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ON THE JOHNSON HOMOMORPHISM OF THE
AUTOMORPHISM GROUP OF A FREE GROUP

Ye#kf&E X (Takao Satoh)
RIEKEKFLEBERLH SR (The University of Tokyo)

ABSTRACT. In this paper we construct new obstructions for the surjectivity of the
Johnson homomorphism of the automorphism group of a free group. We also deter-
mine the structure of the cokernel of the Johnson homomorphism for degrees 2 and
3.

1. Introduction

Let F;, be a free group of rank n > 2 and F,, = [',(1), ['n(2), ... its
lower central series. We denote by Aut F,, the group of automorphisms
of F,,. For each k > 0, let A, (k) be the group of automorphisms of F),

which induce the identity on the quotient group Fy/Ty(k + 1). Then we
have a descending filtration

Aut F, = An(0) D As(1) D Aa(2) D -

of Aut F,. This filtration was introduced in 1963 with a remarkable
pioneer work by S. Andreadakis [1] who showed that A,(1), A.(2),
... is a descending central series of .4,(1) and each graded quotient
gr*(A;) = An(k)/An(k + 1) is a free abelian group of finite rank. He
[1] also computed that rankgz gr®(A;) for all ¥ > 1 and rankz gr3(A;),
and asserted rankg gr3(Az) = 44. In Section 5, however, we show that
gri(As) = 43. Moreover, by a recent remarkable work by A. Pettet [15)]
we have rankz gr’(A4,) = 3n?(n? —4) + in(n — 1) for all n > 3. However,
it is difficult to compute the rank of gr¥(A,).

Let H be the abelianization of F,, and H* = Homgz(H,Z) the dual
group of H. Let £, = @,-,Ln(k) be the free graded Lie algebra gen-
erated by H. Then for each & > 1, a GL(n,Z)-equivariant injective
homomorphim '

Tk grk(A,,,) — H*®7 ﬁn(k + 1)
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is defined. (For definition, see Section 2.) This is called the k-th Johnson
homomorphism of Aut F;,. The theory of the Johnson homomorphism
of a mapping class group of a compact Riemann surface began in 1980
by D. Johnson [6] and has been developed by many authors. There is
a broad range of remarkable results for the Johnson homomorphism of
a mapping class group. (For example, see [5] and [13].) However, the
properties of the Johnson homomorphism of Aut F,, are far from being
well understood.

The main interest of this paper is to determine the structure of the
cokernel of the Johnson homomorphism 7 as a GL(n,Z)-module. For
k =1, it is a well known fact that the first Johnson homomorphism 7
is an isomorphism. (See [8].) For k > 2, the Johnson homomorphism 7},
is not surjective. In fact, a recent remarkable work by Shigeyuki Morita
indicates that there is a symmetric product S*H qQ of HQ = H®zQ in the
cokernel of 74, @ = T ® idq for each k > 2. To show thls, he introduced
a homomorphlsm

Tty : H*®z Lo(k+1) = S*H,

called the trace map, and showed that Tr; vanishes on the image of 7;
and is surjective after tensoring with Q for all £ > 2.

The trace maps were introduced in the 1993 by Morita [12] for a John-
son homomorphism of a mapping class group of a surface. He called
these maps traces because they were defined using the trace of some
matrix representation. Morita’s traces are very important to study the
Lie algebra structure of the target H*®z L, = Der(L,) of the Johnson
homomorphisms. Here Der(L,) denotes the graded Lie algebra of deriva-
tions of £,,. Morita conjectured that for any n > 3, the abelianization of
the Lie algebra Der(L,) is given by

Hy(Der(L)) ~ (Hy®zA%Hg) © (@ skHQ
k22
where £ = £,8z Q and the right hand side is understood to be an
abelian Lie algebra. Recently, combining a work of Kassabov [7] with

the concept of the traces, he [14] showed that the isomorphism above
holds up to degree n(n — 1).

