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ABSTRACT. We survey some of our recent results on length series identities for
hyperbolic (cone) surfaces, possibly with cusps $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ boundary geodesics;
classical Schottky groups; $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}$ of the one-holed torus
group to $\mathrm{S}\mathrm{L}(2, \mathrm{C})_{\mathrm{i}}$ and hyperbolic 3 manifolds obtained by hyperbolic Dehn
surgery on punctured torus bundles over the circle. These can be regarded
as generalizations and variations of $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\iota \mathrm{l}\mathrm{e}’ \mathrm{s}$ identity for cusped hyperbolic
surfaces, which has found some striking applications in the recent work of
Mirzakhani. We discugs some of the methods and techniques used to obtain
these identities.

1. Introduction

In his thesis [12], Greg $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$ gave a remarkable series identity for the lengths
of simple closed geodesics on a complete hyperbolic torus with one cusp. He gen-
eralized this later in [13] to an identity for a complete hyperbolic surface $M$ with
cusps. The identity he obtained is as follows:

Theorem 1.1. $(\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}[13])$ In a finite area hyperbolic surface $M$ with cusps
and without boundary, let $\Delta_{0}$ be a distinguished cusp of M. Then

$\sum\frac{1}{1+\exp\frac{1}{2}(|\alpha|+|\beta|)}=\frac{1}{2}$ (1)

where the sum is taken over all unordered pairs of simple closed geodesics $\alpha,$ $\beta$

(where ct or $\beta$ might be a cusp treated as a simple closed geodesic of length $0$ ) on
$M$ such that $\alpha,$ $\beta$ and $\Delta_{0}$ bound an embedded pair of pants on $M$ , and $|\alpha|$ denotes
the length of $\alpha$ .

In the case of the cusped torus, cr $=\beta$ for all pairs in the sum, and the sum
is over all simple closed geodesics a on the torus, which was the original identity
obtained in his thesis.

The proof of the identity was mostly $\mathrm{g}\mathrm{e}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{c}/\mathrm{t}\mathrm{o}\mathrm{p}\mathrm{o}\mathrm{l}\mathrm{o}\mathrm{g}\mathrm{i}\mathrm{c}\mathrm{a}\mathrm{l}$. For simplicity, con-
sider the case where the surface $M$ has only one cusp $\Delta_{0}$ . Let $\mathcal{H}$ be the set of
all geodesics emanating $\mathrm{h}\mathrm{o}\mathrm{m}\Delta_{0}$ . The subset $S\subset \mathcal{H}$ of simple geodesics (no self-
intersection) emanating from $\Delta_{0}$ turns out to be rather sparse, in fact, by the
Birman-Series Theorem [3], this set $S$ has zero measure in the set $\mathcal{H}$ . Furthermore,
apart from a countable set of isolated points corresponding to simple geodesics
which also terminate at $\Delta_{0}$ , this set forms a Cantor subset of $\mathcal{H}$ . Now identifying
$\mathcal{H}$ with a horocycle of length one about the cusp, it turns out each gap formed by
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the com lement of the Cantor set has end points corresponding to simple geodesics

which spiral around simple closed geodesics $\alpha$ and $\beta$ on the sur ace (with ‘opposite’

spiralling orientation, where the pair a and $\beta$ bound together with $\triangle 0$ an embed-
$\mathrm{d}\mathrm{e}\mathrm{d}$ pair of pants on the surface $M$ . Conversely, to every such pair $\alpha,$

$\beta$ , there are
two gaps with end points corresponding to simple geodesics which spira around $\alpha$

and $\beta$ with opposite orientation, and they both have the same wi$\mathrm{d}\mathrm{t}\mathrm{h}$ . Furt ermore,

by a sim le hyperbolic geometry calculation, the width of each gap depends only

on $|\alpha|$ and $|\beta|$ and is given by the summand in the left hand side of (1). Theorem
1.1 then follows. It should be noted that the hyperbolic geometry needed to obtain

the formula can be restricted to pairs of pants.
The isolated simple geodesics in $\mathcal{H}$ which start and end at $\Delta_{0}$ also have an

important geometric interpretation, each such geodesic 6 defines uniquely a pair of
geodesics a and $\beta$ on $M$ bounding with $\Delta_{0}$ an embedded pair of pants in $M$ such
that the geodesic 6 is embedded in the pair of pants. Furthermore, the two ends of

6 lie in the corresponding two pairs of gaps.
In brief, the key ingredients in the proof of Theorem 1.1 are:

$\bullet$ the study of the set of simple geodesics on $M$ emanating from the cusp $\Delta_{0}$ ,
$\bullet$ the Birman-Series theorem, and
$\bullet$ some simple geometric identities for hyperbolic pairs of pants.

There have been several generalizations and variations of the identity:

$\bullet$ Bowditch gave an independent proof of the identity for the cusped torus in

[4] and [6], with substantial generalizations to type-preserving representa-
tions of the punctured torus group to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ satisfying certain conditions,

and also a variation of the identity for complete hyperbolic 3-manifolds
which are punctured torus bundles over the circle in [5].

$\bullet$ Akiyoshi, Miyachi and Sakuma gave variations of the identity for quasi-

fuchsian punctured torus $\mathrm{g}\mathrm{r}o$ups (in particular, to certain points on the
boundary of quasi-fuchsian space) and hyperbolic punctured surface bun-

dles over the circle in [1] and [2].
$\bullet$

$\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$ himself gave variations of the identity arising from a similar anal-
ysis of simple geodesics passing through the Weierstrass points of a cusped

torus and a closed hyperbolic genus two surface in [14] and [15].
$\bullet$ More recently, Mirzakhani proved and used a version of the identity for

bordered hyperbolic surfaces (surfaces with totally geodesic boundary) to
obtain some striking applications and connections to the Weil-Petersson
volume of the moduli space of bordered Riemann surfaces, the asymptotic
behavior of the number of simple closed geodesics of length less than $L>0$

on a closed hyperbolic surface and the Kontsevich-Witten formula on the
intersection numbers of tautological classes on the $\mathrm{m}o$duli space of curves
in [16], [17] and [18]. An important observation used in her papers is that
the identity is independent of the hyperbolic structure on $M$ (with fixed
boundary lengths), that is, it holds for all points in the moduli space.

In a different direction, we have also given generalizations and variations of the
identity to

$\bullet$ hyperbolic cone surfaces with cusps $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ geodesic boundary (with all
cone angles bounded above by $\pi$), with applications to generalizations of
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the Weierstrass identities for the one-hole/cone torus and closed genus two
surface [19];

$\bullet$ classical Schottky groups with applications to hyperbolic surfaces with ge-
odesic boundary in [20]; and

$\bullet$ general (not necessarily type-preserving) representations of the punctured
torus groups to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ with applications to closed hyperbolic 3-manifolds
obtained by hyperbolic Dehn surgery on hyperbolic punctured torus bun-
dles over the circle [22], [21].

In this paper, we will give an exposition of some of the main results and ideas
in [19], [20], [21] and [22], and also the connection with the works of $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$ ,
Bowditch, Mirzakhani, and Akiyoshi-Miyachi-Sakuma.

The main point of departure from the works of $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$, Bowditch, and Akiyoshi-
Miyachi-Sakuma in [19] is that we allow $\Delta_{0}$ (more generally $\Delta_{j}$ ) to vary, so that
it is not necessarily a cusp, but may be a cone point or boundary geodesic. In
particular, we consider geometric structures whose holonomy groups are not neces-
sarily discrete (which represents also a departure ffom the point of view of Mirza-
khani). From this point of view, it is natural to consider cone points to have purely
imaginary length. Extending this idea further, more generally, we may consider
representations of the surface group to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ so that the lengths, in particular,
the boundary lengths, are not necessarily real or purely imaginary. Flirom this, we
obtain generalizations of the identity to classical Schottky groups in [20]. The main
tools are analytic continuation, a lifting argument, an application of the Birman-
Series argument, and some general comparison results for the combinatorial length
and complex length of an element of the fundamental group corresponding to a
simple closed curve on a marked surface. In particular, this produces some surpris-
ing new identities for hyperbolic surfaces with boundary, arising from non-standard
markings, for example, we have a nontrivial series identity for the hyperbolic pair
of pants.

Finally, in [22] and [21], we pick up on the powerful ideas and combinatorial
techniques of Bowditch to show that a very general version of the identity can
be proved to hold for general $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ characters of a one-holed torus satisfying
some simple conditions. Similarly, we also show that various relative and restricted
versions of the identity hold. In particular, we are able to give necessary and
sufficient conditions (extended Bowditch $\mathrm{Q}$-conditions) for the identity to hold for
a general $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ character of the one-holed torus, [21], and furthermore, to give
relative versions of the identity to characters whicb are stabilized by certain cyclic
subgroups of the mapping class group generated either by an Anosov or reducible
element, and which satisfy a relative version of the Bowditch $\mathrm{Q}$-conditions [22].
These in turn have applications to complete and incomplete hyperbolic structures
on punctured torus bundles over the circle, and in particular, give length series
identities for “almost all” closed hyperbolic 3-manifolds obtained by hyperbolic
Dehn surgery on a complete hyperbolic torus bundle over the circle.

A feature of these techniques is that we do not have to use analytic continua-
tion to obtain the identities, and also, the identities can be proven for very general
representations for which the geometric interpretation is not necessarily clear. An-
other interesting feature of this method is that it gives an independent proof of the
Birman-Series result that the set of simple complete geodesics is sparse, the point
is that in the proof of the series identity, one is able to prove not just the absolute
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convergence of the series, but also to show that a suitably interpreted error term
approaches $0$ .

