0000000000
1519 0 2006 0 167-174 167

A note on invariant Hilbert spaces of
holomorphic functions on the unit ball in C¢

Penghui Wang

1 Introduction

Invariant Hilbert spaces of holomorphic functions on bounded symmetric
domains have been extensively studied[Ara]. The study is motivated by the
unitary representation of the automorphism group of the bounded symmetric
domains.

Let Q2 be a bounded symmetric domain, and Aut(f2) denote the automor-
phism group of . Let G denote the connected component of the identity in
Aut(Q). Then G can be naturally represented on the Bergman space L2(£2),
the representation map 7 is defined by

m(p)f=fop-Jp, feLi(), p€G,

where Jo is the complex Jacobian of ¢. Moreover, this representation is
unitary, that is, for any ¢ € G, the operator m(y) is unitary. For natural
Hilbert space H of holomorphic functions on 2, the similar action of G on H
can also been defined. J. Arazy[Ara] shows that, with some mild assumptions,
the only Hilbert space which makes m be a unitary representation is the
Bergman space. Of cause, J. Arazy deals with a more complicated case. For
detailed information, one can refer to [Ara).

In this note, we will mainly concern Hilbert spaces of holomorphic func-
tions on the unit ball By in C¢. In this case, the automorphism group Aut(Bg)
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can be written precisely. In fact, by [Ru, Theorem 2.2.5], Aut(B;) is gener-
ated by the unitary group Uy of C? and {p,| A € By}, where, for any ) € By,
@y is defined as follows. If A =0, px(2) = —z. If A #0,

A~Pyz—/1-|\2P¢
Pr= Azl—(z,a) > z’ (11)

where P, is the orthogonal projection from C? onto the complex line [)]
spanned in C¢ by A, and P{ = I — P,. Therefore, one can only consider the
automorphism with the expression (1.1). We rewrite the above representation
7(py) as Uy in short, that is '

Urf = fopxr-Jo.

After some calculation, it is not difficult to see that the complex Jacobian

d+1
Jopy = (—1)¢ % is just the normalized Bergman kernel on By multi-
plied by (—1)<.

For many interesting unitary invariant reproducing Hilbert space H on
B,, one can define the similar action by Vyf = f o ¢, - kx, where k) is the
normalized reproducing kernel of H. So, the question is, when V), is unitary?
In other word, to ensure that V) is unitary, the complex Jacobian Jy, can
be replaced to what kind of ‘good’ functions.

In this note, with some mild assumptions, we will prove that if V) is
unitary, then there is a positive number y, such that ky = ((—1)2J¢y ).

We organize this note as follows. In section 2, we will introduce some

notations of unitary invariant reproducing kernel. In section 3, we prove the
main theorem.

2 Preliminaries

From a general theory of reproducing kernels [Aro|, one sees that a reproduc-
ing function space is uniquely determined by its kernel. In this paper, we will
mainly concern unitary invariant reproducing function space of holomorphic
functions on By. A reproducing function space is called unitary invariant, if
for any unitary operator U on C%, f o U € H whenever f € H, and for all
f,g€H,

(foU,goU)=(f, g)
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By [GHX], H is unitary invariant if and only if for any unitary operator U
on C4

K’U)‘(UZ> = I()\(Z);
and this holds if and only if there is a holomorphic function on the unit disk
o0
= Y ap2" with a, > 0, such that

n=1 -

Kx(2) = f({z, A)).

Without loss of genérality, we will consider the case that all the a, > 0, and
ap = 1. Hence, by [GHX, Proposition 4. 1] H has a canonical orthonormal
basis {[a‘allgﬂ]lﬂza}, and ||2%|| = | Particularly, ||1]| = 1.

al

il

Example. Let H 2(IBEd) be the reproducing function space defined by the

reproducing kernel K ) — ( 7 (b > 0). It is easy to verify that H 2(Ba)

is unitary invariant. When p =1, H2(Bg) is the symmetric Fock space H 2
which is deeply studied by W. Arveson[Arv] When p = d, H2(B,) is the
Hardy space H?(B;). When y > d, H? (Bd) is the weighted Bergman space
L%[(1—]|z|?)#~4-1dV], and in particular H 4.1(Bg) is the usual Bergman space.

By [Guo, Section 4], for a given u > 0, the operator

(L-PP)%

(1= ANH

is a unitary operator on H2(Bg) (For the case p = 1, this is also proved

by D. Greene[Gr, Theorem 3.3]). Notice that (—;-—1’\%3; is the normalized
reproducing kernel of H?(Bg).

Vif = fopx-

3 The proof of the main theorem

In this section, we will prove the main theorem. As in Section 2, let H be
a unitary invariant reproducing functions space with the reproducing kernel
K. For any )\ € By, define an operator V), on H by V) f = f oy, - k), where
k, is the normalized reproducing kernel. We have the following theorem. -
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Theorem 3.1. With the above notations, if V) is a unitary operator on H,
then there is a positive number u such that,

(1-A%)2
ky =
(1= A
Proof. Below, we will prove that if V) is unitary, then the reproducing kernel
o0
Ky =Y an(z,A)" is uniquely determined by a,, that is,
n=0

Claim. For n > 1, each a, can be uniquely expressed by a;.
We will prove the claim by induction.