The subgroup A,(1) is called the IA-automorphism group of F, and de-
noted by I A,. The group I A, is the kernel of the natural map Aut F,, —
GL(n,Z) which is given by the action of Aut F,, on H. The structures
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of A, plays an important role in the study Aut F,. W. Magnus [10]
showed that [ A, is finitely generated for all n > 3. However, it is not
known whether I A, is finitely presented or not for any n > 4. For n = 3,
by a remarkable work by S. Krsti¢ and J. McCool [9], it is known that
I Az is not finitely presented. On the other hand, the abelianization of
I A, is given by
TA® ~ H*®zA’H

as a GL(n,Z)-module. (See [8].)

Now let A; (1), A;(2), ... be the lower central series of IA, = An(1)
and gr¥(A.) its graded quotient of it for each k¥ > 1. In Section 2, we
define a GL(n, Z)-equivariant homomorphism

T grk(A;) — H*'®z L,k + 1)

which is also called the k-th Johnson homomorphism of Aut F;,. In this
paper, we construct new obstructions of the surjectivity of the Johnson
homomorphism 7. Let us denote the tensor products with Q of a Z-
module by attaching a subscript Q to the original one. For example,
Hq := H®zQ and L(k) := L,(k)®z Q. Similarly, for a Z-linear map
f : A — B we denote by fq the Q-linear map Aq — Bq induced by f.
It is conjectured that Coker 7y o = Coker7y,q for £ > 1. It is true for
1 <k < 3. Infact, A,(1) = A}, (1) by definition. We have A,(2) = A,(2)
from the result stated above. (See [8].) Moreover, Pettet [15] showed
that A7(3) has a finite index in A,(3). Hence, Coker7; o = Coker7q
for 1 < k < 3. Our main result is

Theorem 1.
(1) A*Hq C Coker 7}, for odd k and 3 < k < n.

[2’1"-2] / : —
(2) Hq C Coker 7y o for evenk and4 <k <n—1.

Here A*Hq denotes the k-th exterior product of Hg, and Hg’lk—z] denotes
the Schur-Weyl module of Hq corresponding to the partition [2,1%¥2].

In order to prove this, in Section 3, we introduce homomorphisms de-
fined by

Tr[lk] = fuk] o q)lf : H*®z£n(k + 1) - AkH,
Tf[2,1'=—2] = (idH ® f[lk—l]) o @g c H*®zLp(k+ 1) — H®zAk—1H
and show that these maps vanish on the image of the Johnson homomor-

phism 7. Since these maps are constructed in a way similar to that of
Morita’s trace Tri, we also call these maps traces.
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In Section 5, we determine the GL(n, Z)-module structure of the cok-
ernel of the Johnson homomorphism 7, for 2 and 3. Our result is

Theorem 2. We have GL(n,Z)-equivariant ezact sequences
0~ gri(A,) = H*®z La(3) = S2H - 0
and
0 — grdy(An) = HE®z L3(4) — SPHq @ AHq — 0
forn > 3.

Thus we have

Corollary 1. For n > 3,
1
rankg gr3(A4,) = Iin(Bn4 ~ Tn? - 8).

2. Preliminaries

In this section vwe review some basic facts. First, we note that the
group Aut F;, acts on F; on the right. For any ¢ € Aut F,, and z € F,,
the action of o on z is denoted by 2°.

2.1. Commutators of higher weight.

In this paper, we often use basic facts of commutator calculus. The |
reader is referred to [11] and [16], for example. Let G be a group. For
any elements z and y of G, the element

zya~ly !

is called the commutator of z and y, and denoted by [z,y]. In general,
a commutator of higher weight is recursively defined as follows. First, a
commutator of weight 1 is an element of G. For k > 1, a commutator of
weight k is an element of the type C = [C}, C5] where C; is a commu-
tator of weight a; (j = 1, 2) such that a; + a; = k. The weight of the
commutator C is denoted by wt (C) = k. The commutator which has
elements gq,...,9: € G in the bracket components is called the commu-
tator among the components gy,...,g;. For elements g;,...,9; € G, a
commutator of weight k¥ among the components gy, ..., g; of the type

{[ vt [[gi1’g‘i2]’g‘i3]’ o ']7gik]7 Z] € {1, cen ,t}

with all of its brackets to the left of all the elements occuring is called a
simple k-fold commutator and is denoted by

[giu Giys* ?gik]'
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For each k > 1, the subgroups '¢(k) of the lower central series of G
are defined recursively by

I'c(1) =G, Tgk+1)=[le(k),qG).
We use the following basic lemma in later sections.