The rest of this paper is organized as follows. In \S 2, we discuss the identities for
cone surfaces, and also applications via covering arguments to generalized Weier-
strass identities for the one-holed torus and genus two surface. In \S 3, we discuss
the identities for the classical Schottky groups and finally in \S 4, we discuss the
identities for $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ characters of a one-holed torus.

Acknowledgements. The first named author would like to thank Prof. Michihiko
Fujii, the organizer of the symposium “Complex Analysis and geometry of hyper-
bolic $\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}^{)}$

’ held at RIMS, Kyoto in Dec 2005 for the invitation to attend and
speak at the symposium. This survey is based on the talks given by him at the
symposium.

2. Hyperbolic cone surfaces
$\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ original identity (1) can be generalized to hyperbolic cone surfaces,

possibly with cusps $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ totally geodesic boundary, where all cone points have
cone angles less than or equal to $\pi$ . For this purpose, it is convenient to consider
the cone points, cusps and boundary geodesics as geometric boundary components
of $M$ and to define the complex length of a cone point as $i\theta$ , where $\theta$ is the cone
angle, the complex length of a cusp as $0$ , and the complex length of a boundary
geodesic as just the usual hyperbolic length. We call such a surface $M$ a compact
hyperbolic cone surface. We also define a generalized simple closed geodesic as

(a) a simple closed geodesic in the geometric interior of $M$ ; or
(b) a geometric boundary component (cone $\mathrm{p}\mathrm{o}\mathrm{i}\mathrm{n}\mathrm{t}/\mathrm{c}\mathrm{u}\mathrm{s}\mathrm{p}/\mathrm{g}\mathrm{e}\mathrm{o}\mathrm{d}\mathrm{e}\mathrm{s}\mathrm{i}\mathrm{c}$boundary) of

$M$ , with the corresponding complex lengths as defined earlier; or
(c) the double (cover) of a simple geodesic segment joining two angle $\pi$ cone

points on $M$ , with length twice the length of the geodesic segment.

The result is then stated as follows.

Theorem 2.1. (Theorem 1.16 [19]) Let $M$ be a compact hyperbolic cone surface
with all cone angles in $(0, \pi]$ , and geometric $bo$unda$\mathrm{r}y$ components $\Delta_{0},$ $\Delta_{1},$

$\cdots,$
$\Delta_{N}$

with complex lengths $L_{0},$ $L_{1},$
$\cdots,$ $L_{N}$ respectively. Then

$\sum_{\alpha,\beta}2\tanh^{-1}(\frac{\sinh^{\underline{L}_{4}}2}{\cosh\frac{L}{2}\alpha+\exp 1^{\alpha}\perp+\llcorner\beta 12})$

$+ \sum_{\mathrm{j}=1}^{N}\sum_{\beta}\tanh^{-1}(\frac{\sinh^{L}\mathrm{r}_{2}\sinh^{\underline{L}}\overline{2}^{\mathit{1}}}{\cosh \mathrm{u}_{2}\beta+\cosh^{L_{\Delta}}-\cosh-2\lrcorner\iota_{2}}$. $)= \frac{L_{0}}{2}$ , (2)

if $\Delta_{0}$ is a cone point or a boundary geodesic; and

$\sum_{\alpha,\beta}\frac{1}{1+\exp^{1^{\alpha}\perp_{2}\mathrm{u}\beta}+}+\sum_{j=1}^{N}\sum_{\beta}\frac{1}{2}\frac{\sinh^{L}r2}{\cosh\frac{|\beta|}{2}+\cosh- L_{4}2}=\frac{1}{2}$ , (3)

if $\Delta_{0}$ is a cusp; where in either case the first sum is taken over all unordered
pairs of generalized simple closed geodesics a, $\beta$ on $M$ which bound with $\Delta_{0}$ an
embedded pair of pants on $M$ (note that one of $\alpha,$ $\beta$ might be a geometric boundary
component) and the sub-sum in the second sum is taken over all generalized simple
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closed geodesics $\beta$ which bounds with $\Delta_{j}$ and $\Delta_{0}$ an embedded pair of pants on $M$ .
Furthermore, each series in (2) and (3) converges absolutely.

The summands in the first sum correspond to main gaps and those in the second
series correspond to side gaps. Note that $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ identity (1) is a special case
of (3) where $\Delta_{0}$ is acusp and all the summands in the second series are zero since
none of $\Delta_{j},$ $j=1,$ $\ldots N$ are cone points or boundary geodesics. Also, the identity
(3) can be derived from the first order infinitesimal terms of the identity (2).

For the purpose of generalizations to classical Schottky groups later, we define
the functions $G(x, y, z)$ and $S(x, y, z)$ corresponding to the “main gaps” and the
“side gaps” as follows, where the $\log$ function takes its principal branch, i.e., with
imaginary part in $(-\pi,\pi]$ , and the function $\tanh^{-1}$ is defined by

, $\tanh^{-1}(x)=\frac{1}{2}\log\frac{1+x}{1-x}$ for $x\in \mathrm{C}\backslash \{\pm 1\}$ ,

and hence has imaginary part in $(-\pi/2, \pi/2)$ .
Deflnition 2.2. For $x,$ $y,$ $z\in \mathrm{C}$ , we define

$G(x, y_{)}z):=2 \tanh^{-1}(\frac{\sinh(x)}{\cosh(x)+\exp(y+z)})$ , (4)

$S(x, y, z):= \tanh^{-1}(\frac{\sinh(x)\sinh(y)}{\cosh(z)+\cosh(x)\cosh(y)})$ . (5)

It can be shown that $G(x, y, z)$ and $S(x, y, z)$ can also be expressed as

$G(x, y, z)= \log\frac{\exp(x)+\exp(y+z)}{\exp(-x)+\exp(y+z)}$ , (6)

$S(x, y, z)= \frac{1}{2}\log\frac{\cosh(z)+\cosh(x+y)}{\cosh(z)+\cosh(x-y)}$ , (7)

as used by Mirzakhani in [16].

The basic idea of the proof of Theorem 2.1 is similar to that in [13], we pick a dis-
tinguished boundary component $\Delta_{0}$ (which may be a cone point, cusp, or boundary
geodesic), and consider the set of all $\mathrm{g}\mathrm{e}o$desics $\mathcal{H}$ emanating normally from $\Delta_{0}$ (one
only needs to worry about “normally” when $\Delta_{0}$ is a boundary geodesic). Topolog-
ically, this set is a circle; geometrically, we can put a natural measure on this circle
as follows. In the case $\Delta_{0}$ is a cusp, we identify $\mathcal{H}$ as before with the horocycle
of length one around $\Delta_{0;}$ in the case $\Delta_{0}$ is a boundary geodesic of length $L_{0}$ , we
identify $\mathcal{H}$ with $\Delta_{0}$ itself with length $L0$ ; and in the case where $\Delta_{0}$ is a cone point
with cone angle $\theta_{0}$ , we identify $\mathcal{H}$ with a circle about $\Delta_{0}$ with the natural radian
measure $\theta_{0}$ . We then consider the subset $S\subset \mathcal{H}$ consisting of the simple, complete
geodesics, by which, we mean the geodesics emanating normally from $\Delta_{0}$ which are
simple and do not terminate at a cone point, cusp, or boundary geodesic, hence
are complete in the forward direction. By a slight variation of the Birman-Series
Theorem, this set again has zero measure $!.\mathrm{n}\mathcal{H}$ , and, as in the previous case, is
essentially a Cantor set (there may be a countable collection of isolated points).
As before, the complement $\mathcal{H}\backslash S$ consists of gaps bounded by end points which
correspond to geodesics spiralling around simple closed curves. However, in this
case, besides the main gaps which we had before, side gaps can occur, if some of
the other boundary components $\Delta_{k}$ are boundary geodesics. In this case, a side
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gap is bounded by two points corresponding to simple geodesics that spiral around
the same boundary component, but in opposite directions.

It turns out that the analysis is actually easier if we look at the set of geodesics
in $\mathcal{H}$ which are not in $S$ , that is, are not simple and complete. In this case, the
geodesic either intersects a boundary component, or has a self intersection, in the
latter case, we consider the initial part of the geodesic up to the first point of self
intersection. In either case, by considering a tubular neighborhood of the union
of this geodesic (segment) 6 with $\Delta_{0}$ , one obtains two curves $\alpha$ and $\beta$ , unique up
to homotopy which bound together with $\Delta_{0}$ an embedded pair of pants $P$ in $M$

which contains 6. Now the condition that all cone angles are less than or equal
to $\pi$ ensures that $\alpha$ and $\beta$ are realizable as generalized geodesics, so we have an
embedded pair of pants with $\Delta_{0}$ , a and $\beta$ as the boundary components. Now the
geodesic 5 lies in either a main gap or a side gap, see Figures 1 and 2, where the
geodesics $\gamma_{\alpha}$ and $\gamma_{\beta}$ in Figure 2 are geodesics which spiral around a and $\beta$ with
opposite orientations and bound a main gap. The computation of the width of the
gaps proceeds as before but is somewhat more complicated because of the various
cases that can occur depending on whether or not one of $a,$ $\beta$ is a boundary geodesic
around a cone point of $M$ . Note that if $\Delta_{j}$ is a cone point, we do not expect to
have a side gap from this point of view, however, if we wish to interpret the gaps as
analytic functions of the boundary lengths, then there should be a purely imaginary
side gap if for example $\Delta_{0}$ is a boundary geodesic and $\Delta_{j}$ is a cone point. Similarly,
in this case, the main gap is no longer real or purely imaginary. In fact, the formula
given in Theorem 2.1 takes this analytic point of view and is a complexified, unified
version of all these different cases. There is a geometric interpretation of these
(complexified) gaps by considering the picture in $\mathbb{H}^{3}$ , see [19] for details.

