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Abstract. We will study Hankel-type operators on the spaces
of analytic functions on the open unit disk. These operators
are a natural generalization of the classical Hankel operator
on the Hilbert Hardy space. They are related to tight uniform
algebras, the Dunford-Pettis property, and Bourgain algebras.

1 Introduction
Let $X$ be a Banach space and $Y$ a closed subspace of $X$ . For an element

$g$ such that $g\mathrm{Y}\subset X$ , we define the operator $S_{g}$ : $Yarrow X/\mathrm{Y}$ by

$S_{\mathit{9}}f=gf+Y$

for all $f\in Y$ . The norm is considered as the quotient norm, that is,

$||S_{g}f||=||gf+ \mathrm{Y}||=\inf\{||gf+h|| : h\in Y\}$

for all $f\in Y$ . The quotient norm is the distance from $gf$ to $Y:d(gf, Y)=$
$\inf\{||gf+h|| : h\in Y\}$ . This operator is called a Hankel-type operator
and is a natural generalization of the classical Hankel operator on the
Hilbert Hardy space. Recall that $S_{g}$ is said to be (weakly) compact if $S_{g}$

maps every bounded set into a relatively (weakly) compact one, and that
$S_{g}$ is said to be completely continuous if $S_{g}$ maps every weakly convergent
sequence into a norm convergent one. In general, every compact operator
is completely continuous. But the converse is not always true. We define
the following sets of symbols;
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$Y_{c}=$ { $g:S_{g}$ is compact},
$Y_{wC}=$ { $g:S_{g}$ is weakly compact},
$Y_{\mathrm{c}c}=$ { $g:S_{g}$ is completely continuous}.
The conditi $o\mathrm{n}\mathrm{s}$ for $S_{g}$ to be compact, weakly compact and completely

continuous have been investigated in various function spaces. The prob-

lem of whether all $S_{g}$ are weakly compact on a uniform algebra is re-
lated to a tight algebra [3] and the problem of complete continuity ap-

pears in the Dunford-Pettis property. The latter introduced a notion of
Bourgain algebras which have been actively researched in analytic and
harmonic function spaces on the open unit disk ([1], [2] and [10]). Re-

cently, Dudziak, Gamelin, and Gorkin [5] studied Hankel-type operators

on analytic function spaces and Izuchi and the author [9] investiga,ted
Hankel-type operators on the space of bounded harmonic functions on
the unit disk. See [8] and [13] as surveys for convenience.

We here consider Hankel-type operators on the spaces of analytic func-

tions on the open unit disk, explicltly, the disk algebra, Hardy and
Bergman spaces.

Let $\mathrm{D}$ be the open unit disk in the complex plane and $\partial \mathrm{D}$ its boundary.

Let $C(\partial \mathrm{D})$ and $C(\overline{\mathrm{D}})$ be the algebras of all continuous functions on $\partial \mathrm{D}$ and
$\overline{\mathrm{D}}$ respectively. Let $A(\mathrm{D})$ be the disk algebra of all continuous functions

on $\overline{\mathrm{D}}$ that are analytic on D. Then $A(\mathrm{D})$ is the Banach algebra with the

supremum norm
$||f||_{\infty}= \sup\{|f(z)|;z\in\overline{\mathrm{D}}\}$ .

For $1\leq p\leq\infty$ , let $L^{p}(\partial \mathrm{D})$ and $L^{p}(\mathrm{D})$ be the Lebesgue spaces on $\partial \mathrm{D}$

and $\mathrm{D}$ respectively. For $1\leq p<\infty$ , we denote by $H^{p}$ the classical Hardy
space that is the Banach space of all analytic function $f$ on $\mathrm{D}$ for which

$||f||_{H^{p}}=(0 \mathrm{s}^{\backslash }\mathrm{u}\mathrm{p}\frac{1}{2\pi}\leq \mathrm{r}<1\int_{0}^{2\pi}|f(re^{i\theta})|^{p}d\theta)^{1/p}<\infty$,

and denote by $If_{a}$ the Bergman space consisting of all analytic function
$f$ on $\mathrm{D}$ for which

$||f||_{L_{a}^{p}}=( \int_{\mathrm{D}}|f(z)|^{p}dA(z))^{1/\mathrm{p}}<\infty$
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where $dA$ is the normalized area measure on D. Let $H^{\infty}$ be the algebra of
bounded analytic functions on D. See [6], [7] and [15] for more information
on the Hardy and Bergman spaces.

