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Jorgensen numbers of discrete groups
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Abstract

Let G be a non-elementary two-generator subgroup of the Mobius trans-

formation group. The Jgrgensen number J(G) of G is defined by
J(G) == inf{|tr’(A) - 4] + tr(ABA!B~') — 2| | (4, B) = G}.

In this paper we announce the following two results: (1) For every positive
integer 7, there is a non-elementary Kleinian group G such that J(G) = r; (2)
For every real number r > 4, there is a classical Schottky group G such that

J(G) = r. The proofs will appear elsewhere.

0. INTRODUCTION.

0.1. It isone of the most important problems in the theory of Kleinian groups to
decide whether or not a subgroup G of the Mébius transformation group is discrete.

For this problem there are two important and useful theorems: One is Poincaré’s

*Partly supported by the Grants-in-Aid for Co-operative Research as well as Scientific Research, - -

the Ministry of Education, Science, Sports and Culture, Japan.

2000 Mathematics Subject Classification. Primary 30F40; Secondary 20H10, 32G15.

Key Words and Phrases. Jgrgensen’s inequality, Jorgensen num_bér, Jorgensen group, Kleinian
group. '

105



polyhedron theorem, which gives a sufficient condition for G to be discrete. The
other is Jgrgensen’s inequality theorem, which gives a necessary condition for a
two-generator Mébius transformation group G = (4, B) to be discrete.

In 1976 Jprgensen gave the following important theorem called Jgrgensen’s in-

equality theorem.

THEOREM A (Jgrgensen [4]). Suppose that the Mibius transformations A and

B generate a non-elementary discrete group. Then
J(A, B) := |tr’(A) — 4| + [tr(ABA™'B~') - 2| > 1. (%)

The lower bound 1 is best possible.

The inequality (%) is called Jgrgensen’s inequality. A non-elementary discrete
two-generator subgroup G of the Mﬁbius transformation group is called a Jgrgensen
group if there exist generators A and B of G such that J(A, B)=1.

There are some papers by Jgrgensen [4], Jorgensen - Kiika [5], Jgrgensen - Las-
curain - Pignataro [6], Gehring - Martin [2], Sato - Yamada [13], Sato [11), Li -

Oichi - Sato [7, 8, 9] and Gonzélez-Acufia - Ramirez [3] on Jgrgensen groups.

0.2. Let G be a non-elementary two-generator subgroup of the Mébius trans-

formation group. The Jorgensen number J(G) of G is defined by
J(G) = inf{|tr?(4) — 4| + [tr(ABA™'B~') - 2| | (4, B) = G}.
Now we have the following problem:

PROBLEM. Let r be a real number with r > 1. When is there a discrete group
whose Jgrgensen number is equal to r7?
There are some papers by Sato [12] and Gonzélez-Acufia - Ramirez [3] on

Jorgensen numbers. In this paper we consider the problem on Jorgensen numbers.
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1. DEFINITIONS AND EXAMPLES.

1.1. In this section we will state definitions and give some examples. Let Mdb
denote the set of all linear fractional transformations (Mobius transformations)

_ az+b

Alz) = cz+d

of the extended complex plane € = CU {00}, where a, b, ¢, d are complex numbers
and the determinant ad — bc = 1. We call Mob the Mdbius transformation group.
There is an isomorphism between Méb and PSL(2,C). Throughout this paper we
will always write elements of M6b as matrices with determinant 1.

In this paper we use a Kleinian group in the same meaning as a discrete group
of Méb. Namely, a Kleinian group is a discrete subgroup of Mob. A subgroup G of

MGéb is said to be elementary if there exists a finite G-orbit in R® (see Beardon [1]).

- The trace of

a b
A= (ad —bc=1)
c d

in SL(2, C) is defined by tr(A*) = a + d. We remark that the traces of elements A,
B of Méb (= PSL(2,C)) are not well-defined, but tr?(A) and tr(ABA™'B™!) are
still well-defined after choosing matrix representatives.
1.2. Here definitions of a Jgrgensen number and a J¢rgenseﬁ group are given.
DEFINITION 1.1. Let A and B be Mobius transformations. The Jgrgensen

number J(A, B) of the ordered pair (A, B) is defined by

J(A, B) := |tr}(A) — 4] + |tr(ABA'B1) — 2|.