In the case where there are no cone points, $G(x, y, z)$ and $S(x, y, z)$ are positive
real for all summands, and the absolute convergence is trivial, but if there are some
cone points, the summands in the formula are not necessarily real and positive, and
the absolute convergence of the various series is no longer obvious and requires jus-
tification, hence the last statement given in the theorem. The absolute convergence
is proven by using a modification of the Birman-Series argument.

It is important to note that for the above analysis to work, all essential simple
closed curves should be realizable as generalized simple geodesics, that is, either
geodesics or the double cover of a geodesic segment between two angle $\pi$ cone
points. However, for this to be true, we require all cone angles to be less than or
equal to $\pi$ , and our proof is by a convexity argument and a suitable application of
the Arzela-Ascoli Theorem. It is not clear how this condition can be relaxed, hence,
a $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$ type identity for general closed hyperbolic surfaces without boundary
remains elusive.

The above is closely related to the formula obtained by Mirzakhani for hyperbolic
surfaces with geodesic boundary in [16]. In particular, her analysis works for the
cone hyperbolic surfaces we consider and the same (recursive) formula for the Weil-
Petersson volumes of the moduli space of bordered Riemann surfaces holds for cone
Riemann surfaces (possibly with geodesic boundary), where the lengths of cone
boundary components are given by $i\theta$ , where $\theta$ is the cone angle. It also seems that
the same analysis she uses to study the asymptotics of the lengths of simple closed
geodesics on closed hyperbolic surfaces in [17] should carry over to the situation we
study, namely, there should be a constant $C_{M}$ depending only on the hyperbolic

25



LENGTH SERIES IDENTITIES

structure on the cone hyperbolic surface $M$ (with all cone angles bounded above
by $\pi$ ) such that the number of simple closed geodesics on $M$ of length less than
$L$ is asymptotic to $C_{M}\cdot L^{6g-6+2N}$ where $N$ is the number of geometric boundary
components, and $6g-6+2N>0$ . As for the relation to the Kontsevich-Witten
formula, and the recursion formula for the volumes of the moduli space in [18], there
is also some recent work of Do and Norbury [7] generalizing Mirzakhani’s work to
cone surfaces.

We summarize the various points raised above:
$\bullet$ For a cone hyperbolic surface $M$ possibly with cusps $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ geodesic bound-

ary, if all cone angles are less than or equal to $\pi$ , then all essential simple
closed curves on $M$ are realizable by (generalized) simple closed geodesics.

$\bullet$ The Birman-Series theorem generalizes to these cone surfaces. A modifi-
cation of the argument used in the proof can also be used to prove the
absolute convergence of the various series in the identity.

$\bullet$ The gaps formed by taking the complement of the simple complete geodesics
emanating normally $\mathrm{h}\mathrm{o}\mathrm{m}$ a fixed boundary component can be calculated.
Apart from the main gaps which occur in the cusped case, side gaps may
also occur if there are other boundary components which are cone points
or boundary geodesics.

$\bullet$ It is easier to study the set of geodesics which are not simple and complete,
these either have self intersection or intersect the boundary of $M$ , and give
rise to pairs of pants embedded in the surface.

$\bullet$ The analysis of geodesics in $M$ emanating from a boundary component can
be restricted to just the analysis of geodesics in a pair of pants.

Theorem 2.1 together with the fact that a one-holed hyperbolic $\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{u}\mathrm{s}/(\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{e}\mathrm{d}$

hyperbolic surface of genus two) admits a canonical elliptic/(hyperelliptic) involu-
tion and some general covering arguments can be used to deduce further identities
for the one-holed hyperbolic $\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{u}\mathrm{s}/$(genus two surface). These can be regarded as
generalizations of the Weierstrass identities given by $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$ in [14] and [15]. Here
when we say a one-holed torus, we mean that the boundary may be a geodesic, cusp
or cone point. We have:

Corollary 2.3. (Corollary 1.10 [19]) Let $T$ be either a hyperbolic one-cone torus
where the single cone point has cone angle $\theta\in[0,2\pi)$ or a hyperbolic one-holed torus
where the single boundary geodesic has length $l\geq 0$ . Then we have respectively

$\sum_{\gamma\in A}\tan^{-1}(\frac{\cos\frac{\theta}{4}}{\sinh\frac{|\gamma|}{2}})=\frac{\pi}{2}$ , (8)

$\sum_{\gamma\in A}\tan^{-1}(\frac{\cosh\frac{\iota}{4}}{\sinh^{\cup\gamma}2})=\frac{\pi}{2}$ , (9)

where the sum in either case is taken over all the simple closed geodesics $\gamma$ in a
given Weierstrass class $A$ .

Note that a cusp can be regarded either as a cone point of cone angle $0$ or a
geodesic of length $0$ in either of the cases above.
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FIGURE 1.

Theorem 2.4. (Theorem 1.13, [19]) Let $M$ be a genus two closed hyperbolic surface.
Then

$\sum\tan^{-1}\exp(-\frac{|a|}{4}-\frac{|\beta|}{2})=\frac{3\pi}{2}$, (10)

where the sum is taken over all ordered pairs $(\alpha, \beta)$ of disjoint simple closed geodesics
on $M$ such that $\alpha$ is separating and $\beta$ is non-separating.

In fact, Corollary 2.3 can be extended to much more general representations of
$\pi_{1}(T)$ to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ (see [20]) and Theorem 2.4 can be extended to quasi-fuchsian
representations of $\pi_{1}(M)$ to $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ ( $[19]$ Addendum 1.15).

SKETCH OF PROOF OF COROLLARY 2.3 AND THEOREM 2.4. Let $\iota$ be the elliptic
involution on $T$ . Then $T/\iota$ is a sphere with four boundary components, three of
which are cone points of angle $\pi$ and the fourth a boundary component of length 1/2
or a cone point of cone angle $\theta/2$ depending on whether $T$ has a boundary geodesic
of length $l$ or a cone point of angle $\theta$ , respectively. Apply Theorem 2.1 to $T/\iota$

with one of the cone points of angle $\pi$ as $\Delta_{0}$ . Then the sum is over all generalized
simple closed geodesics on $T/\iota$ which are double covers of geodesic segments joining
the other two cone points of angle $\pi$ , these lift to geodesics on $T$ which are in the
Weierstrass class consisting of all geodesics which miss the lift of $\Delta_{0}$ on $T$ , giving
Corollary 2.3. For Theorem 2.4, again consider the hyperelliptic involution $\iota$ on $M$ .
Then $M/\iota$ is a sphere with six cone points, all of cone angle $\pi$ . Apply Theorem
2.1 to each of the six cone points. For each identity, the sum is now over all pairs
of disjoint $\alpha’$ and $\beta’$ on $M/\iota$ such that $\alpha’$ is a geodesic on $M/\iota$ which separates
it to two pieces each containing three cone points, and $\beta’$ is a double cover of a
geodesic segment on the piece separated by $a’$ containing $\Delta_{0}$ which connects the
other two cone points. Now take the sum over all the six identities and lift the
result to $M$ . Note that $\alpha’$ lifts to a separating geodesic on $M$ and $\beta’$ lifts to a
disjoint non-separating geodesic on $M$ and furthermore, all separating geodesics on
$M$ project to separating geodesics on $M/\iota$ which separate $M/\iota$ to two components
each containing exactly three cone points while non-separating geodesics on $M$

project to geodesic arcs on $M/\iota$ connecting exactly two of the cone points.
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FIGURE 2.

3. Classical Schottky groups

We first note that if $M$ is a hyperbolic surface with geodesic boundary com-
ponents, then the holonomy group is in fact a fuchsian Schottky group. We next
observe that in Theorem 2.1, the summands in the series are all analytic functions
of the lengths (if we take the analytic continuation of the $\tanh^{-1}$ function). These
are (real) analytic in the parameters of the Teichm\"uller space, which in turn is
locally homeomorphic to the representation variety (modulo conjugation) of repre-
sentations from $\pi_{1}(M)$ to $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{R})$ . It is natural to see if we can apply analytic
continuation to obtain generalizations of the result to representations of $\pi_{1}(M)$ to
$\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ or $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ . The absolute convergence of the series in question and the
connectedness of the deformation space are the two key issues. There are other
important technicalities. It turns out we can do this and obtain series identities
for classical Schottky groups which generalize $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ identity. We summarize
below some of the relevant points that crop up:

$\bullet$ Absolute $\mathrm{c}o$nvergence of the series in (2) for classical Schottky groups;
$\bullet$ Connectedness of the deformation space;
$\bullet$ Lifting of the representations from $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ ;
$\bullet$ Determination of an explicit half-length for transformations in $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ ;
$\bullet$ Choice of a fuchsian marking that will determine how the summands in (2)

are obtained.
To start with, we define classical Schottky space. Fix $n\geq 2$ . This is the space

of (marked) faithful representations ffom the free group $F_{n}$ on $n$ generators to
$\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ , up to conjugation, such that the image is a classical Schottky group.
We keep track of the marking, as this makes the statement of the results clearer
and more precise later.

