0000000000
1519 0 2006 0 146-155 146

Hankel-type operators on the spaces
of analytic functions

HATZERY T8 K¥ ©&— ( Shiichi Ohno )
Nippon Institute of Technology

Abstract. We will study Hankel-type operators on the spaces
of analytic functions on the open unit disk. These operators
are a natural generalization of the classical Hankel operator
on the Hilbert Hardy space. They are related to tight uniform
algebras, the Dunford-Pettis property, and Bourgain algebras.

1 Introduction

Let X be a Banach space and Y a closed subspace of X. For an element
g such that gY C X, we define the operator Sy: Y — X/Y by

Sef=9f+Y
for all f € Y. The norm is considered as the quotient norm, that is,
1Sef1l = llgf + Y| = inf{llgf + [l : h e Y}

for all f € Y. The quotient norm is the distance from gf toY: d(gf,Y) =
inf{||gf + h|| : h € Y}. This operator is called a Hankel-type operator
and is a natural generalization of the classical Hankel operator on the
Hilbert Hardy space. Recall that S, is said to be (weakly) compact if S,
maps every bounded set into a relatively (weakly) compact one, and that
S, is said to be completely continuous if S; maps every weakly convergent
sequence into a norm convergent one. In general, every compact operator
is completely continuous. But the converse is not always true. We define
the following sets of symbols;
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Y.={g:S, is compact},
Yye = {g: S, is weakly compact},
Y. ={g: S, is completely continuous}.

- The conditions for S, to be compact, weakly compact and completely
continuous have been investigated in various function spaces. The prob-
lem of whether all S, are weakly compact on a uniform algebra is re-
lated to a tight algebra [3] and the problem of complete continuity ap-
pears in the Dunford-Pettis property. The latter introduced a notion of
Bourgain algebras which have been actively researched in analytic and
‘harmonic function spaces on the open unit disk ([1], [2] and [10]). Re-
cently, Dudziak, Gamelin, and Gorkin [5] studied Hankel-type operators
on analytic function spaces and Izuchi and the author [9] investigated
Hankel-type operators on the space of bounded harmonic functions on
the unit disk. See [8] and [13] as surveys for convenience.

We here consider Hankel-type operators on the spaces of analytic func-
tions on the open unit disk, explicitly, the disk algebra, Hardy and
Bergman spaces.

Let D be the open unit disk in the complex plane and D its boundary.
Let C(8D) and C(D) be the algebras of all continuous functions on 0D and
D respectively. Let A(D) be the disk algebra of all continuous functions
on D that are analytic on D. Then A(D) is the Banach algebra with the
supremum norm

Il flleo = sup{|f(2)]; z € D}.

For 1 < p < oo, let LP(8D) and LP(D) be the Lebesgue spaces on oD

and D respectively. For 1 < p < oo, we denote by H? the classical Hardy

space that is the Banach space of all analytic function f on ID for which
27

£ = (sup o= [ 1frepas)” < oo,

0<r<1 2T Jy

and denote by L2 the Bergman space consisting of all analytic function
f on D for which

Iz = ([ I paac)™ < oo
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where dA is the normalized area measure on . Let H™ be the algebra of
bounded analytic functions on D. See [6], [7] and [15] for more information
on the Hardy and Bergman spaces.

In the next section, we regard the disk algebra A(D) as a closed subalge-
bra of C(6D) or C(D) and H*™ as a closed subalgebra of L* (D) or L*(D)
respectively. In section 3, we will consider the case of Hardy space H?:
for g € L=(8D), we define the linear operator S, : H? — L*(0D)/H? by
Sof = gf + H? for f € HP. Trivially S, : HP — LP(6D)/HP is a bounded
linear operator. When p = 2, let H; be the classical Hankel operator
on H?; for g € L*(8D), H,f = gf — P(gf), where P is the orthogonal
projection from L?(0D) onto H?. It is well known that H, is compact if
and only if g € H® + C(6D). In section 3, Theorem 3.1 says that this
equivalence holds on H” for 1 < p < co. When p = 1, Janson, Peetre and
Semmes [11] studied the Hankel operator as form H,f = P(bf) where f
is analytic polynomial and P is the orthogonal projection of L? onto H2.
So we will give the attention to Hankel operators on H? from the another
approach.

On the other hand, in the case of Bergman space, Leucking [12] char-
acterized the compactness of Hankel operators on L2,1 < p < 00..So we
will note them in section 4. In section 5 we add the result on the space of
bounded harmonic functions and in the last section we pose some open
questions.