Lemma 2.1. If a group G is generated by ¢,...,g:, then each of the
graded quotients T'g(k)/T'q(k+ 1) for k > 1 is generated by the cosets of
the simple k-fold commutators

[g’il’gizv")gik]’ Z] E {1,-..,t}.

Now, for each k£ > 1, let I';,(k) be the k-th subgroup Ty (k) of the
lower central series of a free group F, of rank n and gr*([',) its graded
quotient I'n(k)/Tn(k + 1). We denote by gr(Tn) = @jsi8t*(T's) the
associated graded sum. Then the set gr (I';) naturally has a structure
of a graded Lie algebra over Z induced from the commtator bracket on
Fy,. Let H be the abelianization of F,, and £, = @;;Ln(k) the free
graded Lie algebla generated by H. It is well known that the Lie algebra
gr (T's) is isomorphic to £, as a graded Lie algebra over Z. Thus, in
this paper, we identify gr (I';) with £,. For any element z € I'y(k), we
also denote by z the coset class of z in L,(k) = [p(k)/T'n(k + 1). Let

T(H) be the tensor algebra of H over Z. Then the algebra T(H) is the
universal envelopping algebra of the free Lie algebra £, and the natural
“map L, = T(H) defined by

X, Y]+ XY -Y®X

for X, Y € L, is an injective Lie algebra homomorphism. Hence we also
regard L,(k) as a submodule of H®* for each k£ > 1.

2.2. JTA-automorphism group.

The kernel of the natural map Aut F;, - GL(n,Z) which is given by
the action of Aut F,, on H is called the IA-automorphism group of F,, and
denoted by IA,. Let {z1,...,z,} be a basis of a free group F,,. Magnus
[10] showed that I A, is finitely generated by automorphisms

xa —> .’L‘b_1£l7a$b,
K :
Ty > Ty, (t 75 a)



and

Ty xaxbxcwb_lxc-l,
Kabc :

Ty >z, (t#a)

for any distinct a, b and ¢ € {1,2,...,n}. It is known that the abelian-
ization TA2" of the IA-automorphism group is free abelian group with
generators K, for distinct a and b, and K, for distinct a,b,c and b < c.
More precisely, if we denote by H* = Homgz(H,Z) the dual group of
H, we have a GL(n,Z)-module isomorphism IA%® ~ H*®zA%H. (For
details, see [8].)

2.3. The associated graded Lie algebra.

Here we consider two descending filtrations of IA,. The first one is
{Ar(k)} >, defined as above. Since the series A,(1), A,(2), ... is central,
the associated graded sum gr(A,) = @);-,r*(A,) naturally has a struc-
ture of a graded Lie algebla over Z induced from the commutator bracket
on A,(1). For each k > 1, the group A,(0) = Aut F, naturally acts on
Ay (k) by conjugation, hence on grf(A,). Since the group A, (1) = I A4,
trivially acts on gr(A,), we see that the group GL(n, Z) ~ A,(0)/A(1)
naturally acts on gr¥(A,).

The other is the lower central series A}, (1), A7(2), ... of A,(1). Let
gri(AL) = A (k)/ AL (k+1) be the graded quotient for each k > 1. Sim-
ilarly the associated graded sum gr(A}) = @;»,8r*(A}) has a structure
of a graded Lie algebra structure on Z. Moreover, each graded quotient
gr*(A.) is a GL(n,Z)-module. It is clear that A’ (k) C A,(k) for every
k > 1. In particular, we have A, (k) = A,(k) for 1 < k < 2 and Pettet
[15] showed that .A7,(3) has finite index in A,(3) as mentioned in section
1. From Lemma 2.1, for each k > 1, the graded quotient gr*(A!) is
generated by (the cosets of) the simple k-fold commutators among the
components Ky, and K.