DEFINITION 1.2. Let G be a non-elementary two-generator subgroup of Méb.

The Jgrgensen number J(G) of G is defined by

J(G) :=inf{J(A, B) | A and B generate G}.
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DEFINITION 1.3. A subgroup G of Mab is called a Jorgensen group if G satisfies
the following four conditions: (1) G is a two-generator group. (2) G is a discrete

group. (3) G is a non-elementary group. (4) There exist generators A and B of

G such that J(A,B) = 1.

1.3. Here we will give some examples of Kleinian groups whose Jgrgensen

numbers are one and two.

(1) JG) =1

Jorgensen groups, for example, the modular group, the Picard group and the
figure-eight knot group (Jgrgensen - Lascurain - Pignataro [6], Sato [11] and
Li - Oichi - Sato [7,8,9]).

2) J(G)=2.

The Whitehead link group (Sato [12], Gonzalez-Acufia - Ramirez [3)).

2. THEOREMS.
In this section we will state our main theorems.

THEOREM 1. For every positive integer r, there is a non-elementary discrete

gioup G whose Jgrgensen number isr; J(G) =r.

THEOREM 2. For every real number r > 4, there is a classical Schottky group

G whose Jprgensen number isr; J(G) =r.
3. NORMALIZATION 1.
In this section we consider the first normalization and present some lemmas. °

LEMMA 3.1. Let A be a parabolic transformation and let B be a lozodromic or

an elliptic transformation such that A and B have no common fized points. Then
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there uniquely ezists a Mcobius transformation T satisfying the following three con-

ditions:
(i) The fized point of TAT! is cc.
(ii) The fized points of TBT-' are symmetric with respect to the origin.

(iii) TAT-1(0) = 1.

Then by easy calculations we have

2, __
TAT ! = 11 and TBT != wo wo-1jo

01 o uo
where 0 € C\ {0} and u € C.

LEMMA 3.2. Let A and B be Mobius transformations. Then the Jgrgensen
number J(A, B) is invariant under conjugation in Mob, that is, J(TAT !, TBT"!) =
J(A, B) for T € Mob.

3.3. Hereafter we consider the case of 4 = ik (k € R) and 0 = —ire® (r >
0, 0 < 0 < 27). That is, we consider marked two-generator groups Gygx = (4, Brgx)

generated by

11 rke?® irkZel? — i~ /r
A= and B:= Br,ﬂ,k = ] )
01 ' —ire rke'

4. PROOF OF THEOREM 1.

In this section we sketch the proof of Theorem 1. The complete proof will appear

elsewhere. We consider the case of

r=\/ﬁ(neN), 0=m/2, k=0.
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Then we have

11 0 -1/\/n
A= and B\/T-I,N/Q,O = . (**)

01 vn 0

For simplicity we write B,, for B sz /20-

LEMMA 4.1. Let A and B, be the matrices in (**). Then the group G, =

(A, By,) is a non-elementary Kleinian group for every positive integer n.

LEMMA 4.2. Let A and By, be the matrices in (**). Let G, = (A, B,). Then

X € Gn is either the following (i) type 1 or (i) type 2.

(i) Typel.
a b
X = (ad —be= 1),
c d

wherea =mnt1, b=myn+¥¢, c=mgn andd = my%1 (mj, L€ Z(j=1,2,3,4))

(i) Type 2.
X= wn b/va - (adn —bc = 1),
c/n dyn

wherea#m1n+ll, b=montl, c=mgn+1 andd=myn+4,,0, €Z (mj(G=

1,2,3,4; k=1,2)).

LEMMA 4.3. Let A and By, be the matrices in (**). Let G, = (A, By). If (X,Y)

be a non-elementary (discrete) subgroup of G, then

ltr(XYX'Y"Y) = 2| =nfk| (ke Z).

LEMMA 4.4. Let A and By, be the matrices in (**). Let G, = (A, B,). If (X,Y)

be a non-elementary (discrete) subgroup of G,, then

J(X,Y)>n.



LEMMA 4.5. Let A and B, be the matrices in (**). Then J(A, B,) = n.

