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1. Introduction
The following is our initial problem.

Problem 1.1. Characterize the Ford domains of hyperbolic structures on a
3-manifold which has a pair of punctured tori as boundary.

In this section we see some background materials to Problem 1.1.
Both knots depicted in Figure 1 are hyperbolic. Moreover, each is of

genus 1. In fact, they have (once-)punctured tori depicted in the figure as
Seifert surfaces. One can see that $K_{2}$ is obtained from $K_{1}$ by performing a
Dehn surgery on $\alpha$ .

One major difference between the two knots is that $K_{1}$ is a fibered knot
while $K_{2}$ is not. This causes a difference in the proof of the Thurston’s Hy-
perbolization Theorem for Haken manifolds. Following it, one can construct
the complete hyperbolic structure of finite volume on the complement of each

(a) (b)

Figure 1: (a) the figure-8 knot $K_{1}=4_{1},$ $(\mathrm{b})K_{2}=6_{1}$
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$K_{1}$ and $K_{2}$ by cutting along essential surfaces in the manifold several times
to obtain a finite number of balls, construct hyperbolic structures on each
component, then deforming and gluing back the structures until one obtains
a hyperbolic structure on the original manifold. The argument which guar-
antees that the final gluing is possible is as follows. If one cuts the original
manifold along a fiber surface as in the case of $K_{1}$ , then, by the “double limit
theorem”, one can find a hyperbolic structure which is invariant under the
gluing map. On the other hand, if one cuts the manifold along a non-fiber
surface as in the case of $K_{2}$ , then one needs to define a map on the space of
geometrically finite hyperbolic structures whose fixed point gives a structure
which is invariant under the gluing map, for the map show the “fixed point
theorem”

As is explained in Section 5, the Jorgensen theory tells in detail the combi-
natorial structures of the Ford domains of hyperbolic structures on punctured
torus bundles. So, we expect to understand in detail tlle hyperbolic struc-
tures on manifolds with non-fiber surfaces from the combinatorial structures
of Ford domains. Problem 1.1 is the first step to the attempt to fill in the
box with “???” in the following table.

In this paper, we study a manifold which is obtained from the product
of the punctured torus and the interval by performing Dehn surgery along
an essential simple closed curve in a level-surface. In Section 3, we will
see some topological property of such a manifold. In Section 6, we give
a parametrization of the space of geometrically finite minimally parabolic
hyperbolic structures on the manifold. Finally, in Section 7, we obtain some
numerical results.

2 Ford domain
Throughout the paper, we use the upper half space model for the hyperbolic
3-space $\mathbb{H}^{3}$ . We shall identify the boundary plane of the upper half space
with the complex plane C.

Definition 2.1. For an element of $FSL(2, \mathbb{C}),$ $\gamma=$ , which does not
stabilize $\infty$ , we define the following.
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Figure 2: Ford domain of a cyclic Kleinian group

$\bullet$ The isometric circle of 7, denoted by $I(\gamma)$ , is the circle in the complex
plane with $\mathrm{c}\mathrm{e}\mathrm{r}\mathrm{l}\mathrm{t}\mathrm{e}\mathrm{r}-d/c$ and radius $1/|c|$ . The exterior of $I(\gamma)$ is denoted
by $E(\gamma)$ .

$\bullet$ The isometric hemisphere of $\gamma$ , denoted by $Ih(\gamma)$ , is the hemisphere in
the upper half space centered at a point in $\mathbb{C}$ with equator $I(\gamma)$ . The
exterior of $Ih(\gamma)$ is denoted by $Eh(\gamma)$ .

Definition 2.2. For a Kleinian group $\Gamma$ , let $\Gamma_{\infty}$ be the stabilizer of $\infty$ in F.
The Ford domain of $\Gamma$ in $\mathbb{C}$ (resp. $\mathbb{H}^{3}$ ), denoted by $P(\Gamma)$ (resp. $Ph(\Gamma)$ ), is
defined by

$P( \Gamma)=\bigcap_{\gamma\in\Gamma-\mathrm{r}_{\infty}}E(\gamma)$
,

$Ph( \Gamma)=\bigcap_{\gamma\in\Gamma-\mathrm{r}_{\infty}}Eh(\gamma)$
.