In the next section, we regard the disk algebra $A(\mathrm{D})$ as a closed subalge-
bra of $C(\partial \mathrm{D})$ or $C(\overline{\mathrm{D}})$ and $H^{\infty}$ as a closed subalgebra of $L^{\infty}(\partial \mathrm{D})$ or $L^{\infty}(\mathrm{D})$

respectively. In section 3, we will consider the case of Hardy space $H^{p}$ :
for $g\in L^{\infty}(\partial \mathrm{D})$ , we define the linear operator $S_{g}$ : $H^{p}arrow L^{p}(\partial \mathrm{D})/H^{p}$ by
$S_{g}f=gf+H^{p}$ for $f\in H^{p}.$ Tr.ivially $S_{g}$ : $H^{p}arrow L^{p}(\partial \mathrm{D})/H^{p}$ is a bounded
linear operator. When $p=2$, let $H_{g}$ be the classical Hankel operator
on $H^{2}$ ; for $g\in L^{\infty}(\partial \mathrm{D}),$ $H_{g}f=gf-P(gf)$ , where $P$ is the orthogonal
projection from $L^{2}(\partial \mathrm{D})$ onto $H^{2}$ . It is well known that $H_{g}$ is compact if
and only if $g\in H^{\infty}+C(\partial \mathrm{D})$ . In section 3, Theorem 3.1 says that this
equivalence holds on $H^{p}$ for $1<p<\infty$ . When $p=1$ , Janson, Peetre and
Semmes [11] studied the Hankel operator as form $H_{b}f=\overline{P}(bf)$ where $f$

is analytic polynomial and $\overline{P}$ is the orthogonal projection of $L^{2}$ onto $\overline{H^{2}}$ .
So we will give the attention to Hankel operators on $H^{p}$ from t.hc another
approach.

On the other hand, in the case of Bergman space, Leucking [12] char-
acterized the compactness of Hankel operators on $L_{a}^{p},$ $1<p<\infty$ . So we
will note them in section 4. In section 5 we add the result on the space of
bounded harmonic functions and in the last section we pose some open
questions.

2 The disk algebra and $H^{\infty}$

(1) The disk algebra $A(\mathrm{D})$

At first we regard the disk algebra $A=A(\mathrm{D})|_{\partial \mathrm{D}}$ as a closed subalgebra
of $C(\partial \mathrm{D})$ . For $g\in C(\partial \mathrm{D})$ , we define the linear operator $S_{g}$ : $Aarrow$

$C(\partial \mathrm{D})/A$ by
$S_{g}f=gf+A$ for $f\in A$ .

Then we would characterize the sets $A_{c},$ $A_{wc}$ and $A_{c\mathrm{c}}$ . Each set is a closed
subalgebra of $C(\partial \mathrm{D})$ .
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Theorem 2.1. When we regard $A=A(\mathrm{D})|_{\partial \mathrm{D}}$ as a closed subalgebra of
$C(\partial \mathrm{D})$ , then

$A_{c}=A_{wc},=A_{cc}=C(\partial \mathrm{D})$ .

Proof. It is trivial that $A\subset A_{c}$. $\subseteq A_{cc}\subset C(\partial \mathrm{D})$ and that $A_{c}\subset A_{\tau\iota’ c}$ .