Theorem 1 follows from Lemmas 4.4 and 4.5. If A and B, are the matrices in

(**), then J(Gy) = n for the group G, = (4, B,).

5. NORMALIZATION II.

In this section we consider the second nofmalization. Let A; and A, be loxio-
dromic transformations. For j = 1,2, let A; (|A;| > 1), p; and po4; be the multi-
pliers, the repelling and the attracting fixed points of 4;, respecti\;ely. We define ¢,
by setting ¢; = 1/);. Thus t; € D* = {2 | 0 < |2| < 1}. We determine a Mébius

transformation T' by

T(p1) =0, T(ps) = o0, T(p2) =1

We define p by p = T(py). Thus p € C — {0,1}. Then by easy calculations we have

10 | —t p(ta—1
TAT = - and T4 T = Lt | P70 =1}
Hereafter let
A 1 1o and A | 1 p=tr plta—1)
1= —F 2= =/
Vi 0t \/Ez(ﬂ -1) 1-ty tp—1

We say that 7 = (t;, t3, p) corresponds to the marked group (4;, A;).

Conversely, A\;, A2 and p, are uniquely determined from a given point 7 =
(t1,t2,p) € (D*)2 x (C\ {0,1}) under the normalization condition p; = 0, ps = 00
and pz = 1; we define A; (j = 1,2) and p4 by setting A\; = 1/t; and py = p. We
determine A;(z), Az(z) € Méb from 7 as follows: the multiplier, the repelling and
the attracting fixed points of A;(z) are \;, p; and py4;, respectively. We say that

G(7) = (A1(7), A2(7)) is the marked group corresponding to 7 = (t;,13, p)-
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5. REAL SCHOTTKY SPACE.

In this section we consider the real classical Schottky space of type IV introduced

by Sato ([10]). Hereafter let

4 1 ({10 and A 1 p=t2 p(ta—1)
1= 7 2= T ETTTT T
vl o 4 V- 124, tp-1

with0<t; <1,0<t;<1land p<O0.

We set
Dy:={r=(t1,t2,)) eR* | 0<t1 <1, 0<t; <1, p <0}

Let G(r) = (A1(7), A2(7)) be the group corresponding to 7 = (ty, t,, p).
We set

Riv(S3) = {r = (t1,t2,0) € Dy | (4 (1), Aa(7)) : classical Schottky group}.

We call G(7) = (Ay(7), A2(7)) a a real classical Schottky group vof type IV if G() €
Riv(S59). '

Let G = (A,, Az) be a real classical Schottky group of type IV. Let 7 = (t1, 2, p)
correspond to the group G = (A1,A;). For given 0 < t; < 1 and p < 0, let t3(t1, p)

- be t; (0 < t; < 1) satisfying

2VEvVh(1 - p) = /(=p)(1 - t1)(1 - ta).

PROPOSITION 6.1 (Sato [10]).

RSy = {(t1,t2,0) € R* | 0 <t < t}(t1,p), 0< t; < 1, p < O}.

7. A FUNDAMENTAL REGION.



113

7.1. Here we consider Nielsen transformations.

THEOREM B (Neumann). Let G = (A, Az) be a free group on two generators.

The group ®, of automorphisms of G have the following presentation:

®; = (N1, No, N3 |

where N; : (Al,Az) > (A],Az_l), N, : (Al,Az) — (Ag,Al), N; : (Al,Az) >
(Al’AlAz)'

- We call N, N, and N3 in Theorem B the Nielsen transformations.
Let 7 = (t4,12, p) correspond to a marked group (A;, A3). Let (¢1(4),t2(4), p(5))
be the images of (t,, 3, p) under the mappings N; (j = 1,2, 3), that is, (£1(1), 22(1), p(1)),
(81(2),t2(2), p(2)) and (¢,(3), t2(3), p(3)) correspond to marked Schottky groups (4;, A3'),
(As, A;) and (4;, AlAz); respectively.

7.2. Let G = (A;, A;) be a marked Schottky group and @, the group of auto-
morphisms of G. The Schottky modular group of genus 2 is the set of all equivalence.

classes of orientation preserving automorphisms in ®,.

