<table>
<thead>
<tr>
<th>Title</th>
<th>Hankel-type operators on the spaces of analytic functions (Analytic Function Spaces and Their Operators)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ohno, Shuichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1519: 146-155</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58747</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hankel-type operators on the spaces of analytic functions

Abstract. We will study Hankel-type operators on the spaces of analytic functions on the open unit disk. These operators are a natural generalization of the classical Hankel operator on the Hilbert Hardy space. They are related to tight uniform algebras, the Dunford-Pettis property, and Bourgain algebras.

1 Introduction

Let X be a Banach space and Y a closed subspace of X. For an element g such that $gY \subset X$, we define the operator $S_g : Y \to X/Y$ by

$$S_g f = gf + Y$$

for all $f \in Y$. The norm is considered as the quotient norm, that is,

$$\|S_g f\| = \|gf + Y\| = \inf\{\|gf + h\| : h \in Y\}$$

for all $f \in Y$. The quotient norm is the distance from gf to Y: $d(gf, Y) = \inf\{\|gf + h\| : h \in Y\}$. This operator is called a Hankel-type operator and is a natural generalization of the classical Hankel operator on the Hilbert Hardy space. Recall that S_g is said to be (weakly) compact if S_g maps every bounded set into a relatively (weakly) compact one, and that S_g is said to be completely continuous if S_g maps every weakly convergent sequence into a norm convergent one. In general, every compact operator is completely continuous. But the converse is not always true. We define the following sets of symbols:

The author is partially supported by Grant-in-Aid for Scientific Research (No.17540169), Japan Society for the Promotion of Science.
\[Y_c = \{ g : S_g \text{ is compact} \}, \]
\[Y_{wc} = \{ g : S_g \text{ is weakly compact} \}, \]
\[Y_{cc} = \{ g : S_g \text{ is completely continuous} \}. \]

The conditions for \(S_g \) to be compact, weakly compact and completely continuous have been investigated in various function spaces. The problem of whether all \(S_g \) are weakly compact on a uniform algebra is related to a tight algebra [3] and the problem of complete continuity appears in the Dunford-Pettis property. The latter introduced a notion of Bourgain algebras which have been actively researched in analytic and harmonic function spaces on the open unit disk ([1], [2] and [10]). Recently, Dudziak, Gamelin, and Gorkin [5] studied Hankel-type operators on analytic function spaces and Izuchi and the author [9] investigated Hankel-type operators on the space of bounded harmonic functions on the unit disk. See [8] and [13] as surveys for convenience.

We here consider Hankel-type operators on the spaces of analytic functions on the open unit disk, explicitly, the disk algebra, Hardy and Bergman spaces.

Let \(\mathbb{D} \) be the open unit disk in the complex plane and \(\partial \mathbb{D} \) its boundary. Let \(C(\partial \mathbb{D}) \) and \(C(\overline{\mathbb{D}}) \) be the algebras of all continuous functions on \(\partial \mathbb{D} \) and \(\overline{\mathbb{D}} \) respectively. Let \(A(\mathbb{D}) \) be the disk algebra of all continuous functions on \(\overline{\mathbb{D}} \) that are analytic on \(\mathbb{D} \). Then \(A(\mathbb{D}) \) is the Banach algebra with the supremum norm

\[
\| f \|_{\infty} = \sup \{|f(z)|; z \in \overline{\mathbb{D}}\}.
\]

For \(1 \leq p < \infty \), let \(L^p(\partial \mathbb{D}) \) and \(L^p(\mathbb{D}) \) be the Lebesgue spaces on \(\partial \mathbb{D} \) and \(\mathbb{D} \) respectively. For \(1 \leq p < \infty \), we denote by \(H^p \) the classical Hardy space that is the Banach space of all analytic function \(f \) on \(\mathbb{D} \) for which

\[
\| f \|_{H^p} = \left(\sup_{0 \leq r < 1} \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^p d\theta \right)^{1/p} < \infty,
\]

and denote by \(L^p_a \) the Bergman space consisting of all analytic function \(f \) on \(\mathbb{D} \) for which

\[
\| f \|_{L^p_a} = \left(\int_{\mathbb{D}} |f(z)|^p dA(z) \right)^{1/p} < \infty.
\]
where dA is the normalized area measure on \mathbb{D}. Let H^∞ be the algebra of bounded analytic functions on \mathbb{D}. See [6], [7] and [15] for more information on the Hardy and Bergman spaces.