Let $f_{n}\in A$ with $||f_{n}||_{\infty}\leq 1$ . Then $|f_{n}(0)|\leq 1$ . Thus there exists a
subsequence (which we do not relabel) of $\{f_{n}(0)\}$ such that $f_{n}(0)arrow c$ for
some constant $c$ . Then, since $\overline{z}(f_{n}-f_{n}(0))\in A$ ,

$||\overline{z}f_{n}-\overline{z}c+A||_{\infty}$

$\leq||\overline{z}f_{n}-\overline{z}c-\overline{z}(f_{n}-f_{n}(0))||_{\infty}$

$=||\overline{z}(c-f_{n}(0))||_{\infty}$

$=|c-f_{n}(0)|arrow 0$ .

So $S_{\overline{z}}$ is compact and $\overline{z}\in A_{c}$ . Because $A_{c}$ is a closed subalgebra of $C(\partial \mathrm{D})$ ,

$A_{\mathrm{c}}=A_{wc}=A_{cc}=C(\partial \mathrm{D})$ ,

by the Stone-Weierstrass theorem. $\square$

We here estimate the norm and the essential norm of $S_{g}$ . Recall that
the essential norm of a bounded linear operator $T$ from $Y$ to $X/Y$ is
defined as

$||T||_{e}= \inf$ { $||T+K||$ : $K$ is compact operator from $Y$ to $X/Y$ }.

Using the basic duality relation ([7: Chapter IV]), we has the following.

Theorem 2.2. For $g\in C(\partial \mathrm{D})$ , then $||S_{\mathit{9}}||=d(g, A(\mathrm{D})|_{\partial \mathrm{D}})$ and $||S_{g}||_{e}=0$ .

Secondly we regard $A=\mathrm{A}(\mathrm{D})$ as a closed subalgebra of $C(\overline{\mathrm{D}})$ . For
$g\in C(\overline{\mathrm{D}})$ , we define the linear operator $S_{\mathit{9}}$ : $Aarrow C(\overline{\mathrm{D}})/A$ by

$S_{\mathit{9}}f=gf+A$ for $f\in A$ .

Then each set $A_{c},$ $A_{wc}$ and $A_{cc}$ is a closed subalgebra of $C(\overline{\mathrm{D}})$ and their
equivalence was proved by Cole and Gamelin [3].

Theorem 2.3. When we regard $A(\mathrm{D})$ as a closed subalgebra of $C(\overline{\mathrm{D}})$ ,

then
$A_{c}=A_{wc}=A_{cc}=C(\overline{\mathrm{D}})$ .

In this case we also have the following using the basic duality relation.
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Theorem 2.4. For $g\in C(\overline{\mathrm{D}})$ , then $||S_{\mathit{9}}||=d(g, A(\mathrm{D}))$ and $||S_{\mathit{9}}||_{e}=0$ .

(2) $H^{\infty}$

At first we regard $H^{\infty}$ as a closed subalgebra of $L^{\infty}(\partial \mathrm{D})$ . For $\mathit{9}\in$

$L^{\infty}(\partial \mathrm{D})$ , we define the linear operator $S_{g}$ : $H^{\infty}$ — $L^{\infty}(\partial \mathrm{D})/H^{\infty}$ by

$S_{g}f=gf+H^{\infty}$ for $f\in H^{\infty}$ .

Then using the fact that $H^{\infty}$ has the Dunford-Pettis property, Cima,
Janson and Yale [1] and Gorkin [8] showed the following.

Theorem 2.5. When we regard $H^{\infty}$ as a closed subalgebra of $L^{\infty}(\partial \mathrm{D})$ ,

then
$H_{c}^{\infty}=H_{wc}^{\infty}=H_{c\mathrm{c}}^{\infty}=H^{\infty}+C(\partial \mathrm{D})$ .

The estimation of norms is the following.

Theorem 2.6. For $g\in L^{\infty}(\partial \mathrm{D})_{f}$ then $||S_{g}||=d(g, H^{\infty})$ and $||S_{\mathit{9}}||_{e}\leq$

$d(g, H^{\infty}+C(\partial \mathrm{D}))$ .