Definition 3.1. A (marked) classical Schottky group (of rank $n$ ) is a discrete,
faithful representation $\rho$ : $F_{n}arrow \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ such that tfere is a region $D\subset \mathrm{C}_{\infty}$ ,
where $D$ is bounded by $2n$ disjoint geometric circles $C_{1},$ $C_{1}’,$ $\cdots,$ $C_{n},$ $C_{n}’$ in $\mathrm{C}_{\infty}$ ,
so that, for $i=1,$ $\ldots$ \dagger $n,$ $\rho(a_{i})(C_{i})=C_{i}’$ , and $\rho(a_{i})(D)\cap D=\emptyset$ . It is fuchsian
if the representation can be conjugated to a representation into $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{R})$ . Two
representations are equivalent if they are conjugate by an element of $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ .

The space of equivalent classes of marked classical Schottky groups is the marked
classical Schottky space, denoted by $S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ . To simplify notation, we use $\rho$ instead of
$[\rho]$ to denote the elements of $S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ . Note that every element of a classical Schottky
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group is loxodromic. One may associate a complex length $l(A)$ to each loxodromic
element $A\in \mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ , where if we consider $A$ as an orientation preserving isome-
try of $\mathbb{H}^{3}$ , the real part of $l(A)$ is the (positive) translation distance of A along its
axis, and the imaginary part is the rotation about the axis, where the orientation
is naturally induced by the translation direction of $A$ . The complex length $l(A)$ is
related to the trace by the formula

$l(A)=2 \cosh^{-1}(-\frac{1}{2}\mathrm{t}\mathrm{r}(A))$ , (11)

and is chosen to have positive real part (note that we could have done away with the
minus sign inside the $\cosh^{-1}$ function since the trace is only defined up $\mathrm{t}\mathrm{o}\pm \mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}$ ,
we add it here for consistency with the definition for the half length to be given
later). Then $l(A)$ is defined up to multiples of $2\pi i$ , and depend only $\mathrm{o}\mathrm{n}\pm \mathrm{t}\mathrm{r}(A)$ or
$\mathrm{t}\mathrm{r}^{2}(A)$ . More explicitly, we have $l(A)= \cosh^{-1}(\frac{1}{2}\mathrm{t}\mathrm{r}^{2}(A)-1)$ .

We may give a natural parametrization of $S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ by the ideal fixed points, and the
square of the traces or the complex lengths of $\rho(a_{i}),$ $i=1,$ $\ldots,$

$n$ as follows; here
we use $\mathrm{F}\mathrm{i}\mathrm{x}^{\pm}\rho(a_{\dot{f}})$ to denote the attracting and repelling fixed points of $\rho(a_{i})$ .

We first normalize $\rho$ by conjugation so that
$\mathrm{F}\mathrm{i}\mathrm{x}^{-}\rho(a_{1})=0$, $\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(a_{1})=\infty$ and $\mathrm{F}\mathrm{i}\mathrm{x}^{-}\rho(a_{2})=1$ .

Then it is not difficult to see that we can parameterize $\rho$ by

$(\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(a_{2}), \mathrm{F}\mathrm{i}\mathrm{x}^{-}\rho(a_{3}),$ $\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(a_{3}),$

$\cdots,$
$\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(a_{n});\mathrm{t}\mathrm{r}^{2}\rho(a_{1}),$

$\cdots,$
$\mathrm{t}\mathrm{r}^{2}\rho(a_{n}))$

$\in \mathrm{c}_{\infty}^{2n-3}\cross \mathrm{C}^{n}$ ,

or, alternatively, by

$(\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(a_{2}), \mathrm{F}\mathrm{i}\mathrm{x}^{-}\rho(a_{3}),$ $\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(a_{3}),$
$\cdots,$

$\mathrm{F}\mathrm{i}\mathrm{x}^{+}\rho(a_{n});l(\rho(a_{1})),$
$\cdots,$ $l(\rho(a_{n})))$

$\in \mathrm{C}_{\infty}^{2n-3}\cross(\mathrm{C}/2\pi i\mathrm{Z})^{n}$ .
With this normalized parametrization we have

Lemma 3.2. (Maskit [11]) The marked classical Schottky space $S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ is a path
connected open subset of $\mathrm{C}_{\infty}^{2n-3}\cross(\mathrm{C}/2\pi i\mathrm{Z})^{n}$ .
Deflnition 3.3. A fuchsian marking in $S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ is a fuchsian representation $\rho_{0}\in S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ .

For a fuchsian marking $\rho_{0},$
$\mathbb{H}^{2}/\rho_{0}(F_{n})$ is a complete hyperbolic surface. Its

convex core, $M_{0}$ , is a hyperbolic surface with geodesic boundary, which we call the
hyperbolic surface corresponding to the fuchsian marking. Let $\Delta_{0},$ $\Delta_{1},$

$\ldots,$
$\Delta_{m}$ be

the boundary components of $M_{0}$ . The image $\rho 0(F_{n})$ , and hence $F_{n}$ (since $\rho_{0}$ is
faithful), can be identified with $\pi_{1}(M_{0})$ , and if we define an equivalence $\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\sim$

on $F_{n}$ by $g\sim h$ if $g$ is conjugate to $h$ or $h^{-1}$ , then there is a bijection

$\mathrm{f}:F_{n}/\simarrow C$

from $F_{n}/\sim \mathrm{t}\mathrm{o}$ the set $C$ of ffee homotopy classes of closed curves on $M_{0}$ . Note that
there is a unique geodesic representative on $M_{0}$ for each nontrivial element of $C$ .
Definition 3.4. For a fixed fuchsian marking $\rho_{0}$ , let $M_{0}$ be the corresponding
hyperbolic surface. Let $\Delta_{0},$ $\Delta_{1},$

$\ldots,$
$\Delta_{n}$ be the boundary components of $M_{0}$ , and let

$[d_{i}]\in F_{n}/\sim,$ $i=0,$ $\ldots,$ $m$ be the equivalence class corresponding to the boundary
component $\Delta_{1}$ , that is $\int[d_{i}]=\Delta_{i}$ .
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(a) We define $P$ to be the set of all unordered pairs $\{[g], [h]\}$ of elements in
$F_{n}/\sim$ such that $\mathrm{f}[g]$ and $\mathrm{f}[h]$ are free homotopy classes of simple closed
curves which bound together with $\Delta_{0}$ an embedded pair of pants in $M_{0}$

(note that it is possible that $\mathrm{f}[g]=\Delta_{k}$ , for some $1\leq k\leq m$).
(b) For $j=1,$ $\ldots,$ $m$ , we define $B_{j}$ to be the set of elements $[g]\in F_{n}/\sim \mathrm{s}\mathrm{u}\mathrm{c}\mathrm{h}$

that $\int[g]$ bounds together with $\Delta_{0}$ and $\Delta_{j}$ an embedded pair of pants in
$M_{0}$ .

We will also need to define the half lengths, for which we need representations
into $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ instead of $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ . The main idea is that by choosing a lift of the
representation to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ , one can have a consistent choice of the half length for
elements of $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ . This follows closely the approach of Fenchel in [8], and the
reader is referred there for details.

Deflnition 3.5. If $\rho\in S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ and $\tilde{\rho}$ is a lift of $\rho$ to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ , then for an element
$g\in F_{n}$ , we define the specific half length $l(\tilde{\rho}(g))/2\in \mathrm{C}/2\pi i\mathrm{Z}$ of $\tilde{\rho}(g)$ by

$\cosh\frac{l(\tilde{\rho}(g))}{2}=-\frac{\mathrm{t}\mathrm{r}\tilde{\rho}(g)}{2}$ , (12)

with $\Re l(\tilde{\rho}(g))/2>0$ .
Note that the real part of the half length is just half of the real part of the

length, and both are positive, while the above choice fixes the imaginary part, up
to multiples of $2\pi i$ . The minus sign on the right-hand side of (12) is crucial.

Our main theorem for Schottky groups can then be stated as follows.
Theorem 3.6. Let $p\in S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$, and let $\overline{\rho}$ be any lift of $\rho$ to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ . Suppose $\rho_{0}$

is a fuchsian marking, with corresponding hyperbolic surface $M_{0}$ , and boundary
components $\Delta_{0},$

$\ldots,$
$\Delta_{m}$ . Let $P$ and $\mathcal{B}_{j},$ $j=1,$ $\ldots$ , $m$ be defined as in Definition

3.4, relative to $M_{0}$ . Then

$\sum$ $G( \frac{l(\tilde{\rho}(d_{0}))}{2},$ $\frac{l(\tilde{\rho}(g))}{2},$
$\frac{l(\tilde{\rho}(h))}{2})$

$\{[g],[h]\}\in P$

$+$ $\sum_{j=1}^{m}\sum_{[g\int\in \mathcal{B}_{j}}S(\frac{l(\tilde{\rho}(d_{0}))}{2},$
$\frac{l(\tilde{\rho}(d_{j}))}{2},$

$\frac{l(\tilde{\rho}(g))}{2})=\frac{l(\tilde{\rho}(d_{0}))}{2}$ $\mathrm{m}\mathrm{o}\mathrm{d} \pi i$ . (13)

Moreover, each series on the left-hand side of (13) converges absolutely.