Remark 2.3. The Ford domain $P(\Gamma)$ (resp. $Ph(\Gamma)$ ) is not a fundamental do-
main for the action of $\Gamma$ on $\Omega(\Gamma)$ (resp. $\mathbb{R}$ ), whenever $\Gamma_{\infty}$ is nontrivial, where
$\Omega(\Gamma)$ is the “domain of discontinuity” of $\Gamma$ on which $\Gamma$ acts discontinuously.
Even in the case, the intersection of the Ford domain and a fundamental
domain for $\Gamma_{\infty}$ is actually a fundamental domain for $\Gamma$ .

Example 2.4. The Ford domain $Ph(\langle\gamma\rangle)$ of the cyclic Kleinian group $\langle\gamma\rangle$ ,
generated by a loxodromic element $\gamma\in PSL(2, \mathbb{C})$ which does not stabilize
$\infty$ , is as depicted in Figure 2. Every “face” of $Ph(\Gamma)$ is supported by an
isometric hemisphere; there are 8 faces in this example. The characterization
of combinatorial structures of the Ford domains of cyclic Kleinian groups is
given by Jorgensen [7] (cf. [5]).

Example 2.5. The image $\Gamma$ of the holonomy representation of a complete
hyperbolic structure on the punctured torus of finite area is a fuchsian group.
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Figure 3: Ford domain of a fuchsian punctured torus group

The fuchsian group is also regarded as a Kleinian group in a natural way,
and the Ford domain $Ph(\Gamma)$ is as depicted in Figure 3. In this situation,
the vertical plane lying on the real axis of $\mathbb{C}$ is naturally identified with the
hyperbolic plane on which the fuchsian group $\Gamma$ acts. Then the intersection
of $\Gamma$ and the plane is equal to the “Ford $\mathrm{d}\mathrm{o}\mathrm{m}\mathrm{a}\mathrm{i}\mathrm{n}^{\}}$

’ of the fuchsian group.

3 Manifolds with a pair of punctured tori as
boundary

We denote the one-holed torus by $T_{0}$ . Let $\gamma$ be an essential simple closed
curve on the level surface $T_{0}\cross\{0\}$ of the product manifold $T_{0}\cross[-1,1]$ , and
denote by $M_{0}$ the exterior of $\gamma$ , i.e., $M_{0}=T_{0}\cross[-1,1]$ -Int $N(\gamma)$ , where $N(\gamma)$

is a regular neighborhood of $\gamma$ . For each sign $\epsilon=\pm$ , we denote the one-holed
torus $T_{0}\cross\{\epsilon 1\}\subset\partial M_{0}$ by $T_{0}^{\epsilon}$ . We define the slopes ( $=\mathrm{f}\mathrm{r}\mathrm{e}\mathrm{e}$ homotopy classes)
$\mu$ and A in $\partial N(\gamma)$ as follows. $\mu$ is the meridian slope of $\gamma$ , i.e., $\mu$ is represented
by an essential simple closed curve which bounds a disk in $N(\gamma)$ , and A is
the slope represented by the intersection of $\partial N(\gamma)$ and the annulus $\gamma\cross[0,1]$ .
Then $\{\mu, \lambda\}$ generates $H_{1}(\partial N(\gamma))$ .

For a pair of coprime integers $(p, q)$ , let $M(p, q)$ be the result of Dehn
filling on $M_{0}$ with slope $p\mu+q\lambda$ , i.e., the manifold obtained from $M_{0}$ by
gluing the solid torus $V$ by an orientation-reversing homeomorphism $\partial Varrow$

$\partial N(\gamma)\subset\partial M_{0}$ so that the meridian of $V$ is identified with a simple closed
curve on $\partial N(\gamma)$ of slope $p\mu+q\lambda$ . We regard $M_{0}$ as a submanifold of $M(p, q)$

by using the canonical embedding.

Proposition 3.1. For any pair of coprime integers $(p, q)_{j}M(p, q)$ is home-
omorphic to the handlebody of genus 2.
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Set $P=\partial T\cross[-1,1]$ . In contrast to Proposition $3_{\perp}^{\rceil}.$ , we should be careful
about the manifold pair $(M(p, q),$ $P)$ .

Proposition 3.2. The surfaces $T_{0}^{\pm}$ is incompressible in $M(p, q)$ if and only
if $(p, q)\neq(0, \pm 1)$ . In this case, it follows that $(M(p, q),$ $P)$ is an atoroidal
Haken pared manifold (in the sense of [9]).

By the Thurston’s Hyperbolization Theorem for Haken pared manifolds
(cf. [9, Theorem 1.43]), we obtain the following corollary.