Secondly we regard $H^{\infty}$ as a closed subalgebra of $L^{\infty}(\mathrm{D})$ . For $g\in$

$L^{\infty}(\mathrm{D})$ , we define the linear operator $S_{\mathit{9}}$ : $H^{\infty}arrow L^{\infty}(\mathrm{D})/H^{\infty}$ by

$S_{g}f=gf+H^{\infty}$ for $f\in H^{\infty}$

Then Cima, Stroethoff and Yale [2] obtained the following result.

Theorem 2.7. When we regard $H^{\infty}$ as a closed subalgebra of $L^{\infty}(\mathrm{D})$ ,
tben

$H_{c}^{\infty}=H_{wC}^{\infty}=H_{cc}^{\infty}=H^{\infty}+C(\overline{\mathrm{D}})+V$

where $V=$ { $g\in L^{\infty}(\mathrm{D}):||g\chi_{\mathrm{D}\backslash r\mathrm{D}}||arrow 0$ as $rarrow 1^{-}$ }.

Fbrthermore the estimation of norms is the following.

Theorem 2.8. For $g\in L^{\infty}(\mathrm{D})$ , then $||S_{\mathit{9}}||=d(g, H^{\infty})$ and $||S_{g}||_{e}\leq$

$d(g, H^{\infty}+C(\overline{\mathrm{D}})+V)$ .
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3The case of Hardy spaces $H^{p}$ for $1<p<$
$\infty$

We here consider the case of Hardy spaces. Before starting our discus-
sion, we recall results concerning the topology of Hardy spaces $H^{p}$ .

Fact 1. ([4: Chap.20, Proposition 3.15]) If $1<p<\infty,$ $f\in H^{p}$ , and $f_{n}$

is a sequence in $H^{\mathrm{p}}$ , then the following are equivalent.
(a) $\{f_{n}\}$ converges weakly to $f\in ff^{\mathrm{p}}$ .
(b) $\{f_{n}\}$ is bounded and $f_{n}\in H^{p}$ converges to $f$ uniformly on every

compact subset of D.
(c) $\{f_{n}\}$ is bounded and $f_{n}(z)$ converges to $f(z)$ for all $z\in$ D.
(d) $\{f_{n}\}$ is bounded and $f_{n}^{k}(0)$ converges to $f^{k}(0)$ for all $k\geq 0$ .

Fact 2. ([4: Chap.20, Proposition 3.16]) Put $S=\{f\in H^{1} : ||f||_{H^{1}}=1\}$ .
Then $S$ is weak*-compact and metrizable, but not weak compact.

For $f_{n}\in S$ , the following are equivalent:
(i) $f_{n}$ converges to $f$ in the weak*-topology in $H^{1}$ .
(ii) $f_{n}(z)$ converges to $f(z)$ for all $z\in$ D.
(iii) $f_{n}$ converges to $f$ uniformly on every compact subset of D.

For $1\leq p<\infty$ and $g\in L^{\infty}(\partial \mathrm{D}))$ we define the linear operator $S_{g}$ :
$H^{p}arrow L^{p}(\mathrm{D})/H^{p}$ by

$S_{g}f=gf+H^{p}$ for $f\in H^{p}$ .

Fact 3. For $1<p<\infty$ and $g\in L^{\infty}(\partial \mathrm{D})$ , the following are equivalent:
(i) $S_{g}$ : $H^{p}arrow L^{p}(\partial \mathrm{D})/H^{p}$ is compact (completely continuous).
(ii) If $\{f_{n}\}$ is bounded in $H^{\mathrm{p}}$ and converges to $0$ uniformly on every

compact subset of $\mathrm{D}$ , then $||S_{g}f_{n}||arrow 0$ .
For $1<p<\infty,$ $H^{p}$ is reflexive. So all completely continuous operator

on $H^{p}$ is compact and every bounded operator on $H^{p}$ is always weakly
compact. Thus $H_{c}^{p}=H_{cc}^{p}$ and $H_{wc}^{p}=L^{\infty}(\partial \mathrm{D})$ .