In the next section, we regard the disk algebra $A(\mathbb{D})$ as a closed subalgebra of $C(\partial \mathbb{D})$ or $C(\overline{\mathbb{D}})$ and H^∞ as a closed subalgebra of $L^\infty(\partial \mathbb{D})$ or $L^\infty(\mathbb{D})$ respectively. In section 3, we will consider the case of Hardy space H^p: for $g \in L^\infty(\partial \mathbb{D})$, we define the linear operator $S_g : H^p \rightarrow L^p(\partial \mathbb{D})/H^p$ by $S_g f = gf + H^p$ for $f \in H^p$. Trivially $S_g : H^p \rightarrow L^p(\partial \mathbb{D})/H^p$ is a bounded linear operator. When $p = 2$, let H_g be the classical Hankel operator on H^2; for $g \in L^\infty(\partial \mathbb{D})$, $H_g f = gf - P(gf)$, where P is the orthogonal projection from $L^2(\partial \mathbb{D})$ onto H^2. It is well known that H_g is compact if and only if $g \in H^\infty + C(\partial \mathbb{D})$. In section 3, Theorem 3.1 says that this equivalence holds on H^p for $1 < p < \infty$. When $p = 1$, Janson, Peetre and Semmes [11] studied the Hankel operator as form $H_g f = \overline{P}(bf)$ where f is analytic polynomial and \overline{P} is the orthogonal projection of L^2 onto $\overline{H^2}$. So we will give the attention to Hankel operators on H^p from the another approach.

On the other hand, in the case of Bergman space, Leucking [12] characterized the compactness of Hankel operators on $L_a^p, 1 < p < \infty$. So we will note them in section 4. In section 5 we add the result on the space of bounded harmonic functions and in the last section we pose some open questions.

2 The disk algebra and H^∞

(1) The disk algebra $A(\mathbb{D})$

At first we regard the disk algebra $A = A(\mathbb{D})|_{\partial D}$ as a closed subalgebra of $C(\partial \mathbb{D})$. For $g \in C(\partial \mathbb{D})$, we define the linear operator $S_g : A \rightarrow C(\partial \mathbb{D})/A$ by

$$S_g f = gf + A \quad \text{for} \quad f \in A.$$

Then we would characterize the sets A_c, A_{wc} and A_{cc}. Each set is a closed subalgebra of $C(\partial \mathbb{D})$.

Theorem 2.1. When we regard $A = A(\mathbb{D})|_{\partial \mathbb{D}}$ as a closed subalgebra of $C(\partial \mathbb{D})$, then
\[A_c = A_{wc} = A_{cc} = C(\partial \mathbb{D}). \]

Proof. It is trivial that $A \subset A_c \subset A_{cc} \subset C(\partial \mathbb{D})$ and that $A_c \subset A_{wc}$. Let $f_n \in A$ with $\|f_n\|_\infty \leq 1$. Then $|f_n(0)| \leq 1$. Thus there exists a subsequence (which we do not relabel) of $\{f_n(0)\}$ such that $f_n(0) \rightarrow c$ for some constant c. Then, since $\overline{z}(f_n - f_n(0)) \in A$,
\[
\|\overline{z}f_n - \overline{z}c + A\|_\infty \\
\leq \|\overline{z}f_n - \overline{z}c - \overline{z}(f_n - f_n(0))\|_\infty \\
= \|\overline{z}(c - f_n(0))\|_\infty \\
= |c - f_n(0)| \rightarrow 0.
\]
So $S_\overline{z}$ is compact and $\overline{z} \in A_c$. Because A_c is a closed subalgebra of $C(\partial \mathbb{D})$,
\[A_c = A_{wc} = A_{cc} = C(\partial \mathbb{D}), \]
by the Stone-Weierstrass theorem. \hfill \Box

We here estimate the norm and the essential norm of S_g. Recall that the essential norm of a bounded linear operator T from Y to X/Y is defined as
\[\|T\|_e = \inf \{\|T + K\| : K \text{ is compact operator from } Y \text{ to } X/Y\}. \]

Using the basic duality relation ([7: Chapter IV]), we has the following.