2.4. Johnson homomorphism.
Here we define the Johnson homomorphisms of Aut F;,. For each k > 1,
let 7 : An(k) = Homgz(H, L,(k + 1)) be the map defined by

(1) o (z+ z712%)

for 0 € A,(k) and £ € H. Then the map 7 is a homomorphism and
the kernel of 73 is just A,(k + 1). Hence, identifying Homgz(H, L, (k +
1)) with H*®z Ln(k + 1), we obtain an injective GL(n, Z)-equivariant
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homomorphism, also denoted by 7y,
Tk : grk(.An) — H*'®z Lo(k+1).

This homomorphism is called the k-th Johnson homomorphism of Aut F;,.
Similarly, for each k¥ > 1, we can define a homomorphism 7}, : A (k) —
Homgz(H,Ln(k + 1)) as (1). Since A/ (k + 1) is contained in the kernel
of 71, we obtain a GL(n, Z)-equivariant homomorphism, also denoted by
Ths

7 grt(A)) = H*'®z Lo (k + 1).
We also call the map 7; the Johnson homomorphism of Aut F,.

Let {z1,...,z,} be a basis of F,. It defines a basis of H as a free abelian
group, also denoted by {z1,...,2,}. Let {z},...,z}} be the dual basis of
H*. For any o € Al (k), if we set s;(0) ;= z;'2f € Lo(k+1) (1 <i<n)
then we have

T%(0) = Ti(o Zx ® si(0) € H*®zLn(k + 1).

Let Der (£,)) be the graded Lie algebra of derivations of £,. The degree
k part of Der (L,) is expressed as Der (L,)(k) = H*®zL,(k). Thus we
sometimes identify Der (£,) with H*®zL,,. Then the Johnson homomor-
phism 7 = @, 7k is a graded Lie algebra homomorphism. In fact, if
we denote by o the element of Der (£,) corresponding to an element
o € H*®zL, and write the action of 8o on X € L, as X% then we have

(2) () Z:c ® (si(0)”" — s,-(r)a").

i=1

for any o € Al (k) and T € AL (D).
In general, each s;(c) € £,(k+1) cannot be uniquely written as a sum
of commutators among the components z;,...,z,. In this paper, each

si(o) is recursively computed in the following way. First, for 0 = Kjp,
we can set

So(Kabe) = [, Tc], $t(Kape) =0 if t#a.
For 0 = K, we see that

xt 1xt _ [ a ,mbl] if t=a/,
1 if t#a
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in F,. Since [z;1,7; '] = (24, 23] in £,(2), s0 we can set
sa(Kap) = [Ta, zp), st(Kap) =0 if t#a.

Next, if o = [1, Kg) for k-fold simple commutator 7, following from (2),
we can set

5i(0) = 5i(7) 7% — 8;(Kop)®"

for each ¢. Furthermore, since a commutator bracket of weight ! is con-

sidered as a [-fold multilinear map from the cartesian product of I copies
of L£,(1) to L,(l), we can also set

afi)

si(0) =) (-1)%*C,
p=1 .
where e;, = 0 or 1, and C;, is a commutator of degree k + 1 among the
~ components Zi,...,%,. We compute s;([7, Kap]) for o = [, Kgp) simi-
larly. These computations are perhaps easiest explained with examples,
so we give two here. For distinct a, b, c and d, we have

T3 ([Kaby Kbac]) = 25 ® ([2a, 371)])31{"“c — 24 ® ([za, xC])aKaba
= T4 ® [Ta, [Ta, T]] — zy ® [[za, Tp), zc]
and | |
73((Kaby Kbac, Kad]) = 75 ® ([&a, [0, 2c]])) 4 — 2} @ (([[a, 75}, 7c]) 7
3 ® ([og, ) P,
= T, ® [[Za, Zd], [Ta, Tc]] + 2} ® [24, [[a, Za), T|]
- :Z:; ® [[[mm xd]? xb]7 .'Dc]
— Z4 ® [[%a, [Ta, Zc]), 4]
3. The contractions