At first, we will calculate a;. Taking A = (r, 0,:--,0), we simply write
©x = @r and k) = k,. Since 2, = 21 0 ¢, 0 ., we have

lz1ke ]2 = ll21 0 @, 1 (3.1)

We first calculate the left side of (1). By [GHX, Proposition 4.1], ||2}[|* = £,
and (27, 2*) = 0 whenever n # m.

o0 (o o]
“ Z anT‘"Z?HHZ E (li’l"zn‘lZ;H-l”z E _n_ 2n

— - a-n+1
l21kr (2)]|? = =% == -
Y apr?n Y anrin Z anrn
n=0 n=0 n=0

And now we calculate the right side of (3.1),

o0

lzo@nll® = lltr—21) ) (rz)"|I?

n=0

— ”Z( n+1 n T"Z{H'l)llz

n=0

“T+Z n+l n—-l “2

n=1

00 on-2/ 4 2 )
T r*—2r+1
S ( )
n=1

It

Qn
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Hence

n i m e r2n—2(pd_2p241
ZEﬁT = (3 amr®™)(r* + >, = 1), (3.2)

m=0 n=1 "

Comparing the coefficients of 72 in both sides of (3.2) first, we have

a2 2 1 a
hat S [T 21
) a a o
Therefore, when a; # 1,
Qg = ﬂﬂa_zlj‘_l_)_. ' (33)

When a, = 1, to determine a,, we compare the coefficient of r* in both sides
of (3.2). After some simple computation, we have

§§ e — o ta (3.4)
We also need the following equation.
12} 0 ¢ - krl|? = |17 =
Thus,
12§ 0 ¢r - Kr|? = 2 300 anT ™ | (3.5)

Now, let us calculate the left side of (3.5). A careful verification shows that

122 0 r - K2 = || (— )2 K |)?

1 - Tz
= |I(r— 22D _(n+ Dr2)"][)_ am(rz)™|?
n=0 m=0
= Hr2 + (r*(2r + a17) — 21) 2

+Zrn ™ 4zja"+1—j —2r® Z]an—a +§:Jan— 1-5) 2|12

n=2 j=1 j=1
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n—1

Now, set b, = ). jan—1-;, and the above equation can be simplified as
j=1

follows.

“zf ° Yy KTI|2

= ||+ (r*(2r +arr) - 2r)2; + Z 2 (r4bp g — 2r2bn+1 + b,) 272

n=2
4, 1.2 2 1 — n_2/4 2 2 1
= r*+[r*(2r + a;r) — 2r] = + ) [P (r%bpg2 — 2r%bpey + b2 —
1 n—2 ()

= '+ 2 +a) - 2r] -—+Zr2”‘4 802 4

n=2
1
—4T6bn+2bn+1.+ 7”4 (4bi+1 + 2bn+2bn) - 4T2bn+1bn -+ bi]a"
n
b2 4  4bgby b2
= 24—~ 243
(05) a1 as as
+;T2n a::z + C ala o 7an+1)b2) Tt abn+2)]»
where C(ay, -+ ,@n41, b1, , bnyo) can be uniquely expressed by {a;}7+! and

{b:}737. Now comparing the coefficients of 72 in both sides of (3.5), we have

4 22(2+a1) (2+a1)? __ 1
” -t = (3.6)

When a; = 1, combining (3.4) with (3.6), we have
Qs = 1= ai(a;+1)

2

Hence, by (3.3) and (3.7), the equality a; = 511“21—“1 is always true.

- And now we assume that a; is uniquely expressed by a; for 1 < j < m.
'TQ prove a,y; is uniquely expressed by a,, we compare the coefficient of
r2m=1) in both sides of (3.5).

2
= +C(a17 Ty a'm)b2a"' ab'rn+1)-
az Am+1
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By the definition of b;, we know that b; is uniquely expressed by {a; };:j By
the inductive assumption, both an,_; and C(ay, -+, Gm, b2, - ,bpmy1) are
uniquely expressed by a;, and o is ap41. Thus the claim is proved.

Set u = a;. By section 2, if

I(A( ) (1_<i )\)) '*1+,LL<Z, )\>+Zu(ﬂ+1)n'(ﬂ+n—l)(z, /\>n,

then V) is unitary. The above reasoning thus shows that

n=2

_pptl)--(ptn-1)
n!

n

: 1-\2) 2
This means K,(z) = (1—_—-(:’7)—);, which implies that ky = éTE"IX%F O

Proposition 3.2. Let H and H' be two unitary invariant reproducing func-
tion spaces on Bq with the reproducing kernels Ky and K relatively. If

Ifopx- Kyl =|fll for VfeH,
then H = H', and hence by Theorem 8.1 H = H2(Baq) for some p > 0.

Proof. Write K, \(z) = i an{z, \)" and K}(2z) = Y_ bn(z, A)™. Denote the
=0

n=0 n=
inner product of H by || - || and the inner product of H' by || - ||'. Since
II1]| = 1, we have

Hl SE'2% klAllz = ” ”K,\“/NZ

On the one hand, since (2%, 2°) = 0 whenever a # £,

I =D balldz, N1

n=0
| On the other hand

KGN = bal AP

n=0



Hence

Zb (2, A)™ Zb IA[2.

n=0 n=0

Taking A= (r 0---,0), we know ||27||*> = &. By [GHX, Proposition 4.1],

o =207 =

b , and hence K = K3, wh1ch 1mphes H=H. 0
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