Theorem 2.2. For $g \in C(\partial \mathbb{D})$, then $\|S_g\| = d(g, A(\mathbb{D})|_{\partial \mathbb{D}})$ and $\|S_g\|_e = 0$.

Secondly we regard $A = A(\mathbb{D})$ as a closed subalgebra of $C(\overline{\mathbb{D}})$. For $g \in C(\overline{\mathbb{D}})$, we define the linear operator $S_g : A \rightarrow C(\overline{\mathbb{D}})/A$ by
\[S_g f = g f + A \hspace{1em} \text{for} \hspace{1em} f \in A. \]

Then each set A_c, A_{wc} and A_{cc} is a closed subalgebra of $C(\overline{\mathbb{D}})$ and their equivalence was proved by Cole and Gamelin [3].

Theorem 2.3. When we regard $A(\mathbb{D})$ as a closed subalgebra of $C(\overline{\mathbb{D}})$, then
\[A_c = A_{wc} = A_{cc} = C(\overline{\mathbb{D}}). \]

In this case we also have the following using the basic duality relation.
Theorem 2.4. For \(g \in C(\mathbb{D}) \), then \(\|S_g\| = d(g, A(\mathbb{D})) \) and \(\|S_g\|_e = 0 \).

(2) \(H^\infty \)

At first we regard \(H^\infty \) as a closed subalgebra of \(L^\infty(\partial \mathbb{D}) \). For \(g \in L^\infty(\partial \mathbb{D}) \), we define the linear operator \(S_g : H^\infty \to L^\infty(\partial \mathbb{D})/H^\infty \) by

\[
S_g f = g f + H^\infty \quad \text{for} \quad f \in H^\infty.
\]

Then using the fact that \(H^\infty \) has the Dunford-Pettis property, Cima, Janson and Yale [1] and Gorkin [8] showed the following.

Theorem 2.5. When we regard \(H^\infty \) as a closed subalgebra of \(L^\infty(\partial \mathbb{D}) \), then

\[
H^\infty_c = H^\infty_{wc} = H^\infty_{cc} = H^\infty + C(\partial \mathbb{D}).
\]

The estimation of norms is the following.

Theorem 2.6. For \(g \in L^\infty(\partial \mathbb{D}) \), then \(\|S_g\| = d(g, H^\infty) \) and \(\|S_g\|_e \leq d(g, H^\infty + C(\partial \mathbb{D})) \).

Secondly we regard \(H^\infty \) as a closed subalgebra of \(L^\infty(\mathbb{D}) \). For \(g \in L^\infty(\mathbb{D}) \), we define the linear operator \(S_g : H^\infty \to L^\infty(\mathbb{D})/H^\infty \) by

\[
S_g f = g f + H^\infty \quad \text{for} \quad f \in H^\infty.
\]

Then Cima, Stroethoff and Yale [2] obtained the following result.

Theorem 2.7. When we regard \(H^\infty \) as a closed subalgebra of \(L^\infty(\mathbb{D}) \), then

\[
H^\infty_c = H^\infty_{wc} = H^\infty_{cc} = H^\infty + C(\mathbb{D}) + V
\]

where \(V = \{ g \in L^\infty(\mathbb{D}) : \|g\chi_{\mathbb{D}\setminus r\mathbb{D}}\| \to 0 \quad \text{as} \quad r \to 1^- \} \).

Furthermore the estimation of norms is the following.

Theorem 2.8. For \(g \in L^\infty(\mathbb{D}) \), then \(\|S_g\| = d(g, H^\infty) \) and \(\|S_g\|_e \leq d(g, H^\infty + C(\mathbb{D}) + V) \).
3 The case of Hardy spaces H^p for $1 < p < \infty$

We here consider the case of Hardy spaces. Before starting our discussion, we recall results concerning the topology of Hardy spaces H^p.

Fact 1. ([4: Chap.20, Proposition 3.15]) If $1 < p < \infty$, $f \in H^p$, and f_n is a sequence in H^p, then the following are equivalent.

(a) $\{f_n\}$ converges weakly to $f \in H^p$.

(b) $\{f_n\}$ is bounded and $f_n \in H^p$ converges to f uniformly on every compact subset of \mathbb{D}.