Corollary 3.3. For any pair of coprime integers $(p, q)\neq(0, \pm 1),$ $M(p, q)$

admits a complete geometrically finite hyperbolic structure with the parabolic
locus $P$ .

We may choose simple closed curves $\alpha$ and $\beta$ in the level surface $T_{0}\cross\{0\}$

which intersect at a single point such that $\alpha$ is parallel to $\gamma$ . Let $\alpha^{\pm}$ and $\beta^{\pm}$

be the simple closed curves in $T_{0}^{\pm}$ which are parallel to or and $\beta$ respectively.
Then $\alpha^{\epsilon}$ and $\beta^{\epsilon}$ freely generate $\pi_{1}(T_{0}^{\epsilon})$ for each $\epsilon=\pm$ . Let $\kappa^{\epsilon}=[\alpha^{\epsilon}, \beta^{\epsilon}]$

$(\epsilon=\pm)$ be the commutator of $\alpha^{\epsilon}$ axld $\beta^{\epsilon}$ , which is represented by a peripheral
loop of $T_{0}^{\epsilon}$ . Then, by the vam Kampen’s theorem, $\pi_{1}(M_{0})$ is canonically
isomorphic to the free product of the two free groups $\langle\alpha^{-}, \beta^{-}\rangle$ and $\langle\alpha^{+}, \beta^{+}\rangle$

with the subgroups $\langle\alpha^{-}, \kappa^{-}\rangle$ and $\langle\alpha^{+}, \kappa^{+}\rangle$ amalgamated under the mapping
$(\alpha^{-}, \kappa^{-})-*(\alpha^{+}, \kappa^{+})$ . Then the following lemma is immediate.

$phictothegroupwithpresentati.on(A,B^{-},$
$B^{+}|[A,B^{-}]=[A, B^{+}]\rangle(resp\mathrm{L}\mathrm{e}\mathrm{m}\mathrm{m}\mathrm{a}3.4.ThefundamentalqroupofM_{0}(resp.M(p,q))isisomor-$

.
$\langle A, B^{-}, B^{+}|[A, B^{-}]=[\mathrm{A}, B^{+}], \{(B^{+})^{-1}B^{-}\}^{p}A^{q}=1\rangle)$ by the map which
sends the quadruple $(\alpha^{-}, \alpha^{+}, \beta^{-}, \beta^{+})$ to $(A, A, B^{-}, B^{+})$ . In particular, there
is a canonical surjection $\Phi$ : $\pi_{1}(T_{0}^{-})*\pi_{1}(T_{0}^{+})arrow\pi_{1}(M(p, q))$ whose restrection
to each $\pi_{1}(T_{0}^{\pm})$ is injective whenever $(p, q)\neq(0, \pm 1)$ .

By Lemma 3.4, the image of the holonomy representation of a hyperbolic
structure on $M(p, q)$ is an amalgamated free product of two “punctured torus
groups” In $\mathrm{t}\mathrm{I}$) $\mathrm{e}$ following section, we give a brief review on such groups.

4 Punctured torus groups
Definition 4.1. Let $\rho_{0}$ : $\pi_{1}(T)arrow PSL(2, \mathbb{R})\subset PSL(2, \mathbb{C})$ be the holonomy
representation of a complete hyperbolic structure on the punctured torus of
finite area.

$\bullet$ A representation $\rho:\pi_{1}(T)arrow PSL(2, \mathbb{C})$ is a quasiconformal deforma-
tion of $\rho_{0}$ if there is a quasiconformal homeomorphism $w:\hat{\mathbb{C}}arrow\hat{\mathbb{C}}$ such
that $\rho=w\mathrm{o}\rho_{0}\mathrm{o}w^{-1}$ , i.e., $\rho(g)=w\mathrm{o}\rho_{0}(g)\mathrm{o}w^{-1}$ for any $g\in\pi_{1}(T)$ .
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$\bullet$ The quasifuchsian space $QF$ of the punctured torus is the space of
conjugacy classes of quasiconformal deformations of $\rho_{0}$ . We regard $QF$

as a subspace of $\mathrm{t}l1\mathrm{e}$ space $\mathcal{R}$ of $PSL(2, \mathbb{C})$ -representations of $\pi_{1}(T)$ .

$\bullet$ We denote the closure of $Q\mathcal{F}$ in $\mathcal{R}$ by $\overline{QF}$ .