2 The disk algebra and H®
(1) The disk algébra A(D)

At first we regard the disk algebra A = A(ID)|sp as a closed subalgebra
of C(0D). For g € C(OD), we define the linear operator S, : A —
C(0D)/A by

Sef =gf+A for feA

Then we would characterize the sets A, Ay and A... Each set is a closed
subalgebra of C(0D).
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Theorem 2.1. When we regard A = A(D)|sp as a closed subalgebra of
C(0D), then
A= Aye = Aee = C(OD).

Proof. 1t is trivial that A C€ A, C A, C C(OD) and that A, C Aye:
Let f, € A with ||fulle < 1. Then |f,(0)] < 1. Thus there exists a

subsequence (which we do not relabel) of {f,(0)} such that f,(0) — ¢ for
some constant c. Then, since Z(f, — f»(0)) € 4,

|Zfn — Zc + Alloo
< 2ho — 2~ 2 — SO
= [1Z(c = fn(0))lloo
=le= fal0)) = 0.

So Sz is compact and Z € A,. Because A, is a closed subalgebra of C(0D),
A= ch = Acc = C(@D),
by the Stone-Weierstrass theorem. ‘ H

We here estimate the norm and the essential norm of S;. Recall that
the essential norm of a bounded linear operator T from Y to X/Y is
defined as

|T||. = inf{||T + K] : K is compact operator from Y to X/Y}.
Using the basic duality relation ([7: Chapter IV]), we has the following.
Theorem 2.2. For g € C(0D), then ||Sy|| = d(g, A(D)|en) and [|S,]|. = 0.

Secondly we regard A = A(D) as a closed subalgebra of C(D). For
g € C(D), we define the linear operator S, : A — C(D)/A by
Sgf=9f+A for feA

Then each set A., Ay, and A, is a closed subalgebra of C(D) and their
equivalence was proved by Cole and Gamelin [3].

Theorem 2.3. When we regard A(D) as a closed subalgebra of C(D),
then |
Ac = Ay = Acc = C(H_j>

In this case we also have the following using the basic duality relation.

149



150

Theorem 2.4. For g € C(D), then ||S,|| = d(g, A(D)) and ||S,|le = 0.

(2) H*

At first we regard H* as a closed subalgebra of L>(0D). For g €
L>®(0D), we define the linear operator S, : H*® — L*(0D)/H> by

S,f=gf + H® for feH™

Then using the fact that H* has the Dunford-Pettis property, Cima,
Janson and Yale [1] and Gorkin [8] showed the following.

Theorem 2.5. When we regard H® as a closed subalgebra of L*(0D),
then '
HX® =HY = HY = H* + C(oD).

The estimation of norms is the following.

Theorem 2.6. For g € L®(0D), then ||Sy|| = d(g, H*®) and ||Sylle <
d(g, H® + C(6D)). ~

Secondly we regard H* as a closed subalgebra of L®(D). For g €
L>®(D), we define the linear operator S, : H*® — L*(D)/H* by

S,f=gf+H> for feH™.
Then Cima, Stroethoff and Yale [2] obtained the following result.

Theorem 2.7. When we regard H*® as a closed subalgebra of L>(D),
then ‘
H®=HX =HY=H*+CD)+V

where V = {g € L*°(D) : ||lgxp\rp|| =0 as r— 17}
Furthermore the estimation of norms is the following.

Theorem 2.8. For g € L*(D), then ||Sgll = d(g, H*) and ||Ss]le <
d(g, H*+C(D)+ V).
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3 The case of Hardy spaces H? for 1 < p <
00

We here consider the case of Hardy spaces. Before starting our discus-
sion, we recall results concerning the topology of Hardy spaces HP.

Fact 1. ([4: Chap.20, Proposition 3.15)) If 1 < p < o0, f € HP, and f,
is a sequence in HP, then the following are equivalent.

(a) {fn} converges weakly to f € HP.

(b) {f.} is bounded and f,, € H? converges to f uniformly on every
compact subset of D.

(c) {f.} is bounded and f,(z) converges to f(z) for all z € D.

(d) {f.} is bounded and f¥(0) converges to f*(0) for all k£ > 0.

Fact 2. ([4: Chap.20, Proposition 3.16]) Put S = {f € H' : || f||m2 = 1}.
Then S is weak*-compact and metrizable, but not weak compact.

For f, € S, the following are equivalent:
" (i) f. converges to f in the weak*-topology in H?.

(ii) fn(2) converges to f(z) for all z € D.

(iii) f, converges to f uniformly on every compact subset of ID.

For 1 < p < o0 and g € L*(D), we define the linear operator S, :
HP — LP(D)/H? by

Sgf =9f+HP for feHP.