For $g\in L^{\infty}(\partial \mathrm{D})$ , let $H_{g}$ be the classical Hankel operator on $H^{2}$ defined
by $H_{g}f=gf-P(gf)$ , where $P$ is the orthogonal projection from $L^{2}(\partial \mathrm{D})$

onto $H^{2}$ . Hartman’s theorem says that $H_{g}$ : $H^{2}arrow L^{2}(\partial \mathrm{D})$ is compact if
and only if $g\in H^{\infty}+C(\partial \mathrm{D})$ . Then for $1<p<\infty,$ $P$ is bounded from
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$L^{p}(\partial \mathrm{D})$ onto $H^{p}$ and we can easily see the equivalence of compacteness of
$H_{g}$ and $S_{g}$ . But the next result will give the characterization of Hankel
operators on $H^{p}$ from the another approach.

Theorem 3.1. For $1<p<\infty$ , the following hold:

$H_{c}^{p}=H_{cc}^{p}=H^{\infty}+C(\partial \mathrm{D})$ and $H_{w\mathrm{c}}^{\mathrm{p}}=L^{\infty}(\partial \mathrm{D})$ .

Proof. First, we note that $H^{\infty}\subset H_{c}^{p}=H_{\mathrm{c}c}^{p}\subset L^{\infty}(\partial \mathrm{D})$ . Then $B:=H_{c}^{p}=$

$H_{c}^{\mathrm{p}_{\mathrm{C}}}$ is a closed algebra and so a Douglas algebra.
Suppose that $H^{\infty}+C(\partial \mathrm{D})\subset\wedge B$ . Thus there exists an interpolat-

ing Blaschke product $\psi\in H^{\infty}$ with $\overline{\psi}\in B$ . That is, $S_{\overline{\psi}}$ is compact
(completely continuous). Write $\psi(z)=e^{i\alpha}\prod_{n=1}^{\infty}b_{n}(z)$ where $b_{n}(z)=$

$(z-’\sim’ n)/(1-\overline{z_{n}}z)$ . Put $f_{k}(z)= \prod_{n=k}^{\infty}b_{n}(z)$ . Then $f_{k}\in H^{p},$ $||f_{k}||_{H^{p}}=1$

and $f_{k}(z)arrow 0$ for $z\in \mathrm{D}$ as $karrow\infty$ . By Fact 1, $f_{k}(z)arrow 0$ weakly in $H^{p}$ .

On the other hand, we have

$||S_{\overline{\psi}}f_{k}||=||\overline{\psi}f_{k,}+H^{p}||$

$=||\overline{e^{i\alpha}b_{1}b_{2}\cdots b_{k-1}}+H^{p}||$

$=f\in \mathrm{i}1\mathrm{u}\mathrm{f}_{\mathrm{p}}||1+e^{i\alpha}b_{1}b_{2}\cdots b_{k-1}f||_{H^{\mathrm{p}}}$

$\geq\inf_{f\in H^{p}}|1+e^{i\alpha}(b_{1}b_{2}\cdots b_{k-1}f)(z)|(1-|z|^{2})^{1/p}$ ,

for $z\in \mathrm{D}$ .

Put $z=z_{1}$ , a zero of $b_{1}$ . So

$||S_{\overline{\psi}}f_{k}||\geq(1-|z_{1}|^{2})^{1/q}>0$ .

As $S_{\overline{\psi}}$ is completely continuous,

$||S_{\overline{\psi}}f_{k}||arrow 0$ .

This contradicts. So $B=H^{\infty}+C(\partial \mathrm{D})$ . $\square$

Furthermore the estimation of norms is the following.

Theorem 3.2. For $1\leq p<\infty$ and $g\in L^{\infty}(\mathrm{D})$ , then $||S_{\mathit{9}}||=d(g, H^{\infty})$

and for $1<p<\infty,$ $||S_{g}||_{e}\leq d(g, H^{\infty}+C(\partial \mathrm{D}))$ .
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4The case of Bergman spaces $L_{a}^{p}$ for $1<$

$p<\infty$

For $g\in L^{\infty}(\mathrm{D})$ , let $H_{g}$ be the classical Hankel operator defined by
$H_{\mathit{9}}f=gf-P(gf)$ , where $P$ is the Bergman projection from $L^{p}$ onto $L_{a}^{p}$ .