Proposition 4.2. Let $\rho$ be an arbitrary element of $\overline{QF}$ . Then the quotient
manifold $\mathbb{H}^{3}/{\rm Im}\rho$ is homeomorphic to the product space $T\cross(-1,1)$ . The
domain of discontinuity of the Kleinian group ${\rm Im} p$ is the disjoint union of
two $({\rm Im}\rho)$ -invariant subsets $\Omega^{\pm}$ which correspond to the “ends“ $e^{-}=T\cross$

$(-1, -1+\delta)$ and $e^{+}=T\cross(1-\delta, 1)$ of $T\cross(-1,1)$ respectively, and each $\Omega^{\epsilon}$

$(\epsilon=\pm)$ satisfies one of the following conditions.

(i) $\Omega^{\epsilon}$ is homeomorphic to the open disk, and $\Omega^{\epsilon}/{\rm Im}\rho$ is homeomorphic to
$T$ .

(ii) $\Omega^{\epsilon}i\mathit{8}$ the countable union of open disks, and $\Omega^{\epsilon}/{\rm Im}\rho$ is homeomorphic
to the thrice-punctured sphere.

(iii) $\Omega^{\epsilon}$ is empty.

Definition 4.3. The end satisfying one of the conditions (i) and (ii) of Propo-
sition 4.2 is said to be geometrically finite, and one satisfying the condition
(iii) is said to be geometrically infinite.
Definition 4.4. For every $\rho\in\overline{QF}$ , the end invariant $\lambda^{\epsilon}(\rho)$ of each end
$e^{\epsilon}$ of $\mathbb{H}^{3}/{\rm Im}\rho$ is defined to be a point of the Thurston compactification,
canonically identified with $\overline{\mathbb{P}}$, of the Teichm\"uller space of $T$ as follows. Let
$\Omega^{\epsilon}$ be the subset of the domain of discontinuity of ${\rm Im}\rho$ corresponding to the
end $e^{\epsilon}$ .

(i) If $\Omega^{\epsilon}$ is homeomorphic to the open disk, then $\lambda^{\epsilon}(\rho)\in \mathbb{H}^{2}$ is the marked
conformal structure on $T$ defined by $\Omega^{\epsilon}/{\rm Im}\rho$.

(ii) If $\Omega^{\epsilon}$ is the countable union of open disks, then $\lambda^{\epsilon}(\rho)\in\partial \mathbb{H}^{\mathit{2}}$ is the
marked conformal structure on $T$ with nodes defined by $\Omega^{\epsilon}/{\rm Im}\rho$ .

(iii) If $\Omega^{\epsilon}$ is empty, then there is a sequence of closed geodesics in $\mathbb{H}^{3}/{\rm Im} p$

which exits the end $e^{\epsilon}$ . $\lambda^{\epsilon}(\rho)\in\partial \mathbb{H}^{2}$ is defined to be the limit of the
sequence.

Theorem 4.5 (Minsky [11]). The end invariant map A $=(\lambda^{-}, \lambda^{+})$ :
$\overline{QF}arrow\overline{\mathbb{P}}\cross\overline{\mathbb{P}}-\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\partial \mathbb{P})$ is a bijection and its $inver\mathit{8}e$ is a continuous
map.
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Figure 4: Ford domain of a generic quasifuchsian punctured torus group

Remark 4.6. A punctured torus group is a Kleinian group which is freely
generated by two elements with parabolic commutator. In fact, Theorem
4.5 is true for the set of all punctured torus groups (Solution of the Ending
Lamination Conjecture for punctured torus). In particular it is proved that
the set of all (marked) punctured torus groups is equal to $\overline{QF}$ .

Example 4.7. The Ford domain of a generic quasifuchsian punctured torus
group looks like Figure 4. Its combinatorial structure is described by us-
ing the “side parameter” defined in Definition 5.2. The upper and lower
boundary components in the right figure define two spines of $T$ . By follow-
ing $\partial Ph(\rho)$ from the lower component to the upper, one finds the sequence
of Whitehead moves connecting the two spines (cf. [3]).

Fix a framing $\{\alpha, \beta\}\subset H_{1}(T)$ and a peripheral element $K$ of $\pi_{1}(T)$ .

Definition 4.8. We call a pair of elements, $(\mathrm{A}, B)$ , of $\pi_{1}(T)$ a generator pair
if $A$ and $B$ generates $\pi_{1}(T)$ and satisfies $\mathrm{A}BA^{-1}B^{-1}=K$ . For such a pair,
$A$ (resp. $B$ ) is called a left (resp. right) generator, or simply a generator.