Fork>1land1<!<k+ 1, let oF : H*@zH®*+D) _ H®k be the
contraction map defined by

* *
Z; ®mjl ®"'®xjk+1 = xi(xjt) " Tjy ®"'®$jt—1 ®$.’it+1 ®"'®mjk+1'

For the natural embedding ¢*! : L,(k + 1) —» H®*+D we obtain a
GL(n, Z)-equivariant homomorphism

& = ¢f o (idu- ® 15¥") : H*®zLa(k + 1) — HEF.
We also call the map ®F contraction.
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Here we introduce one of methods of the computation of ®¥(z} ® C)
for a commutator C € L,(k + 1) among the components zi,...,Z,.
In this paper, whenever we compute ®¥(z} ® C), we use the following
method. First, if z; does not appear among the components of C, then
®¥(zf ® C) = 0. On the other hand, if z; appears among the components

of C'm times, then we distinguish them and write such z;’s as z;,, ..., z;
in C. Then ®f(z! ® C) is given by rewriting z; ,...,z;_ as z; in
m
ks %
Y ®f(z} ® C).
j=1

Thus it suffices to compute ®f(z} ® C) for a commutator C which has
only one z; in its components. Now, C is written as [X,Y] for some
commutators X and Y. Rewriting the commutator C as —[Y, X] if z;
appears in Y, we may always consider C = +[X, Y] such that z; appears
among the components of X. By a recursive argument, we have C =
*[z;, Cy, ..., Ct] where each C; (1 < j < t) is a commutator of weight d;
anddy +---+ds = k.

Lemma 3.1. For a commutator [z;,C},...,Ct € Ln(k + 1) as above,
dr(zr ® [z, C1,...,C]) =C1®--- Q Ct.
Lemma 3.2. For a commutator [z;,C1,...,Ci] € Ln(k +'1) as above,
5 (x! ® [2,Cy, ..., Ch) |

= — Z C;®Ci® --®C;.18Cj11®---QC.
wt (C;)=1

Let T(H) = @5, H®* and S(H) = @;>,S¥H be the tensor algebra
and the symmetric algebra on H respectively. Then the kernel of a
natural map T(H) — S(H) is a graded ideal of T(H), and denoted
by I(H) = @>,IF(H). For each k > 2, let U,(k) be the GL(n,Z)-
submodule of H®* generated by elements type of

[A,B]: =A@ B-B®A

for A€ H®, B € H® and a + b = k. If we put U, = @;>,Un(k), then

Uy, is the kernel of the abelianizaton T'(H) — T(H)® as a Lie algebra.
We have

L,.(k) C U, (k) C I*(H) C HE.
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3.1. The image of ®f o 7.
Considering the image of any simple k-fold commutator ¢ among the
components K, and K., we prove the following proposotions.

Proposition 3.1. Forn >3 and k > 2, Im (®% o 7{) C U, (k).
Proposition 3.2. Forn >3 and k > 3, Im (®§ o 1) C HRzl,(k — 1).

4. The trace maps

In this section, using the contractions defined in Section 3, we define
a homomorphisms called the trace map which vanishes on the image
of the Johnson homomorphism. Here we use some basic facts of the
representation theory of GL(n, Z). The reader is referred to, for example,
Fulton-Harris [4] and Fulton [3].

For any k > 1 and any partition A of k£, we denote by H* the Schur-Weyl
module of H corresponding to the partition A of k. Let f) : H® — H?
be a natural homomorphism. In this paper, we mainly consider the case
for A = [k] or [1¥]. The modules H™ and H""] are the symmetric product
S*H and the exterior product A¥H respectively. Using the natural map
ik : L (k) — H®, we denote fjjx 0 ik(C) by C for any C € Lo (k).