Then we can easily see the equivalence of compacteness of $H_{g}$ and $S_{g}$ .
On the other hand, Leucking [12] characterized the compactness of Hankel
operators on $L_{a}^{p},$ $1<p<\infty$ . And so we have the following.

Theorem 4.1. For $1<p<\infty$ , then $g\in(L_{a}^{p})_{c}=(L_{a}^{p})_{cc}$ if and only if $g$

admits a decomposition $g=g_{1}+g_{2}$ so that

$\lim_{|z|arrow 1}\frac{1}{|D(z)|}\int_{D(z)}|g_{1}|^{2}dA=0$

and
$g_{2}\in C^{1}(\mathrm{D})$ , $\lim_{|z|arrow 1}(1-|z|)\overline{\partial}g_{2}(z)=0$

where $D(z)$ is the Bergman disk with center $z$ .
Moreover it holds that $(L_{a}^{p})_{wc}=L^{\infty}(\mathrm{D})$ .

5 The space of bounded harmonic functions
We here consider Hankel-type operators on the space of bounded har-

monic functions. Let $h^{\infty}:=h^{\infty}(\mathrm{D})$ be the set of all bounded harmonic
functions on D. It follows that $h^{\infty}$ is a closed subspace of $L^{\infty}(\mathrm{D})$ . We
can define $h_{\mathrm{c}}^{\infty},$ $h_{wc}^{\infty}$ and $h_{c\mathrm{c}}^{\infty}$ as before. The Bourgain algebra $h_{cc}^{\infty}$ is char-
acterized by Izuchi, Stroethoff and Yale [10].

For a function $f\in L^{\infty}(\partial \mathrm{D})$ , we denote by $\hat{f}$ the Poisson integral of $f$

on $\mathrm{D}$ , that is,

$\hat{f}(z)=\int_{0}^{2\pi}f(e^{i\theta})P_{z}(e^{i\theta})d\theta/2\pi$ ,

where $P_{z}$ is the Poisson kernel of $z\in \mathrm{D}$ . Then $\hat{f}\in h^{\infty}$ . For any nonempty
subset ,$B$ of $L^{\infty}(\partial \mathrm{D})$ , we write $\hat{B}=\{\hat{f} : f\in B\}$ . It is known that $f$

in $h^{\infty}$ has a boundary function $f^{*}$ on $\partial \mathrm{D}$ and $f^{*}\wedge=f$ on $\mathrm{D}$ , so that
$h^{\infty}=L^{\infty}\overline{(\partial \mathrm{D}})$ . Let $H^{\infty}(\partial \mathrm{D})$ be the space of boundary functions of
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bounded analytic functions on D. The algebra $QC$ of bounded quasi-

continu$o\mathrm{u}\mathrm{s}$ functions on $\partial \mathrm{D}$ is given by

$QC=(H^{\infty}(\partial \mathrm{D})+C(\partial \mathrm{D}))\cap\overline{(H^{\infty}(\partial \mathrm{D})+C(\partial \mathrm{D}))}$.

Refer to [7] and [14] for more information.
The equality $h_{cc}^{\infty}=\overline{QC}+V$ was given as Corollary 3 in [10], where $V$

is the same set as in Theorem 2.7. Then Izuchi and the author [9] show
the following result.

Theorem 5.1. $h_{c}^{\infty}=h_{\mathrm{c}c}^{\infty}.=\overline{QC}+V$.

6 Problems
Problem 6.1. Estimate the essenti$al$ norms of Hankel-type operators in
cases of Hardy and Bergman spaces.

Problem 6.2. How about the case $p=1.$? That is, what are $H_{c}^{1},$ $H_{wc}^{1}.$ ,
$H_{cc}^{17}$.

Problem 6.3. Let $h^{\infty}$ be the space of bounded harmonic functions on
D. Then characteriz$eh_{wc}^{\infty}$ .
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