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On a problem about the Shilov boundary
of a Riemann surface

P S (LR BB A )
Mikihiro HAYASHI (Hokkaido University)

1 Notations and a problem

1

Let R be a Riemann surface and let H*(R) be the algebra

of all bounded analytic functions on R with sup-norm || f{jec =
| fllr = supper | f(P)].
- The maximal ideal space .#(R) of H®(R) is the set
of all nonzero continuous homomrphisms of H®(R) to the
complex field C. The Gelfand transform fof f € H®(R)
is a function on .# (R) defined by f(¢) = o(f) for ¢ € A (R).
The maximal ideal space . (R) is a compact Hausdorfl space
with respect to the Gelfand toplogy, the weakest topology
among toplogies such that every Gelfand transform f is to
be continuous on . (R).

A closed subset E of .#(R) is called a boundary for
H*(R) if it statisfies HfHE = MaXpek If(p)l = || fl|g for all
f € H*®(R). The smallest boundary, denoted by III(R), for
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H*(R) exists and is called the Shilov boundary of H*(R).

Theorem A (Gamelin[l, 2]) If D is a domain in the com-
plez plane, then the Shilov boundary III(D) of H*(D) is ezx-

tremely disconnected.

It is natural to ask whether the same conclusion remains
true for arbtrary Riemann surfaces(cf. [6]). Namely,

Problem For any Riemann surface R, is the Shilov bound-
ary IH(R) extremely disconnected?

In order to avoid a triviality, one may only consider the
case that Riemann surface R admits a nonconstant bounded
analytic function; for, otherwise, the Shilov boundary is sin-
gleton. | |

At present we have no counter examples. In this note, we
shall give a partial result.

A point evaluation homomorphism ¢, at p € R, defined by
¢p(f) = f(p) for f € H*®(R), is an element of .#(R). This
induces a natural continuous map from R into .#(R). While
this natural map may not be injective in general, we often
identify R with its image in .Z(R) and regard R as a subset
of .#(R). With this convention, Gelfand transform f can be
regarded as a continuous extension of f.

The proof of Theorem A is based on the following simple
fact; function 1/(z—p) of z has simple pole at p and bounded
off any neighborhood of the point p. From this fact it follows
that D is homeomorphically imbedded as an open subset in

A(D).
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Let &,(R) be the set of points p € R such that there exist
a meromorphic function ¢ on R with the following properties:
(i) g has a simple pole at p, and (ii) g is bounded on R\ U,
for any neighborhood U, of p.

Theorem B ([5]) Let R be a Riemann surface such that
H>(R) contains a nonconstant function. Then, a point p €
R belongs to the set Z(R) if and only if p has a neighbor-
- hood which is homeomorphically imbedded as an open subset

in M (R).

The ’only if’ part is easy to see. From this easy part of
the theorem one can extend Theorem A to those Riemann
surfaces R under the condition &(R) = R, whose proof
goes in a similar way as Gamelin’s method(cf. [4]).

In this note we consider the case that &?;(R) is a proper
subset of R.

2 A preliminary observatrion

In this section we introduce an example of a Riemann sur-
face. First we recall one of the examples constructed in [5];
Let A = {z: |z]| < 1} be the open unit disc, and set

Ar=A (k=0,1,2,...)

Je =lak,br], 0<ai<b<ag<by<---, apll

I = U;";l lakj, i), a1 =ak <bk1 <+ < Ay, < by, = bi
(ny are sufficiently large)

Do =Do, Dyp=A\USLT (k2 1)



Let W be the Reimann surface obtained by connecting two
sides of intervals I in the sheet Dy \ I (k 2 1) with the cor-
responding two sides in the bottom sheet Dy \ I} crosswisely.
If we choose integers ny sufficiently large, then the sheets Dy
converges to the bottom sheet Dy in the maximal ideal space
M (W) as k — 00, and we have

Ps(W) = Uil1 (D \ I)
Let us consider the following subdomain W' of W:

1 1
p=0"={z:]z+5|S 7} (k20)
D, =Dy \ A} (k20)
W’:W\Uzo:]_A;c

Iricresing the number nj of subintervals forming I, if neces-
sary, we may further assume that the sheets D) converges to
Dy \ Al in the maximal ideal space .#(W’) as k — oo, and

we have
P (W') = Ay U (U1 (D \ L))

The restrinction 7(f) = f|W' is an algebra homomorphism
of H*(W) to H®°(W'), which induces a natural continuous
map 7 : M (W') — H®(W). For k 2 1 set

Fk = 72—1(8A;c)7

which is homeomorphic to . (A) \ A.
Since the sheets D) converges to the subdomain Dj of the

bottom sheet Dy, one might expect that I'y converges to a
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compact subset, 0Aj, of the bottom sheet. If this would
be true, then the circle 0A[ should be a part of the Shilov
boundary III(W’) and we would have a counter example to
the Problem.

