A remark on quadratic differentials vanishing at infinity

KATSUHIKO MATSUZAKI 松崎克彦

Okayama University 岡山大学自然科学研究科

For a Fuchsian group Γ acting on the upper half-plane H, let $B(\Gamma)$ denote the Banach space of all holomorphic functions on H satisfying $\gamma^*\varphi = \varphi$ for every $\gamma \in \Gamma$ and $\|\varphi\| < \infty$, where $(\gamma^*\varphi)(z) := \varphi(\gamma(z))\gamma'(z)^2$ and $\|\varphi\| := \sup_{z \in H} 4(\operatorname{Im} z)^2 |\varphi(z)|$. An element in $B(\Gamma)$ is called a bounded holomorphic quadratic differential for Γ . Let $S(\Gamma)$ be a subset of $B(\Gamma)$ consisting of those $\varphi = S_f$, where S_f is the Schwarzian derivative for a Γ -compatible univalent function f on H. The Nehari theorem says that if $\varphi \in S(\Gamma)$ then $\|\varphi\| \leq 6$. Also $S(\Gamma)$ is closed in $B(\Gamma)$.

The boundary semi-norm for $\varphi \in B(\Gamma)$ is defined by

$$\|\varphi\|_0 = \inf_V \|\varphi|_{H-\Gamma(V)}\|,$$

where the infimum is taken over all compact subsets $V \subset H$. It is said that $\varphi \in B(\Gamma)$ vanishes at infinity if $\|\varphi\|_0 = 0$. Let $B_0(\Gamma)$ be a Banach subspace of $B(\Gamma)$ consisting of all φ vanishing at infinity. An element $[\varphi]$ in the quotient Banach space $B(\Gamma)/B_0(\Gamma)$ is identified with the coset $\varphi + B_0(\Gamma)$ in $B(\Gamma)$. For each $\varphi \in B(\Gamma)$, we set

$$\|\varphi\|_{\mathfrak{Q}(\Gamma)} = \inf \{ \|\varphi + \psi\| \mid \psi \in B_0(\Gamma) \},\$$

which induces the quotient norm for $[\varphi]$ in $B(\Gamma)/B_0(\Gamma)$.

The purpose of this note is to remark the following theorem. An idea of the proof is contained in [2]. This article as well as [1] studies the case where $\phi(z) = \frac{1}{2}z^{-2}$ and $\beta = 2 + \varepsilon$ in the statement below.

Theorem. Let $\tilde{\phi} \in B(\Gamma)$ satisfy $\|\tilde{\phi}\|_{\mathfrak{Q}(\Gamma)} < \beta$ for a positive constant $\beta > 0$ and $\phi \in B(1)$ (for the trivial group 1) satisfy $r\phi \notin S(1)$ for all r > 1. Assume that there exists a sequence $\{h_n\}$ of conformal automorphisms of H such that the orbit $\{h_n(z)\}$ eventually exits from $\Gamma(V)$ for any compact subset $V \subset H$ and such that $h_n^*\tilde{\phi}$ converge to ϕ locally uniformly. Then there exists $\varphi \in B(\Gamma)$ with $\|\varphi\|_{\mathfrak{Q}(\Gamma)} < \beta$ satisfying

$$(\varphi + B_0(\Gamma)) \cap S(\Gamma) = \emptyset.$$

Proof. Suppose to the contrary that every $\varphi \in B(\Gamma)$ with $\|\varphi\|_{\mathfrak{Q}(\Gamma)} < \beta$ satisfies $(\varphi + B_0(\Gamma)) \cap S(\Gamma) \neq \emptyset$. We take $(1 + \delta)\tilde{\phi}$ as this φ , where $\delta > 0$ is chosen so that $(1+\delta)\|\tilde{\phi}\|_{\mathfrak{Q}(\Gamma)} < \beta$. Then there exists some $\psi \in B_0(\Gamma)$ such that $(1+\delta)\tilde{\phi} + \psi \in S(\Gamma)$. Set $\tilde{\phi}_n = h_n^*\tilde{\phi}$ and $\psi_n = h_n^*\psi$. By assumption, $\tilde{\phi}_n$ converge to ϕ locally uniformly. Since ψ vanishes at infinity, ψ_n converge to 0 locally uniformly. Hence

$$(1+\delta)\tilde{\phi}_n + \psi_n \to (1+\delta)\phi.$$

On the other hand, since $(1+\delta)\tilde{\phi}_n + \psi_n$ belong to S(1) for all n, there exist univalent functions f_n on Δ such that $(1+\delta)\tilde{\phi}_n + \psi_n = S_{f_n}$. We may give a certain normalization to f_n so that a subsequence converges to a univalent function f on Δ locally uniformly. Then $S_{f_n} \to S_f$ and hence $(1+\delta)\phi = S_f \in S(1)$. However, this contradicts the assumption that $r\phi \notin S(1)$ for all r > 1. \square

Corollary. Suppose that a Fuchsian group Γ is contained in another Fuchsian group $\tilde{\Gamma}$ as a normal subgroup of infinite index. Let $\phi \in B_0(\Gamma)$ satisfy $r\phi \notin S(\Gamma)$ for all r > 1. Then, for every $\varepsilon > 0$, there exists $\varphi \in B(\Gamma)$ with $\|\varphi\|_{\mathbb{Q}(\Gamma)} < \|\phi\| + \varepsilon$ satisfying

$$(\varphi + B_0(\Gamma)) \cap S(\Gamma) = \emptyset.$$

Proof. Take a system of representatives $\{h_1, h_2, \dots\} \subset \tilde{\Gamma}$ for the coset decomposition of $\tilde{\Gamma}$ modulo Γ . Then the sequence $\{h_n\}$ of conformal automorphisms of H holds a property that the orbit $\{h_n(z)\}$ eventually exits from $\Gamma(V)$ for any compact subset $V \subset H$. Moreover, for a given $\varepsilon > 0$, we can choose a subsequence h_{n_k} so that

$$\tilde{\phi} = \sum_{k=1}^{\infty} (h_{n_k}^{-1})^* \phi \in B(\Gamma)$$

satisfies $(\|\tilde{\phi}\|_{@(\Gamma)} \leq) \|\tilde{\phi}\| < \|\phi\| + \varepsilon$ and so that $h_{n_k}^* \tilde{\phi}$ converge to ϕ locally uniformly. Then we can apply the above theorem. \square

REFERENCES

- [1] H. Miyachi, The inner and outer radii of asymptotic Teichmüller spaces (preprint).
- [2] T. Nakanishi and J. Velling, On inner radii of Teichmüller spaces, Prospects in Complex Geometry, Lecture Notes in Math., vol. 1468, Springer, 1991, pp. 115-126.

DEPARTMENT OF MATHEMATICS, OKAYAMA UNIVERSITY, TSUSHIMA-NAKA 3-1-1, OKAYAMA 700-8530, JAPAN

E-mail address: matsuzak@math.okayama-u.ac.jp