcal{R}_1 \cup \mathcal{E}_0(\mathcal{R}_1)$. Let $\kappa_{\mathcal{R}} : \mathcal{R} \to \overline{\mathcal{R}}_0$ be the natural map defined by

$$\kappa_{\mathcal{R}}(p) = \begin{cases} p & \text{for } p \in \mathcal{R}_1 \\ \mathcal{E}_p & \text{for } p \in S \end{cases}$$

Lemma 4.4 The map $\kappa_{\mathcal{R}} : \mathcal{R} \to \overline{\mathcal{R}}_0$ is a homeomorphism.

§5. Outline of the proof of Theorem 2.7

Let Γ, Γ' be discrete subgroups. Assume that there exists a Lie algebra isomorphism $\Phi : \mathcal{X}(\mathcal{R}_\Gamma) \to \mathcal{X}(\mathcal{R}_{\Gamma'})$. We abbreviate $\mathcal{R}_{\Gamma'}, S_{\Gamma'}, \overline{E}_{\Gamma'}, ...$ to $\mathcal{R}', S', \overline{E}', ...$, respectively. By Proposition 4.2 we have.

Proposition 5.1

1. $\Phi_* : \mathcal{R}^* \to \mathcal{R}'^*$ is homeomorphic.
2. The composition $\sigma_1 = \tau_{\mathcal{R}'} \circ \Phi_* \circ \tau_{\mathcal{R}}^{-1} : \mathcal{R}_1 \to \mathcal{R}'_1$ is homeomorphic.

By Proposition 5.1 we have.

Corollary 5.2 There exists a homeomorphism $\overline{\sigma} : \overline{\mathcal{R}} \to \overline{\mathcal{R}}'$ which is an extension of σ_1 such that the following diagram is commutative:

\[
\begin{array}{ccc}
\mathcal{R}^* & \overset{\Phi_*}{\longrightarrow} & \mathcal{R}'^* \\
\tau_{\mathcal{R}} \downarrow & & \tau_{\mathcal{R}'} \\
\overline{\mathcal{R}} & \overset{\overline{\sigma}}{\longrightarrow} & \overline{\mathcal{R}}'
\end{array}
\]

Lemma 5.3 For $p \in S$ let U be a neighborhood of p in \mathcal{R} such that $\text{cl}(U) \cap S = \{p\}$. Then we have

$$\text{cl}(\tau_{\mathcal{R}}^{-1}(U)) = \tau_{\mathcal{R}}^{-1}(\text{cl}(U))$$

From Corollary 5.2, Lemma 5.3 and Lemma 4.4, we have the following.
Proposition 5.4 We can extend the homeomorphism $\sigma_1 : \mathcal{R}_1 \rightarrow \mathcal{R}'_1$ to the homeomorphism $\sigma : \mathcal{R} \rightarrow \mathcal{R}'$ such that the following diagram is commutative:

\[
\begin{array}{ccc}
\mathcal{R} & \xrightarrow{\sigma} & \mathcal{R}' \\
\kappa_{\mathcal{R}} \downarrow & & \kappa_{\mathcal{R}'} \\
\mathcal{R}_0 & \xrightarrow{\overline{\sigma}} & \mathcal{R}'_0
\end{array}
\]

Lemma 5.5 Let $p \in \mathcal{R}_1$ and $X \in \mathcal{X}(\mathcal{R})$. Then $X_p \neq 0$ if and only if $[X, \mathcal{X}(\mathcal{R})] + \mathcal{M}_p = \mathcal{X}(\mathcal{R})$.

Corollary 5.6 $\sigma_1 : \mathcal{R}_1 \rightarrow \mathcal{R}'_1$ is diffeomorphic.

By the method Koriyama [KO] and Abe [AB1] we can prove that $\sigma : \mathcal{R} \rightarrow \mathcal{R}'$ is diffeomorphic.

References