Remark 4.9. The situation may be more clear if we introduce the notion
of elliptic generator triple, for which we need to extend the group $\pi_{1}(T)$ to
the fundamental group of the orbifold obtained as the quotient space of $T$

by the hyperelliptic involution (cf. [3]).

One can see that every generator in the above sense has a simple closed
curve in $T$ as a representative.

Definition 4.10. For each generator $X$ which represents an element $p\alpha+$

$q\beta\in H_{1}(T)$ , the slope, $s(X)$ , of $X$ is defined by $p/q\in\hat{\mathbb{Q}}:=\mathbb{Q}\cup\{\infty\}$ .
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Definition 4.11. The Farey triangulation of $\mathbb{P}$ is an ideal triangulation
consisting of the ideal triangles $\{\gamma\sigma_{0}|\gamma\in PSL(2, \mathbb{Z})\}$ , where $\sigma_{0}$ is the ideal
triangle with vertices $\infty,$

$0,1\in\partial \mathbb{P}$ .

Lemma 4.12. The following holds.

1. For any generator pair $(A, B)$ , the slopes of $\mathrm{A},$ AB and $B$ span an ideal
triangle in the Farey triangulation.

2. For any ideal edge (resp. ideal triangle) $\sigma$ in the Farey $triangulation_{J}$

there is a generator pair $(A, B)$ such that the slopes of $A$ and $B$ (resp.
$A,$ AB and $B$) span $\sigma$ .

The space of type-preserving representations is parametrized as follows
(cf. [3]).

Definition 4.13. Let $\mathcal{R}_{0}$ be the space of type-preserving irreducible repre-
sentations of $\pi_{1}(T)$ to $SL(2, \mathbb{C})$ up to conjugation, and set $\mathcal{M}=\{(x, y, z)\in$

$\mathbb{C}^{3}|x^{2}+y^{2}+z^{2}=xyz\}-\{(0,0,0)\}$ . Fix a generator pair $(A_{0}, B_{0})$ and let
$\Psi$ : $\mathcal{R}_{0}arrow \mathbb{C}^{3}$ be the map which sends $[\rho]$ to (Tr $\rho(A_{0}),$ $\mathrm{h}(A_{0}B_{0}),$ $\mathrm{b}(B_{0})$ ).

Proposition 4.14. The image of $\Psi$ is equal to $\mathcal{M}$ , and it is a homeomor-
phism onto the image.

Definition 4.15. An element of $\mathcal{M}$ is called a Markoff triple.

5 Jorgensen theory
In this section, we briefly review the work of Jorgensen [8] on the char-
acterization of combinatorial structures of punctured torus groups. (See
[3] for a complete proof of Jorgensen’s results for quasifuchsian punctured
torus groups.) In what follows, for any $\rho\in\overline{Q\mathcal{F}}$ , we denote $P({\rm Im} p)$ (resp.
$Ph({\rm Im}\rho))$ by $P(\rho)$ (resp. $Ph(\rho)$ ) for simplicity.

Theorem 5.1. For any $\rho\in Q\mathcal{F}$, $P(p)\subset \mathbb{C}$ consists of precisely two con-
nected components $P^{\pm}(\rho)$ , where $P^{-}(p)$ (resp. $P^{+}(\rho)$ ) is the component which
is lower (resp. higher) than the other in C. For each $\epsilon\in$ $\{-,$ $+\}$ , there is a
sequence $\{A_{j}^{\epsilon}\}$ of generators of $\pi_{1}(T)$ such that $\partial P^{\epsilon}(\rho)$ is the union of circular
edges $e_{j}^{\epsilon}(j\in \mathbb{Z})$ with the following property.

(i) For any $j,$ $k\in \mathbb{Z}_{f}$ it follows that $s(\mathrm{A}_{j+3k}^{\epsilon})=s(A_{j}^{\epsilon})_{Z}$ and the three slopes
$s\cdot(A_{0}^{\epsilon}),$ $s(A_{1}^{\epsilon}),$ $s(A_{2}^{\epsilon})$ span a triangle $\sigma^{\epsilon}$ of $D$ .