(c) $\{f_n\}$ is bounded and $f_n(z)$ converges to $f(z)$ for all $z \in \mathbb{D}$.

(d) $\{f_n\}$ is bounded and $f_n^k(0)$ converges to $f^k(0)$ for all $k \geq 0$.

Fact 2. ([4: Chap.20, Proposition 3.16]) Put $S = \{f \in H^1 : \|f\|_{H^1} = 1\}$. Then S is weak*-compact and metrizable, but not weak compact.

For $f_n \in S$, the following are equivalent:

(i) f_n converges to f in the weak*-topology in H^1.

(ii) $f_n(z)$ converges to $f(z)$ for all $z \in \mathbb{D}$.

(iii) f_n converges to f uniformly on every compact subset of \mathbb{D}.

For $1 \leq p < \infty$ and $g \in L^\infty(\partial \mathbb{D})$, we define the linear operator $S_g : H^p \to L^p(\mathbb{D})/H^p$ by

$$S_g f = gf + H^p \quad \text{for} \quad f \in H^p.$$

Fact 3. For $1 < p < \infty$ and $g \in L^\infty(\partial \mathbb{D})$, the following are equivalent:

(i) $S_g : H^p \to L^p(\partial \mathbb{D})/H^p$ is compact (completely continuous).

(ii) If $\{f_n\}$ is bounded in H^p and converges to 0 uniformly on every compact subset of \mathbb{D}, then $\|S_g f_n\| \to 0$.

For $1 < p < \infty$, H^p is reflexive. So all completely continuous operator on H^p is compact and every bounded operator on H^p is always weakly compact. Thus $H^p_c = H^p_{cc}$ and $H^p_{wc} = L^\infty(\partial \mathbb{D})$.

For $g \in L^\infty(\partial \mathbb{D})$, let H_g be the classical Hankel operator on H^2 defined by $H_g f = gf - P(gf)$, where P is the orthogonal projection from $L^2(\partial \mathbb{D})$ onto H^2. Hartman's theorem says that $H_g : H^2 \to L^2(\partial \mathbb{D})$ is compact if and only if $g \in H^\infty + C(\partial \mathbb{D})$. Then for $1 < p < \infty$, P is bounded from
$L^p(\partial \mathbb{D})$ onto H^p and we can easily see the equivalence of compactness of H_g and S_g. But the next result will give the characterization of Hankel operators on H^p from the another approach.

Theorem 3.1. For $1 < p < \infty$, the following hold:

$$H^p_c = H^p_{cc} = H^\infty + C(\partial \mathbb{D}) \quad \text{and} \quad H^p_{wc} = L^\infty(\partial \mathbb{D}).$$

Proof. First, we note that $H^\infty \subset H^p_c = H^p_{cc} \subset L^\infty(\partial \mathbb{D})$. Then $B := H^p_c = H^p_{cc}$ is a closed algebra and so a Douglas algebra.

Suppose that $H^\infty + C(\partial \mathbb{D}) \subset B$. Thus there exists an interpolating Blaschke product $\psi \in H^\infty$ with $\overline{\psi} \in B$. That is, $S_{\overline{\psi}}$ is compact (completely continuous). Write $\psi(z) = e^{i\alpha} \prod_{n=1}^\infty b_n(z)$ where $b_n(z) = (z - z_n)/(1 - \overline{z_n}z)$. Put $f_k(z) = \prod_{n=k}^\infty b_n(z)$. Then $f_k \in H^p$, $\|f_k\|_{H^p} = 1$ and $f_k(z) \to 0$ for $z \in \mathbb{D}$ as $k \to \infty$. By Fact 1, $f_k(z) \to 0$ weakly in H^p.

On the other hand, we have

$$\|S_{\overline{\psi}} f_k\| = \|\overline{\psi} f_k + H^p\| = \|e^{i\alpha} b_1 b_2 \cdots b_{k-1} + H^p\| = \inf_{f \in H^p} \|1 + e^{i\alpha} b_1 b_2 \cdots b_{k-1} f\|_{H^p} \geq \inf_{f \in H^p} \|1 + e^{i\alpha} (b_1 b_2 \cdots b_{k-1} f)(z)((1 - |z|^2)^{1/p},$$

for $z \in \mathbb{D}$.