Remark 3.7.
(a) In the case where $\rho=\rho 0$ , the above is just a reformulation of Theorem 2.1

for the case of a hyperbolic surface with geodesic boundary components,
and is true without the modulo condition. In fact, the lift can be chosen so
that the right-hand side is real and positive.

(b) The identity (13) is true only modulo $\pi i$ because we have fixed the choice
of the $\tanh^{-1}$ function in the definition of the functions $G(x, y)z)$ and
$S(x,y, z)$ (see Definition 2.2), which may differ from the values obtained by
analytic continuation by some multiple of $\pi i$ .

(c) The result is independent of the lift chosen. This is because if $\tilde{\rho}$ and $\overline{\rho}$ are
two different lifts of $\rho$ , then for each of the summands on the first series,
either tr $\tilde{\rho}(\mathit{9})$ , tr $\tilde{\rho}(h)$ and tr $\tilde{\rho}(d_{0})$ are all equal to tr $\overline{\rho}(g)$ , tr $\overline{\rho}(h)$ and tr $\overline{\rho}(d_{0})$

or exactly two of them differ by their signs (and sigilarly for the summands
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fabl

$[a]$ $[b]$

FIGURE 3. A commutator curve on the pair of pants

in the second series). In the latter case, two of the half lengths differ by $\pi i$ ,
but it can be easily checked that both $G(x, y, z)$ and $S(x, y, z)$ remain the
same if $\pi i$ is added to two of the arguments.

(d) The choice of the half length functions given above is not arbitrary but
arises from the computation of $G(x, y, z)$ and $S(x, y, z)$ as “gap” functions
(this is based on the convention adopted by Fenchel in [8], see [19] and [26]
for details). Roughly speaking, the relative positions of the axes for $\tilde{\rho}(g)$ ,
$\tilde{\rho}(h)$ and $\tilde{\rho}(d_{0})$ are completely determined by their traces. These axes form
the non-adjacent sides of a right angled hexagon in $\mathbb{H}^{3}$ and the half lengths
basically arise as the lengths of these sides of the hexagon.

We refer the reader to [20] for details of the proof. We mention here that to
prove the absolute convergence of the series concerned, we use a combinatorial
word length for elements of $P$ and $\mathcal{B}_{j}$ , and by adapting an argument from [3], we
can show that there is a polynomial bound (in $n$) for the number of elements of $\mathcal{P}$

(respectively $\mathcal{B}_{j}$ ) with combinatorial length $n$ . We then show that for $\rho\in S_{\mathrm{a}}^{\mathrm{m}\mathrm{C}}$ , the
combinatorial lengths of the elements of $\mathcal{P}$ (respectively $B_{j}$ ) are comparable to the
real part of the complex lengths of their image under $\rho$ in $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ and use these
two facts to prove the absolute convergence of the series in question.

Example 3.8. (A nontrivial identity for the hyperbolic pair of pants.) Theorem
3.6 can be applied to rank two classical Schottky groups to obtain some interesting
nontrivial identities for the hyperbolic pair of $\mathrm{p}\mathrm{a}\mathrm{n}\mathrm{t}8$ with geodesic boundary. The
idea here is that the fundamental group in this case is free on two generators and is
isomorphic to the fundamental group of the one-holed torus. The holonomy $\rho$ for
the pair of pants is in $S_{\mathrm{a}}^{\mathrm{m}\mathrm{c}}$ , as is the holonomy $\rho_{0}$ for the one-holed torus. Using
the identity obtained from $\rho_{0},\mathit{0}$ne obtains a nontrivial identity for $\rho$ via Theorem
3.6. There are interesting geometric interpretations for each of the terms in the
identity, see \S 5 of [20] for details. Note that in this case, the commutator $aba^{-1}b^{-1}$

of a pair of generators is a non-simple closed curve on the pair of pants, as shown
in Figure 3, and that its trace tr $\rho(aba‘ 1b^{-1})>18$ .
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4. The $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ characters of a one-holed torus

The restriction of Theorem 2.1 to a torus with a cusp was the original identity
obtained by $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$ in his thesis. The identity (2) restricted to a one-cone or
one-holed torus $T$ can be regarded as generalizations of this original identity, and
reinterpreted as an identity for representations (or more accurately, characters) of
the one-holed torus group $\pi:=\pi_{1}(T)$ to $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{R})$ , as we saw in the previous sec-
tion. It is natural to ask how far this result can be extended to representations into
$\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ . Indeed one already has the extension to quasi-fuchsian representations
by Bowditch, and the example given at the end of the previous section showed that
we can extend the identity to the case of classical Schottky representations, includ-
ing those arising from a hyperbolic pair of pants. These, however, required some
special properties including the discreteness of the representation, which seemed
unnecessarily restrictive. For example, given a representation arising as the holo-
nomy of a one-cone hyperbolic torus with say cone angle $\theta$ (which is not necessarily
discrete), one would expect that for sufficiently small perturbations of the repre-
sentation into $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ , the identity would still hold. This turns out to be true,
and in fact, one can give very comprehensive answers to the questions posed above.
For example, we can obtain necessary and sufficient conditions for the generalized
$\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ identity to hold for $\mathrm{r}\mathrm{e}\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}/\mathrm{c}\mathrm{h}\mathrm{a}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}$of $\pi$ into $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ . For
this, it turns out that Bowditch’s proof via $\mathrm{a}\mathrm{l}\mathrm{g}\mathrm{e}\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{c}/\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l}$methods are
extremely useful, and this is the approach we use and generalize in [22] and [21] to
solve this problem. Another useful corollary of this method is that we are able to
obtain various restricted and relative versions of the identity, the latter of which
have geometric interpretations in terms of punctured torus bundles over the cir-
cle, and in particular, allows us to prove identities for certain complete hyperbolic
3-manifolds obtained by hyperbolic Dehn surgery on hyperbolic punctured torus
bundles.

For the rest of this section, we will first start with some basic definitions, then
give statements of some of the main results, and finally list some of the key tech-
niques and issues involved in the proofs of the results. We should warn the reader
that the proofs are somewhat technical in some parts, details can be found in [6],
[22] and [21]. Note also that we shall be stating and proving results for represen-
tations(characters) into $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ instead of $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ . This makes no essential
difference since all representations of $\pi$ into $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ can be lifted to $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ as
$\pi$ is free, and the identities obtained will be independent of the lift chosen, and
hence can be stated as identities for $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{C})$ characters.

4.1. Basic Deflnitions. Let $T$ be a one-holed torus and $\pi$ its fundamental group
which is freely generated by two elements $X,$ $\mathrm{Y}$ corresponding to simple closed
curves on $T$ with geometric intersection number one.

Definition 4.1. The $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ character variety

$\mathcal{X}:=\mathrm{H}\mathrm{o}\mathrm{m}(\pi, \mathrm{S}\mathrm{L}(2, \mathrm{C}))//\mathrm{S}\mathrm{L}(2, \mathrm{C})$

of $T$ is the set of equivalence classes of representations $\rho:\pi\mapsto \mathrm{S}\mathrm{L}(2, \mathrm{C})$ , where the
equivalence classes are obtained by taking the closure of the orbits under conjuga-
tion by $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ .
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The character variety stratifies into relative character varieties: for $\kappa\in \mathrm{C}$ , the
$\kappa$-relative character variety , $\mathrm{V}_{\kappa}$ is the set of equivalence classes $[\rho]$ such that

tr $\rho(XYX^{-1}Y^{-1})=\kappa$

for one (and hence any) pair of generators $X,$ $Y$ of $\pi$ . Note that the commutator
$XYX^{-1}Y^{-1}$ represents a peripheral curve in $T$ . By classical results of IFIricke, we
have the following identifications:

$\mathcal{X}\cong \mathrm{C}^{3}$ ,

$\mathcal{X}_{\hslash}\cong\{(x, y, z)\in \mathrm{C}^{3}|x^{2}+y^{2}+z^{2}-xyz-2=\kappa\}$,

where the identification is given by

$\iota$ : $[\rho]\vdasharrow(x, y, z):=(\mathrm{t}\mathrm{r}\rho(X), \mathrm{t}\mathrm{r}\rho(\mathrm{Y}),$ $\mathrm{t}\mathrm{r}\rho(X\mathrm{Y}))$ ,

for a fixed pair of generators $X,$ $Y$ of $\pi$ . The topology on X and $\mathcal{X}_{\kappa}$ will be that
induced by the above identifications.

The outer automorphism group of $\pi,$
$\mathrm{O}\mathrm{u}\mathrm{t}(\pi):=\mathrm{A}\mathrm{u}\mathrm{t}(\pi)/\mathrm{I}\mathrm{n}\mathrm{n}(\pi)\cong \mathrm{G}\mathrm{L}(2, \mathbb{Z})$ is

isomorphic to the mapping class group $\Gamma:=\pi_{0}(\mathrm{H}\mathrm{o}\mathrm{m}\mathrm{e}\mathrm{o}(T))$ of $T$ and acts on $\mathcal{X}$ ,
preserving the trace of the commutator of a pair of generators, hence it also acts
on $X_{\kappa}$ , the action is given by

$\phi([\rho])=[\rho\circ\phi^{-1}])$

where $\phi\in \mathrm{O}\mathrm{u}\mathrm{t}(\pi)$ and $[\rho]\in \mathcal{X}$ or , $\mathrm{V}_{\kappa}$ respectively. It is often convenient to con-
sider only the subgroup Out $(\pi)^{+}$ of “orientation-preserving” automorphisms, cor-
responding to the orientation-preserving homeomorphisms $\Gamma^{+}$ of $T$, which is iso-
morphic to $\mathrm{S}\mathrm{L}(2, \mathrm{Z})$ . The action of Out$(\pi)^{+}$ (respectively, Out $(\pi)$ ) on X and $\mathrm{X}_{\kappa}$

is not effective, the kernel is $\{\pm I\}$ , generated by the elliptic involution of $T$ so that
the effective action is by $\mathrm{P}\mathrm{S}\mathrm{L}(2, \mathrm{Z})$ (respectively, $\mathrm{P}\mathrm{G}\mathrm{L}(2,$ $\mathrm{Z})$ ).