Fact 3. For 1 < p < oo and g € L*(0D), the following are equivalent:
(i) S, : H? — LP(OD)/HP is compact ( completely continuous).
(ii) If {f,} is bounded in H? and converges to 0 uniformly on every
compact subset of D, then ||S, f,| — 0.

For 1 < p < oo, HP is reflexive. So all completely continuous operator
on HP? is compact and every bounded operator on H? is always weakly
compact. Thus H? = H?, and H?_ = L*°(dD).

For g € L>(0D), let H, be the classical Hankel operator on H? defined
by H,f = gf — P(gf), where P is the orthogonal projection from L?(0D)
onto H2. Hartman’s theorem says that H, : H> — L*(8D) is compact if
and only if g € H*® + C(9D). Then for 1 < p < 00, P is bounded from



L?(0D) onto HP and we can easily see the equivalence of compacteness of
H, and S;. But the next result will give the characterization of Hankel
operators on HP from the another approach.

Theorem 3.1. For 1 < p < oo, the following hold: .
HP = H?, = H* 4+ C(0D) and HE = L*(dD).

Proof. First, we note that H*® C H? = H?, C L*(0D). Then B := H? =
H? is a closed algebra and so a Douglas algebra.

Suppose that H*® + C(0D) C B. Thus there exists an interpolat-
ing Blaschke product ¢ € H® with ¢ € B. That is, Sy is compact
(completely continuous). Write ¢(2) = € [[ o, b.(z) where b,(z) =
(z — 2,) /(1 — Zm2). Put fi(2) = [loes bn(2). Then fp € HP || fellgr =1
and fi(z) — 0 for z € D as k — oo. By Fact 1, fi(z) — 0 weakly in H?.
On the other hand, we have

1S5 fxll = 10 fie + H?||

= ||e®@byby - - - bg—1 + H”||
= flenfgp |1+ €"*bibg - - - b1 f| v |

> inf |1+ €%(biba- - baf) (21 = [2)7,

forzeD.
Put z = 21, a zero of b;. So

I1S5fell > (1= [2)¢ > 0.
As 57 is completely continuous, |
”S}ka” — 0.

This contradicts. So B = H® + C(dD). O

Furthermore the estimation of norms is the following.

Theorem 3.2. For 1 < p < co and g € L=(D), then ||S,|| = d(g, H>)
and for 1 < p < 00, ||S,]le < d(g, H*® + C(0D)).
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4 The case of Bergman Spaces LP for 1 <
p < o0

For g € L°(D), let H, be the classical Hankel operator defined by
H,f = gf — P(gf), where P is the Bergman projection from L? onto L.

Then we can easily see the equivalence of compacteness of Hy and S.
On the other hand, Leucking [12] characterized the compactness of Hankel
operators on L2, 1 < p < c0. And so we have the following.

Theorem 4.1. For 1 < p < oo, then g € (L?), = (L) if and only if g
admits a decomposition g = g; + g so that

1
lim —-————/ 2dA =0
I BN Jog,

and |
g2 € CY(D), ,l}ml(l — |2])8g2(2) = 0

where D(z) is the Bergman disk with center z.
Moreover it holds that (L2),,. = L>(D).

5 The space of bounded harmonic functions

We here consider Hankel-type operators on the space of bounded har-
monic functions. Let A% := h*°(D) be the set of all bounded harmonic
functions on D. It follows that h™ is a closed subspace of L>(D). We
~ can define h°, A3, and A as before. The Bourgain algebra hZ; is char-
acterized by Izuchi, Stroethoff and Yale [10]. |

For a function f € L®(8D), we denote by f the Poisson integral of f
on D, that is, )
fl)y= | f(e")P:(e”)db/2,

0

where P, is the Poisson kernel of z € D. Then f € h®. For any nonempty
subset B of L®(8D), we write B = {f : f € B}. It is known that f

in A% has a boundary function f* on 9D and f* = f on D, so that

h>® = L%) Let H*(0D) be the space of boundary functions of
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bounded analytic functions on . The algebra QC of bounded quasi-

continuous functions on 0D is given by

QC = (H®(8D) + C (D)) N (H=(0D) + C(OD)).

Refer to [7] and [14] for more information.

The equality A2 = @Z’ + V was given as Corollary 3 in [10], where V'
is the same set as in Theorem 2.7. Then Izuchi and the author [9] show
the following result.

Theorem 5.1. hY® = h = QC+V.

6 Problems

Problem 6.1. Estimate the essential norms of Hankel-type operators in
cases of Hardy and Bergman spaces.

Problem 6.2. How about the case p = 17 That is, what are H}, H,.,
Hl?

Problem 6.3. Let h® be the space of bounded harmonic functions on
D. Then characterize hS,,.
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