PROPOSITION 7.1 (Sato [10]). Let S = NyN3N; and T = Ny N,, where Ny, N,
and N3 be the Nielsen transofrmations defined in Theorem B. The Schottky modular

group Mod(S2)) acting on RivSY is generated by S and T.

7.3. We set
P (t1t2) = (1 — Vtsita)/(t2 — V)

for0<t1<1and0<t2<1.

PROPOSITION 7.2 (Sato [10]). Let Mod(S3)) be the Schottky modular group
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acting on RpySY. Set
Fiv(Mod(S3))

= {(t1,2,0) € RvS] | p*(t1,%2) < p < 1/p"(t1, t3), 8 < t, 0 <t <t(t,p),{0< t; < 1}.
Then Fry(Mod(SY)) is a fundamental region for Mod(S?) acting on RyySY.

8. JORGENSEN NUMBERS.

8.1. Let A4; and A; be loxodromic transformations. Let 7 = (21,3, p) corre-

spond to the marked group (A;, A;). We set
J](Al) = Itl‘2(A1) - 4|

Jz(Al, AQ) = 'tr(A1A2A1—1A2—1) - 2|

1 -2
|t4]

11— 1121 — 52| ]
J: =
') = =P

Then J(A), Az) = Ji(A1) + Ja(A1, A), where J (A1, A,) is the Jgrgensen number
of (A1, Az). We set J(7) := Jy(7) + Jo(T).

J]_(T) =

PROPOSITION 8.1.
(1) J1(A1,A2) = JI(T), Jz(Al,Az) = Jz(T), J(Al,Az) = J(‘T)
(2)

L—ti]* 1= t1)21 ~ )20
J(r) =
=Tt TRl ir

LEMMA 8.1.  Jy(r) is ®,—invariant, that is, J2(¢2(7)) = Jo(7) for all ¢ € ®,.

LEMMA 8.2.  Ji(7) and J(7) are invariant under the Nielsen transformations
N1 and N3.
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PROPOSITION 8.2 (Sato [10]). The boundary ORpyS? of the real classical Schot-
tky space of type IV is invariant under ®, and under Mod(S?).

9. PROOF OF THEOREM 2.

9.1. In this section we sketch the proof of Theorem 2. The complete proof will

appear elsewhere. We consider the following surface in R3. For k > 2

Sk = {T = (t17t2’p) € R3|

1'~t11-—t2 l—p
—_— =k , 0<t:1<1,0<t,<1,p<0
Vi Vi v—p ' ? p<0}

ProPoSITION 9.1.

(1) The surface S; (k > 2) is contained in the real classical Schottky space of
type IV.

(2) The surface S (k> 2) is ®—invariant.

LEMMA 9.1. Let To = (t10, t20, -1 e aRleg and tyg > tyg. Then

M) Jm) = Ehol

(2) J(d(m0)) = J(r0) for ¢ € ®,.

PROPOSITION 9.2. Let r be a real number with 4 < r < 8. Let tin(0<tp<l)
be a real number with (1 — t10)%/tio =1 — 4. Set py = —1. Let Go = (A1, Ax) be
the marked group corresponding to (ti0,t20,—1). Then J(Go) =r.

9.2. By a similar method to the above, we have the following.

PROPOSITION 9.3.



(1) Let r > 4. Let T0 = (tlo,tgo,*—l) € Sk (k > 2) with tw > tgo. Let Go =

(A10, A2o) be the corresponding to 1,. Then

1 — t30)?
J(Gg)=(—T0m)—-+k2.

(2) Given r > 4. Then there ezist £, (0 < t; < 1) and k > 2 such that
r=(1-1)/t + k.

9.3. Theorem 2 follows from Propositions 9.2 and 9.3. That is, there exists a

classical Schottky group G in RyvSJ such that J(G) =r.

REMARK. Given r > 4. Set tip = 4/5. Then there is a real number & > 2 such

that k = 1/r2 — 1/20. That is, there exists a classical Schottky group G in Ry Sy
such that J(G) =r. |

10. OPEN PROBLEM.
In the last section we will state an open problem.

OPEN PROBLEM. For 1 < r < 4 (r # 2,3) when is there a non-elementary

discrete group whose Jgrgensen number is equal to r ?
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