4.2. Simple curves; Pants graph.

Deflnition 4.2. We denote by $\mathscr{C}$ the set of free homotopy classes of nontrivial,

non-peripheral, unoriented simple closed curves on $T$ . Elements of $\mathscr{C}$ are usually

denoted by $X,$ $Y,$ $Z,$ $W$ .

The elements of $\mathscr{C}$ correspond to certain elements of $\pi/\sim$ , where the equivalence
$\mathrm{r}\mathrm{e}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\sim \mathrm{i}\mathrm{s}$ that, for $g,$ $h\in\pi,$ $g\sim h$ if and only if $g$ is conjugate to $h$ or $h^{-1}$ . We
also denote the corresponding subset of $\pi/\sim \mathrm{b}\mathrm{y}\mathscr{C}$, there should be no confusion.

Deflnition 4.3. The pants graph $\mathscr{C}(T)$ of $T$ , is defined to be the graph whose
vertices are the elements of $\mathscr{C}$ , and two vertices are joined by an edge if and only

if the corresponding curves on $T$ have geometric intersection number one.

The mapping class group $\Gamma$ and Out$(\pi)$ act on $\mathscr{C}$ (respectively $\mathscr{C}(T)$ )
$.2$

We can
realize $\mathscr{C}(T)$ as the Farey $\mathrm{g}\mathrm{r}\mathrm{a}\mathrm{p}\mathrm{h}/\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{n}\mathrm{g}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$ of the upper half plane $\mathbb{H}$ so that
$\mathscr{C}$ is identified with $\hat{\mathrm{Q}}:=\mathrm{Q}\cup\{\infty\}$ , the action of $\Gamma$ is realized by the action of
$\mathrm{P}\mathrm{G}\mathrm{L}(2, \mathrm{Z})$ on the Farey graph. The projective lamination space $\mathscr{P}\mathscr{L}$ of $T$ is then

identified with $\hat{\mathrm{R}}:=\mathrm{R}\cup\{\infty\}$ and contains $\mathscr{C}$ as the (dense) subset of rational
points.

33



LENGTH SERIES IDENTITIES

4.3. Bowditch $\mathrm{Q}$-conditions ( $\mathrm{B}\mathrm{Q}$-conditions). We define a certain subspace
of $X$ which we will call the Bowditch space. First note that for $[\rho]\in \mathcal{X}$ and $X\in \mathscr{C}$ ,
tr $\rho(X)$ is well-defined.

Definition 4.4. The Bowditch space is the subset $X_{BQ}\subset X$ consisting of charac-
ters $[\rho]$ satisfying the following conditions (the Bowditch Q-conditions):

(1) tr $\rho(X)\not\in[-2,2]$ for all $X\in \mathscr{C}$ ;
(2) $|\mathrm{t}\mathrm{r}\rho(X)|\leq 2$ for only finitely many (possibly no) $X\in \mathscr{C}$ .

F’or a fixed $[\rho]\in X$ and $U\subset \mathscr{C}$ , we say that the $\mathrm{B}\mathrm{Q}$-conditions are satisfied on
$U$ for $[\rho]$ if conditions (1) and (2) above hold for all $X\in U$ .

4.4. Statement of results for $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ characters. We have the following ex-
tension and generalization of Theorem 2.1 to characters in $X$ .
Theorem 4.5. (Theorems 2.2, 2.3 and Proposition 2.4 of [22])

(a) Bowditch space $X_{BQ}$ is open in the whole character space $X$ .
(b) The mapping class group $\Gamma$ acts properly discontinuously on $\mathcal{X}_{BQ}$ . $f\mathrm{t}\iota$rther-

more, $X_{BQ}$ is the largest open subset of $X$ for which this holds.
(c) For a character $[\rho]\in X_{BQ}\cap \mathcal{X}_{\kappa \mathrm{z}}$

$\sum_{X\in l}\log\frac{e^{\nu}+e^{l(\rho(X\rangle)}}{e^{-\nu}+e^{l(\rho(X))}}=\nu$ mod $2\pi i$ , (14)

where $\nu=\cosh^{-1}(-\kappa/2)$ , and the sum converges absolutely.

Remark 4.6.
(1) The (complex) length $l(\rho(X))$ is related to the trace as in equation (11).
(2) We are using the formula for $G(x, y, z)$ given in (6) for part (c), note that

there are no $S(x, y_{)}z)$ terms since there is only one boundary comp$\mathit{0}$nent.
(3) In the case when $\kappa=-2,$ $\nu=0$ and all the terms of (14) are identically zero.

However, if we take the first order infinitesimals, or the formal derivative
of (14) with respect to $\nu$ and evaluate at $\nu=0$ , we get

$\sum_{X\in\vee}\frac{1}{1+e^{l(\rho(X))}}=\frac{1}{2}$ , (15)

which is $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ original identity in [12] for real type-preserving char-
acters, and also Bowditch’s generalization in [4] and [6] for type-preserving
characters satisfying the BQ-conditions.

(4) When $\kappa=2$ , which corresponds to the reducible characters, the identity
is also trivial. In this case, however, the Bowditch $\mathrm{Q}$-conditions are never
satisfied, see [23].

(5) Parts (a) and (b) of the above were originally stated in [22] in terms of the
relative character varieties $X_{\kappa}$ .

(6) $\nu$ is a specific choice of half of the complex length of the peripheral curve
on $T$ , note that the minus sign is crucial for the identity to hold.

4.5. Necessary and sufflcient conditions. Replacing condition (1) of the BQ-
conditions by (1’) tr $\rho(X)\not\in(-2,2)$ for all $X\in \mathscr{C}$ , we get the extended Bowditch
space $\hat{\mathcal{X}}_{BQ}$ , and we have the following result:
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Theorem 4.7. (Theorem 1.5 of [21]) For $[\rho]\in \mathcal{X}_{f}$ the identity (14) of Theorem
4.5(c) holds (with absolute convergence of the sum) if and only if $[\rho]$ lies in the

extended Bowditch space $\hat{X}_{B\mathrm{Q}}$ .

The above result gives a complete answer to the question of when the generalized
$\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ identity holds for $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ characters of $T$ .

4.6. $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$ -Bowditch identities for punctured torus bundles. We next
consider further variations of the $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$-Bowditch identities. Recall that $\theta\in$

$\mathrm{O}\mathrm{u}\mathrm{t}(\pi)\cong\Gamma$ acts on X where the action is given by
$\theta([\rho])=[\rho 0\theta^{-1}]$ .

Suppose that $[\rho]\in \mathcal{X}$ is stabilized by an Anosov element $\theta\in\Gamma^{+}$ (this corresponds
to a hyperbolic element if we identify $\Gamma^{+}$ with $\mathrm{S}\mathrm{L}(2, \mathrm{Z}))$ , that is, $\theta([\rho])=[\rho]$ .
We can associate to this a representation of $\pi_{1}(M)$ into $\mathrm{S}\mathrm{L}(2, \mathrm{C})$ , where $M$ is a
punctured torus bundle over the circle, with monodromy $\theta$ . The restriction of
the representation to the fibre is $[\rho]$ . We can find a specific lift of $\theta$ to $\mathrm{A}\mathrm{u}\mathrm{t}(\pi)$

which corresponds to choosing a specific longitude of the boundary torus of $M$ (see

[5] or [22] for details). So fixing a representation $\rho$ in the class $[\rho]$ , there exists
$A\in \mathrm{S}\mathrm{L}(2, \mathrm{C})$ such that for all $\alpha\in\pi$ ,

$\theta(\rho)(\alpha)=A\cdot\rho(\alpha)\cdot A^{-1}$ .
Note that tr $A$ is independent of the choice of $\rho$ in the conjugacy class $[\rho]$ . Note

also that tr $\rho(X)$ is well-defined on the equivalence classes [X] $\in \mathscr{C}/(\theta\rangle$ . Suppose

further that $[\rho]$ satisfies the relative Bowditch $\mathrm{Q}$-conditions on $\mathscr{C}/(\theta\rangle$ , that is,

(1) tr $\rho(X)\not\in[-2,2]$ for all $[X]\in \mathscr{C}/\langle\theta\rangle$ ;
(2) $|\mathrm{t}\mathrm{r}\rho(X)|\leq 2$ for only finitely many $[X]\in \mathscr{C}/\langle\theta\rangle$ .