(ii) For any $j\in \mathbb{Z}_{Z}e_{j}^{\epsilon}$ is contained in $I(\rho(A_{j}^{\epsilon}))$ .
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(iii) If we denote by $\theta_{j}^{\epsilon}$ the half of the angle of $e_{j}^{\epsilon}$ in $I(p(A_{j}^{\epsilon}))_{f}$ then

$\theta_{0}^{\epsilon}+\theta_{1}^{\epsilon}+\theta_{2}^{\epsilon}=\tau\}/2$ .

Definition 5.2 (side parameter). For any $p\in QF$ , we define the two
points $l\text{ノ^{}\pm}(\rho)$ in $\ovalbox{\tt\small REJECT}$ as follows. For each $\epsilon\in$ $\{-,$ $+\}$ , let $\sigma^{\epsilon}$ be the triangle
in $D$ determined by Theorem 5.1. Then $\nu^{\epsilon}(p)$ is the point in the triangle $\sigma^{\epsilon}$

with barycentric coordinate $(\theta_{0}^{\epsilon}, \theta_{1}^{\epsilon}, \theta_{2}^{\epsilon})$ . The point $\nu(\rho)=(\nu^{-}(p), \nu^{+}(\rho))\in$

$\ovalbox{\tt\small REJECT}\cross \mathbb{H}^{2}$ is called the side parameter of $\rho$ .

Theorem 5.3. (1) For any $p\in QF$ , the combinatorial structure of $Ph(\rho)$

is described by using $\nu(\rho)$ .

(2) The map $\nu$ : $QFarrow \mathbb{P}\cross \mathbb{H}^{2}$ is a homeomorphism.

The following theorem gives an extension of the side parameter to $\overline{QF}$ .
(See [1] for an outline.)

Theorem 5.4. The map $\nu$ : $QFarrow \mathbb{P}\cross \mathbb{P}$ is extended to a map $\nu=$

$(\nu^{-}, \nu^{+})$ : $\overline{Q\mathcal{F}}arrow\overline{\mathbb{H}^{2}}\cross\overline{\mathbb{P}}-\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}(\partial \mathbb{P})$ with the following property.

(1) For any $\rho\in\overline{Q\mathcal{F}}$, the combinatorial structure of $Ph(\rho)$ is described by
using $\nu(p)$ .

(2) The map $\nu$ is surjective, and it is continuous in the strong topology on
$\overline{QF}$ .

(3) For each $\epsilon=\pm_{f}\nu^{\epsilon}(p)\in\partial \mathbb{H}^{2}$ if and only if $\lambda^{\epsilon}(p)\in\partial \mathbb{H}^{\mathit{2}}$ . Moreover,

under the mutually equivalent conditions, it follows that $\nu^{\epsilon}(\rho)=\lambda^{\epsilon}(\rho)$ .

Since the fundamental group of a punctured torus bundle contains the
fundamental group of the fiber surface as a normal subgroup, we obtain the
following corollary, which is first proved by Lackenby [10] with a topological
argument.

Corollary 5.5. For any hyperbolic punctured torus bundle over the circle,

the Ford domain of the image of the holonomy representation of the complete
hyperbolic structure is dual to the “Jorgensen $r_{S}$ triangulation“ (cf. [6]).

6 Deformation space for $M(p, q)$

Fix a pair of coprime integers $(p, q)\neq(\mathrm{O}, \pm 1)$ , and set $M=M(p, q)$ . We shall
denote by $\mathcal{M}P$ the space of geometrically finite hyperbolic structures on the
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pared manifold $(M, P)$ with the parabolic locus $P$ . Then, by Corollary 3.3,
$\mathcal{M}P$ is not empty, and hence is isomorphic to the square of the $\mathrm{T}\mathrm{e}\mathrm{i}\mathrm{c}\mathrm{h}\mathrm{m}\dot{\acute{\mathrm{u}}}1\mathrm{l}\mathrm{e}\mathrm{r}$

space Teich $(T)\cross \mathrm{T}\mathrm{e}\mathrm{i}\mathrm{c}\mathrm{h}(T)$ by the Marden’s isomorphism theorem.
By using a presentation of $\pi_{1}(M)$ , we can embed Mr into an affine space.

Definition 6.1. Let $\mathcal{E}$ : $\mathcal{M}Parrow \mathcal{R}_{0}\cross \mathcal{R}_{0}$ be the map defined as follows. For
any element of $\mathcal{M}\mathcal{P}$ , let $p’.\pi_{1}(M)arrow SL(2, \mathbb{C})$ be (a lift of) the holonomy
representation. Then its image by $\mathcal{E}$ is defined to be $(p|_{\pi_{1}(T_{0}^{-})}, p|_{\pi_{1}(T_{0}^{+})})$ . (Since
$\mathcal{M}P$ is connected, it is well-defined by fixing a base-point and a lift at the
point.)