Lemma 4.1. For any commutator C of weight k >3, C =0 in A¥H

Lemma 4.2. For 1 < k < n—2 and any commutator C of weight k + 1

among the components z1,...,z, except for z;, there exists an element
o € A; (k) such that

(o) =2} @ C € H*'®zLn(k + 1).

4.1. Morita’s trace (Trace map for S*H).
Here we consider the map

Triy = fig o B : H*®zLa(k + 1) — SFH.

By definition, this map coincides with the Morita’s trace Trz. For n > 3
and k > 2, Morita defined the trace map Tt using the Magnus represen-
tation of Aut F, and showed that Try vanishes on the image of 7. By a
recent work, he showed that Tr,? is surjective. Hence we have

Theorem 4.1. (Morita) For n > 3 and k > 2,
S¥Hq C Coker 7 q.
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Corollary 4.1. Forn.> 3 and k > 2,

rankz(Coker (7%)) > (n +Z - 1).

4.2. Trace map for AFH.
Here we consider the map

Trpy = fiwy 0 ®F : H*®2Ln(k + 1) - A*H.
Theorem 4.2.
(1) For 3 <k <n, Tryx is surjective,
(2) Im (Trpiyo7;) =0 if k is odd and 3 < k < n,
(3) Im (Trpy 0 74) = 2(A*H) C A*H if k is even and 4 <k < n — 2.

Corollary 4.2. For an odd k and 3 < k < n,
A*Hq C Coker i .
Corollary 4.3. For an odd k and 3 < k <n,

" rankz(Coker (1)) > (:)

4.3. Trace map for H21"™I,
Here we consider the map

Trge2) = (idy ® fiihy) 0 @5 : H*®zLa(k +1) - HOzA* ' H.
Let I be the GL(n, Z)-submodule of H@zA*1H defined by
I=(x®21 A ANzg2ANYy+yQ®@2z1A---AzgaAz | 2,9,2 € H).
Theorem 4.3. For an even k and4 <k <n -1,
(1) Im (Tr[g’l,,,,]) = Iq,
(2) Im (Trg -1y 0 73) = 0.

Now we have Hq®zA¥ 1Hq ~ H g’lk_q]@AkHQ from the representation
theory of GL(n,Z). For even k, since Iq is contained in the kernel of a
natural map Hq®zA’““1HQ — A*Hq defined by 2 @ y1 A -+ A yp1 =

T Ay A+ Ayg-1, we have Iq ~ Hg’lm].
Corollary 4.4. For an even k and4 < k<n -1,
Hg’lml C Coker 7y, q.
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Corollary 4.5. For an even k and4 < k<mn-—1,

k

5. The cokernel of the Johnson homomorphism 7, for k =2
and 3 ’

rankg(Coker (1)) > (k — 1) (” + 1).

5.1. The case k = 2.

In this subsection we consider the case where n > 3. From Theorem
4.1 and rankz(Coker (72)) = ("}') by Pettet [15], we have a GL(n,Z)-
equivariant exact sequence

0 — gray(An) 29, Hy®z LI(3) — S2Hg — 0.

We show that the exact sequence above holds before tensoring with Q.
Namely,

Theorem 5.1. For n > 3,
0 — gri(A4,) > H*®zL,(3) = S?H = 0
is a GL(n,Z)-equivariant exact sequence.

5.2. The case k = 3.
Next we compute the cokernel of the Johnson homomorphism 73,Q for
n > 3 using the fact that Coker 13 g = Coker Té’d. We have

Theorem 5.2. For n > 3,
0 — grg(An) =3 Hy®2L3(4) — S Hq & A%Hg — 0
is a GL(n, Z)-equivariant exact sequence.

Corollary 5.1. Forn > 3,
1
(3) rankz gr¥(A4,) = —1-§n(3n4 —Tn? - 8).
In particular, substituting n = 3 into (3), we have rankg gr3(A3) = 43.
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