Using the identification of $\Gamma^{+}$ with $\mathrm{S}\mathrm{L}(2, \mathrm{Z})$ and $\mathscr{C}$ with $\hat{\mathrm{Q}}\subset\hat{\mathrm{R}}\cong \mathit{9}\mathscr{L}$ in \S 4.2, we
get that the repelling and attracting fixed points of $\theta,$

$\mu_{-},$
$\mu+\in \mathrm{f}\mathscr{L}$ partition $\mathscr{C}$

into two subsets $\mathscr{C}_{L}\coprod \mathscr{C}_{R}$ which are invariant under the action of $\theta$ . We have the
following generalizations of the $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}$-Bowditch identities:

Theorem 4.8. (Theorems 5.6 and 5.9 of [22]) Suppose that $[\rho]$ is stabilized by an
Anosov element $\theta\in\Gamma^{+}$ and satisfies the relative Bowditch $Q$-conditions as stated
above. Then

$\sum_{[X]\in l/\langle\theta)}\log\frac{e^{\nu}+e^{l(\rho(X))}}{e^{-\nu}+e^{l(\rho(X))}}=0$ mod $2\pi i$ , (16)

and

$\sum_{[X]\in l\iota/\langle\theta\rangle}\log\frac{e^{\nu}+e^{l(\rho(X))}}{e^{-\nu}+e^{l(\rho(X))}}=\pm l(A)$ mod $2\pi i$ , (17)

where the sums converge absolutely; and $l(A)$ is the complex length of the conjugat-
$ing$ element $A$ corresponding to $\theta$ as described above, and the sign in (17) depends

only on our choice of orientations.

Remark 4.9. For type-preserving characters $(\kappa=-2)$ , the result is due to Bowditch
[5], where the summands of (16) and (17) should be replaced appropriately as in

Remark 4.6(3) by the summands of $\mathrm{M}\mathrm{c}\mathrm{S}\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{e}’ \mathrm{s}$ original identity, and $l(A)$ in (17)

should be replaced by $\lambda$ , the modulus of the cusp of $M$ with the complete, finite
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volume hyperbolic structure. There are also similar identities in the case where $\theta$

is reducible, that is, corresponds to a parabolic element of $\mathrm{S}\mathrm{L}(2, \mathrm{Z})$ , see [21].

The above result has applications to closed hyperbolic 3-manifolds. As before,
let $M$ be an orientable 3-manifold which fibers over the circle, with the fiber a once-
punctured torus, $T$ and suppose that the monodromy $\theta$ of $M$ is Anosov. By results
of Thurston, see [25] and [24], $M$ has a complete finite-volume hyperbolic struc-
ture with a single cusp, which can in turn be deformed to incomplete hyperbolic
structures, on which hyperbolic Dehn surgery can be performed to obtain complete
hyperbolic manifolds without cusps. Restricting the holonomy representation to
the fiber gives us characters which are stabilized by $\theta$ , and in the complete case,
the relative Bowditch $\mathrm{Q}$-conditions are satisfied (see [5]). For small deformations of
the complete structure to incomplete structures, the relative $\mathrm{B}\mathrm{Q}$-conditions are still
satisfied since these are open conditions (see [22]). The identities can be interpreted
as series identities for these (in)complete structures, involving the complex lengths
of certain geodesics corresponding to the homotopy classes of essential simple closed
curves on the fiber. The quantity $\nu$ can be interpreted as half the complex $1\mathrm{e}\mathrm{i}_{1}\mathrm{g}\mathrm{t}\mathrm{h}$ of
the meridian of the boundary torus, and $l(A)$ as the complex length of a (suitably
chosen) longitude of the boundary torus. In particular, the identity can be inter-
preted as an identity for the closed hyperbolic 3-manifolds obtained by hyperbolic
Dehn surgery on the original complete manifold, if the Dehn surgery invariants are
sufficiently close to $\infty$ .

One question which arises is whether the identity holds for all closed hyperbolic
3-manifolds obtained by hyperbolic Dehn surgery on a hyperbolic punctured torus
bundle over the circle. The openness of the relative $\mathrm{B}\mathrm{Q}$-conditions ensures that
this is true for almost all such manifolds (except for possibly a finite number of
exceptions). Another question arising is whether a similar result holds in the case
of hyperbolic Dehn surgery on punctured surface bundles, as studied by Akiyoshi,
Miyachi and Sakuma [2].

4.7. Key points used in the proofs. The combinatorial structure of $\mathscr{C}(T)$ as
well as the Fricke trace relation which can be interpreted as an edge relation play
fundamental roles which we sketch $\mathrm{h}e\mathrm{r}\mathrm{e}$ .

Recall that $\mathscr{C}(T)$ has the structure of the Farey tessellation, and the set of
vertices $\mathscr{C}$ can be identified with Q. The dual graph $\Sigma$ to $\mathscr{C}(T)$ is a trivalent tree
whose complementary regions can be identified with the vertices of $\mathscr{C}(T)$ . Denote
by $V(\Sigma),$ $E(\Sigma),\vec{E}(\Sigma)$ and $\Omega(\Sigma)$ the sets of vertices, edges, directed edges and
complementary regions of $\Sigma$ respectively. Call (X, Y) $\in \mathscr{C}\cross \mathscr{C}$ a generating pair
if $X$ and $\mathrm{Y}$ are connected by an edge in $\mathscr{C}(T)$ , and $(X, Y, Z)\in \mathscr{C}\cross \mathscr{C}\cross \mathscr{C}$ a
generating triple if $X,$ $Y$ and $Z$ are the vertices of a triangle in $\mathscr{C}(T)$ . Generating
pairs correspond to edges of $\Sigma$ and generating triples correspond to vertices of
$\Sigma$ . More specifically, to an edge $e$ of $\Sigma$ , we write $e=(X, Y;Z, Z’)$ if (X, $Y$)
corresponds to $e$ and (X, $Y,$ $Z$), $(X, Y, Z’)$ are generating triples. Similarly, we
use $earrow=(X, \mathrm{Y};Zarrow Z’)$ to indicate that the directed edge $e\mathrm{p}\mathrm{o}\mathrm{i}arrow \mathrm{n}\mathrm{t}\mathrm{s}\mathrm{h}\mathrm{o}\mathrm{m}Z$ to
$Z$‘, see Figure 5, where we have drawn part of $\Sigma$ , and used the identification of
$\Omega(\Sigma)$ with $\mathscr{C}$ . Denote by $-e\mathrm{t}\mathrm{h}arrow \mathrm{e}$ directed edge with the opposite direction to
$earrow$. For $earrow=$ $(X, \mathrm{Y};Zarrow Z‘)$ , we define Tai1 $(e)\neg$ , the tail of $e\mathrm{t}\mathrm{o}arrow$ be the subset of
$\mathscr{C}$ in the interval between $X$ and $\mathrm{Y}$ (inclusive) which contains $Z$ . In particular,
Tail $(e)arrow\cup \mathrm{T}\mathrm{a}\mathrm{i}\mathrm{l}(-e,)arrow=\mathscr{C}$, and Tail $(\overline{e})\cap \mathrm{T}\mathrm{a}\mathrm{i}\mathrm{l}(-e)\neg=\{X, \mathrm{Y}\}$ .
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For each character $[\rho]\in X_{\kappa}$ , by taking the trace function, we obtain a trace map

$\phi$ : $\mathscr{C}arrow \mathrm{C}$ where $\phi(X)=\mathrm{t}\mathrm{r}\rho(X)$ .
(We call it a generalized Markoff map in [22] following [6].)

Henceforth, for a fixed trace map $\phi$ , we adopt the convention of using the lower
case letters to represent the values of $\phi$ , that is, $\phi(X)=x,$ $\emptyset(Y)=y$ , etc. Then
$\phi$ satisfies the following vertex and edge relations, arising from the Fricke trace
identities:

Vertex relation. For every generating triple (X, $\mathrm{Y},$ $Z$),

$x^{2}+y^{2}+z^{2}-xyz-\kappa-2=0$ . (18)

Edge relation. For every edge $e=(X, Y;Z, Z’)$ ,
$z+z’=xy$ . (19)

It turns out that the edge relation is more fundamental than the vertex relation.
To start with, one can show easily that if the edge relation is satisfied for all
edges, than the vertex relation propagates along the edges to cover the entire tree
$\Sigma$ . Secondly, $\phi$ is completely determined by its values on any generating triple
(X, $\mathrm{Y},$ $Z$ ) by successively applying the edge relation (19).

Each $[\rho]\in \mathcal{X}$ (equivalently, the induced trace map $\phi$ on $\mathscr{C}$ ) determines a map
$f$ : $E(\Sigma)arrow\vec{E}(\Sigma)$ , where each edge $e$ is assigned a direction or flow $\mathrm{h}\mathrm{o}\mathrm{m}$ the larger
absolute value to the smaller one, that is,

$f(e)=e=arrow(X, \mathrm{Y};Zarrow Z’)$

if $|z|\geq|z’|$ . There is some ambiguity when $|z|=|z’|$ in which case we can assign
either direction. This ambiguity does not affect the large scale behavior of $f(E(\Sigma))$ ,
except in some very special trivial cases. We then have the following elementary
but important results (see [22] for proofs). For the purposes of our discussion, we
fix $[\rho]\in X_{\kappa}$ where $\kappa\neq 2$ ( $[\rho]$ is not reducible), with corresponding trace map $\phi$ .
Proposition 4.10. If (X, $Y,$ $Z$) is a generating triple corresponding to the vertex
$v\in V(\Sigma)$ and $f(e)$ points away from $v$ for at least two of the edges adjacent to $v$ ,
then $\min(|x|, |y|, |z|)\leq 2$ .
Lemma 4.11. (Bowditch [6]) For all $K\geq 2,$ $\mathscr{C}(K):=\{X\in \mathscr{C}|\phi(X)\leq K\}$

is connected, that is, the subgraph of $\mathscr{C}(T)$ spanned by $\mathscr{C}(K)$ is connected. $In$

panicular, $\mathscr{C}(2)$ is connected.