Let $\hat{\Psi}=\Psi^{-}\cross\Psi^{+}:$
$\mathcal{R}_{0}\cross \mathcal{R}_{0}arrow \mathcal{M}\cross \mathcal{M}$ be the product map, where each

$\Psi^{\epsilon}(\epsilon=\pm)$ is defined from the generator pair $(\alpha^{\epsilon}, \beta^{\epsilon})$ . By Lemma 3.4 and
the Covering Theorem (cf. [4]), we obtain the following proposition.

Proposition 6.2. The image of $\mathcal{E}$ is contained in

$(QF\cross Q\mathcal{F})\cap\hat{\Psi}^{-1}(\{((x^{-}, y^{-}, z^{-}), (x^{+}, y^{+}, z^{+}))|x^{-}=x^{+}\})$ .

Remark 6.3. One obtains another polynomial equation in $\mathcal{M}\cross \mathcal{M}$ for
$\mathcal{E}(\mathcal{M}P)$ from the relation coming from the Dehn filling.

7 Ford domains for structures in $\mathcal{M}7\mathit{2}$

To answer Problem 1.1 for the pared manifold $(M, P)$ with a coprime integers
$(p, q)\neq(\mathrm{O}, \pm 1)$ , we will follow the following program.

(1) Construct a geometrically finite hyperbolic structure on the pared man-
ifold $(M_{0}, P\cup\partial N(\gamma))$ with the parabolic locus $P\cup\partial N(\gamma)$ .

(2) Construct a geometrically finite hyperbolic structure in $\partial \mathcal{M}P$ by hyper-
bolic Dehn surgery on the structure obtained in (1).

(3) By using the “geometric continuity” argument, which is used in the Jor-
gensen theory, characterize the combinatorial structures of Ford domains
of the structures in $\mathcal{M}P$ .

Step (1) in the program is already done (see Figure 5), which is obtained
from Jorgensen’s characterization; just take the “double” of the Ford domain
of a double cusp group.

Step (2) is done by studying the Ford domains after hyperbolic Dehn
surgery (cf. [2]). Figure 6 is the Ford domain for a structure in $\partial \mathcal{M}P$ for
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Figure 5: Ford domain of a structure on $(\Lambda I_{0}, P\cup\partial \mathit{1}\mathrm{V}(\gamma^{f}))$

Figure 6: Ford doinain of a structure in $\partial,\nu tP$ for $(p, q)=(3,5)$
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Figure 7: Ford domain corresponding to the ccfixed point” in $\mathcal{M}P$

$(p, q)=(3,5)$ . It is roughly the combination of the Ford domain obtained by
Step (1) and the Ford domain of some cyclic Kleinian group (see Figure 2).

Let $\mathcal{M}P_{\mathrm{s}\mathrm{y}\mathrm{n}1}$ be the subspace of $/\vee tP$ consisting of the structures whose
image by $\hat{\Psi}\mathrm{c}\mathcal{E}$ is of the form $((x, y, z), (x’, z, y))$ . For a gluing map $T_{0}^{-}arrow T_{0}^{+}$

with certain ((
$\mathrm{s}\mathrm{y}\mathrm{m}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{y}^{)}’$ , the invariant hyperbolic structure is contained in

$\mathcal{M}P_{\mathrm{s}\mathrm{y}\mathrm{r}\mathrm{n}}$ . The parameters of some of such structures are explicitly determined.
Figure 7 is the Ford domain of such a structure in $\mathcal{M}P_{\mathrm{s}\mathrm{y}\mathrm{m}}$ for $(p, q)=(35)\rangle$ .

Conjecture 7.1. (1) An analogue of Jorgensen’s theory is valid for $\mathcal{M}P_{\mathrm{s}\mathrm{y}\mathrm{m}}$ .

(2) For any $(p, q)\neq(0, \pm 1)$ and any “symmetric” pseudo-Anosov homeo-
morphism $\varphi$ : $T_{0}^{-}arrow T_{0\prime}^{+}$ the Ford domain of the complete hyperbolic
structure on $M/\varphi$ has a “good“ combinatorial structure. (This should be
a corollary to the assertion (1).)
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