Put $z = z_1$, a zero of b_1. So

$$\|S_{\overline{\psi}} f_k\| \geq (1 - |z_1|^2)^{1/q} > 0.$$

As $S_{\overline{\psi}}$ is completely continuous,

$$\|S_{\overline{\psi}} f_k\| \to 0.$$

This contradicts. So $B = H^\infty + C(\partial \mathbb{D})$. \square

Furthermore the estimation of norms is the following.

Theorem 3.2. For $1 \leq p < \infty$ and $g \in L^\infty(\mathbb{D})$, then $\|S_g\| = d(g, H^\infty)$ and for $1 < p < \infty$, $\|S_g\|_e \leq d(g, H^\infty + C(\partial \mathbb{D}))$.

4 The case of Bergman spaces L^p_a for $1 < p < \infty$

For $g \in L^\infty(D)$, let H_g be the classical Hankel operator defined by $H_g f = g f - P(g f)$, where P is the Bergman projection from L^p onto L^p_a. Then we can easily see the equivalence of compactness of H_g and S_g. On the other hand, Leucking [12] characterized the compactness of Hankel operators on L^p_a, $1 < p < \infty$. And so we have the following.

Theorem 4.1. For $1 < p < \infty$, then $g \in (L^p_a)_c = (L^p_a)_{cc}$ if and only if g admits a decomposition $g = g_1 + g_2$ so that

$$\lim_{|z| \to 1} \frac{1}{|D(z)|} \int_{D(z)} |g_1|^2 dA = 0$$

and

$$g_2 \in C^1(D), \lim_{|z| \to 1} (1 - |z|) \overline{\partial} g_2 (z) = 0$$

where $D(z)$ is the Bergman disk with center z.

Moreover it holds that $(L^p_a)_{wc} = L^\infty(D)$.

5 The space of bounded harmonic functions

We here consider Hankel-type operators on the space of bounded harmonic functions. Let $h^\infty := h^\infty(D)$ be the set of all bounded harmonic functions on D. It follows that h^∞ is a closed subspace of $L^\infty(D)$. We can define $h^\infty_c, h^\infty_{wc}$ and h^∞_{cc} as before. The Bourgain algebra h^∞_{cc} is characterized by Izuchi, Stroethoff and Yale [10].

For a function $f \in L^\infty(\partial D)$, we denote by \hat{f} the Poisson integral of f on D, that is,

$$\hat{f}(z) = \int_0^{2\pi} f(e^{i\theta}) P_z(e^{i\theta}) d\theta / 2\pi,$$

where P_z is the Poisson kernel of $z \in D$. Then $\hat{f} \in h^\infty$. For any nonempty subset B of $L^\infty(\partial D)$, we write $\hat{B} = \{ \hat{f} : f \in B \}$. It is known that f in h^∞ has a boundary function f^* on ∂D and $\hat{f}^* = f$ on D, so that $h^\infty = \overline{L^\infty(\partial D)}$. Let $H^\infty(\partial D)$ be the space of boundary functions of
bounded analytic functions on \mathbb{D}. The algebra QC of bounded quasi-continuous functions on $\partial \mathbb{D}$ is given by

$$QC = (H^\infty(\partial \mathbb{D}) + C(\partial \mathbb{D})) \cap \overline{(H^\infty(\partial \mathbb{D}) + C(\partial \mathbb{D}))}.$$

Refer to [7] and [14] for more information.

The equality $h^\infty_{cc} = \widehat{QC} + V$ was given as Corollary 3 in [10], where V is the same set as in Theorem 2.7. Then Izuchi and the author [9] show the following result.

Theorem 5.1. $h^\infty_c = h^\infty_{cc} = \widehat{QC} + V.$

6 Problems

Problem 6.1. *Estimate the essential norms of Hankel-type operators in cases of Hardy and Bergman spaces.*

Problem 6.2. *How about the case $p = 1$? That is, what are $H^1_c, H^1_{wc}, H^1_{cc}$?*

Problem 6.3. *Let h^∞ be the space of bounded harmonic functions on \mathbb{D}. Then characterize h^∞_{wc}.***

References

Nippon Institute of Technology, Miyashiro, Minami-Saitama 345-8501, Japan

E-mail address: ohno@nit.ac.jp