The above can be regarded as a quasi-convexity result, namely, for any $K\geq 2$ ,
for any $X,$ $Y\in \mathscr{C}(K)$ , the geodesic in $\mathscr{C}(T)$ joining $X$ to $Y$ is a bounded distance
$\mathrm{h}\mathrm{o}\mathrm{m}$ the subgraph in $\mathscr{C}(T)$ spanned by $\mathscr{C}(K)$ .
Proposition 4.12. Suppose that $X\in \mathscr{C}$ and $Y$ , $n\in \mathrm{Z}$ are the neighbors of $X$ , in
cyclical order.

(a) If $x\not\in[-2,2]\cup\{\pm\sqrt{\kappa+2}\}$ , then $\lim_{narrow\pm\infty}|y_{n}|=\infty$ with exponential growth
in $|n|$ .

(b) If $x=\pm 2$ and $\kappa\neq 2_{J}$ then $\lim_{narrow\pm\infty}|y_{n}|=\infty$ with linear growth in $|n|$ .

The proof of Theorem 4.5 now proceeds as follows:
First we show that the $\mathrm{B}\mathrm{Q}$-conditions are open conditions. This is achieved by

showing that the conditions are controlled by a finite subtree of $\Sigma$ ; the proof is
essentially that given by Bowditch in [6], with some slight modifications.
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$T$ consists of 1 vertex $T$ consists of 1 edge and 2 vertices

FIGURE 4. Two simple circular sets $C(T)$

Next, we show that if $\phi$ satisfies the $\mathrm{B}\mathrm{Q}$-conditions, then the function $\log^{+}|\phi|$ $:=$

$\max\{0, \log|\phi|\}$ on $\mathscr{C}$ has lower Fibonacci growth. Roughly, this means that it is
comparable to the combinatorial (word) length function on $\mathscr{C}$ , that is, there exists
some $k>0$ such that $\log^{+}|\phi(X)|\geq k||X||_{w}$ for all but a finite number of $X\in \mathscr{C}$ ,
where $||X||_{w}$ is the (cyclically reduced) word length of $X$ with respect to any fixed
pair of generators for $\pi$ . This is achieved by showing that one can find a finite
subtree $T$ of $\Sigma$ such that $f(e)$ is directed towards $T$ for all $e\in\Sigma\backslash T$ , by applying
Proposition 4.10, Lemma 4.11 and Proposition 4.12. We can think of this subtree $T$

as the union of sufficiently long boundary paths of the elements of $\mathscr{C}(2)$ in $\Sigma$ (which
by the $\mathrm{B}\mathrm{Q}$-conditions is finite). Define the circular set $C(T)$ of $T$ to be the set of
directed edges $earrow\in\tilde{E}(\Sigma)$ adjacent to $T$ and directed towards $T$ , see Figure 4 where
examples of $C(T)$ are given for the two simplest cases of $T$ . Then $C(T)$ is finite,
and $\bigcup_{\mathrm{e}\in C(T)}arrow \mathrm{T}\mathrm{a}\mathrm{i}1(e)arrow=\mathscr{C}$. The lower bound is achieved by showing that the lower
bound holds for each of the sets Tail( $e7$ (with possibly different constants $k$)) where
$earrow\in C(T)$ , from which the general result on $\mathscr{C}$ follows since it is a finite union of
these sets. Now Theorem 4.5(b) follows from the lower Fibonacci growth, and one
deduces in a fairly straightforward manner that the series in (14) of Theorem 4.5(c)
converges absolutely, recalling the relation between the traces and the complex
lengths given in (11).

To complete the proof of Theorem 4.5(c) and show that the sum is indeed as
stated, we need to modify the methods of Bowditch [6] slightly. First note that
$\kappa=-2$ for all the characters $[\rho]$ considered in [6] (also called type-preserving).

Bowditch used the edge-weight function (which depends on the character $[\rho]$ , or,

equivalently, the corresponding trace map $\phi$) th $:=\psi_{\phi}$ : $\tilde{E}(\Sigma)arrow \mathrm{C}$ defined by

$\psi(e)arrow=z/xy$ , (20)

where $e\neg=(X, Y;Z’arrow Z)$ , and $x=\phi(X),$ $y=\phi(Y),$ $z=\phi(Z)$ in a very ingenious
manner to prove the result, by taking sums of $\psi(\tilde{e})$ over circular sets of larger and
larger subtrees $T$ of $\Sigma$ which eventually exhaust $\Sigma$ . The main properties of th which
were used are the following:

Lemma 4.13. (Properties of the edge-weight function th in the case $\kappa=-2.$ )
Suppose $\phi$ corresponds to a type-preserving character $[\rho]$ (that is, $\kappa=-2$ ) and
$\phi(X)\neq 0$ for all $X\in\Omega$ . If $\psi:=\psi_{\phi}$ is the edge-weight function defined by (20),
then
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(i) for a directed edge $earrow\in\vec{E}$ ,
$\psi(\overline{e})+\psi(-e)\sim=1$ ; (21)

(ii) for a circular set $C(T)\subset\tilde{E}$ ,
$\sum_{e\in C(T)}arrow\psi(e)arrow=1$ . (22)

Note that (21) is just the edge relation (19), and (22) is just the vertex relation
(18) in the case where $\kappa=-2$ and $T$ a vertex. The case for general $T$ follows easily
by an inductive argument using (21).

Now for general $[\rho]\in \mathrm{X}_{\kappa}$ where $\kappa\neq\pm 2$ , we need to find a corresponding edge
weight function Cb (depending on $[\rho]$ and $\kappa$) such that a suitable generalization of
Lemma 4.13 holds. It turns out we can define an edge-weight function th such that:

Lemma 4.14. (Properties of the general edge-weight function Cb for rc $\neq\pm 2$ )

Suppose $[\rho]\in$ $X_{\kappa}$ , $\kappa\neq\pm 2$ , with corresponding trace map $\phi$ , and $\phi(X)\neq 0,$ $\pm\sqrt{\kappa+2}$

for all $X\in \mathscr{C}$ . Then
(i) for a directed edge $e\neg\in\vec{E}$ ,

$\psi(e)arrow+\psi(-e\gamma=\nu$ mod $2\pi i$ ; (23)

(ii) for a circular set $C(T)\subset\vec{E}$,
$\sum_{\epsilon\in C(T)}arrow\psi(e)arrow=\nu$ mod $2\pi i$ , (24)

where $\nu=\cosh^{-1}(-\kappa/2)$ and for $e=arrow(X, Y;Z’arrow Z)$

$\psi(e)\neg:=\log(\frac{1+(e^{\nu}-1)(z/xy)}{\sqrt{1-(\kappa+2)/x^{2}}\sqrt{1-(\kappa+2)/y^{2}}})$ . (25)

The rest of the proof of Theorem 4.5(c) then proceeds along the same lines as
that used in [6], with some extra technicalities required to prove that the error
term approaches zero. It should be pointed out that the function th has a geometric
interpretation in the case of a hyperbolic one-cone torus in terms of certain gaps
formed by the simple geodesics emanating and terminating at the cone point $(\mathrm{c}.\mathrm{f}$ .
\S 1). We have a similar geometric interpretation for th for a hyperbolic one-holed
torus with geodesic boundary. In these cases, the properties (23) and (24) are
almost self-evident from the geometric interpretation. The general formula for Cb is
then obtained from these geometric cases by analytic continuation.

For Theorem 4.6, one requires restricted and relative versions of Theorem 4.5.
These can be obtained fairly easily now that we have found the edge-weight function

th with the desired properties. The proofs follow essentially the same lines as
Bowditch’s in [5]. Details can be found in [22] or [21].

A challenge is to extend the methods described above to give similar alge-
$\mathrm{b}\mathrm{r}\mathrm{a}\mathrm{i}\mathrm{c}/\mathrm{c}\mathrm{o}\mathrm{m}\mathrm{b}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l}$ proofs for characters of general punctured surfaces. It seems
that a good understanding of the pants graph or curve complex for such surfaces is
essential, although this was circumvented rather cleverly in the work of Akiyoshi,
Miyachi and Sakuma in [2] when they studied punctured torus bundles over the
circle.

For characters (of the one-holed torus) which do not satisfy the (extended) BQ-
conditions, or the relative $\mathrm{B}\mathrm{Q}$-conditions, the dynamics of the action of the mapping
class group is very interesting, and the general methods described above can be
applied to study the question. For a character $[\rho]\in \mathcal{X}$ , we say that A $\in 1\mathscr{L}$ is
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FIGURE 5. The directed edge $e=arrow(X, Y;Zarrow Z’)$

an end invariant of $[\rho]$ if there exists a sequence of distinct $X_{k}\in \mathscr{C}$ converging to
A such that $|\mathrm{t}\mathrm{r}\rho(X_{k})|$ is bounded. It is easy to see that the set of end invariants
is empty if $[\rho]\in\hat{\mathcal{X}}_{BQ}$ by Theorem 4.7, and is equal $\{\mu_{+}, \mu_{-}\}$ if $[\rho]$ satisfies the
conditions of Theorem 4.8. In particular, the conjecture is that the set of end
invariants is a Cantor set if it contains at least three elements and is not the entire
projective lamination space $1\mathscr{L}$ . See [23], where the set of end invariants was
studied in various cases, with supporting evidence for the conjecture.
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