This expectation is false. Namely,

2.1 Theorem The closure of Uy Ty in A (W') is disjoint
- from the bottom sheet D,.

Proof: By [3, Theorem 4.1], we have a Cauchy differential

(6 = { 2 +c, ) b

on (W) x W such that the analyitc part 5(¢.z) is bounded
on U x W whenever U is a relatively compact coordinate
disc in Z,(W). Let 0 < § < 3. Set fi(z) = (4;*—2)"% on
the sheet Dy for a positive interger Mx. On the annulus
{z € Dy :%—5< ]z+%| < i——l—é}, we have

1
fil(2) = 5= ( /M:W - /K +%l___%) F(Qw(C, 2)d¢
= h(2) — gk(2).

Choosing my large enough, we have |gx| < e on W\{z € Dj, :
|2+ 3| £ 2+ 6} and |he] < 275  on A}. Set G = D k1 Gk
Since g = hx— fi, it follows that 3 =1-3",5, 271 < |G| £
1+Y 4212 =3on each 0A}. Hence, G e H*(W'), and
|G| < 3 42127%! = ; on the bottom sheet Dy. This proves
the theorem. [J

In the remaing part of the note, we shall prové, Ioreover,
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that the Shilov boundaries III(W) and HI(W’) are both ex-
tremely disconnected.

i
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3 Main theorem

3.1 Theorem Let R be a Riemann surface and let {Q} be
the connected componets of #;(R). Suppose that

Ps(R) is a dense subset of R in #(R) (3.1)

and that

each Qy contains a point g such that supy | f(qx)]

< || fl|r for every nonconstant f € H®(R).
(3.2)

Then, III(R) is extremely disconnected.

The algebra H*(R) is said to be weakly separating (the
points of R) if for each pair distinct points p, g of R there is
a pair of nonzero functions f,g of H*(R) such that g(p) #
L(g).

For the proof we may assume that R is weakly separating.
In fact, if R is the Royden’s resulution of a Riemann surface
R with respect to the algebra H*°(R), then

(a) H®(R) is weakly separating;

(b) H *(R) is algebraically isomorphic with H*°(R), more

precisely, there exists an analyitc map p of R to R such

that H®(R) = {f o p; f € H*(R)};

(c) R is H*(R)-maximal, namely, if W is a Riemann sur-
face containing a proper subdomain being conformally
equivalent to R, then some elements in H *(R) can not
be analytically extended to whole W;
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(d) the Royden’s resulution of (R, H*(R)) is uniquely de-
termined up to confomal equivalence by propeties (a),
(b) and (c).

~

By (b), two Banach algebras H*(R) and H*®(R) are isomtri-
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cally isomorphic, that is, || foplleo = || flleo. Trivially, p(Zs(R)) C

P,(R). Moreover, we have F,(R) = H(R) ([5]), where
P (R) denote the pole set which consists of the points p € R
at which a meromorphic function g on R, bounded off a com-
pact subset of R, has a ploe. Therefore, it suffices to show
the theorem for R in place of R.

To prove the theorem,; we can use the same idea due to
Gamelin ([1, 2]), where we need some modifications. One is
needed because the pole set #(R) is not be connected and
consists of infinitely many connected component. Another
difficulty is that we only have local coordinate for a Riemann

surface instead of a global coordinate z for the complex plane.

4 Outline of the proof

We assume that H*(R) is weakly separating. For p €
- P(R), we denote by Mp° the set of meromorphic functions
with a simple pole at p and bounded off any neighborhood of
p. For a closed subset E of .#(R), we set £ = {¢ € #(R) :
17 (&) S Ifllz, f € H®(R)}, called the H®-convex hull of E,
~ and denote by Hy® the closure of H (R) with respect to the
- uniform norm for E. Let M*®(R) be the set of meromorphic
functions on R which are bounded off a compact subset of
R. 1t is known that each g € M*(R) has uniquely defines



a continuous map § of #(R) to the Riemann sphere such

that § agrees with g on R (regarded as a subset of .#(R))

and such that f§ = E on .4 (R) \ {poles of g} whenever fg

belongs to H*(R). For the simplicity of notations, we may
identify function g on R with function § on .Z(R).

- The following two lemmas can be prove if one use mero-

morphic functions in M® in place of 1/(z — p).

4.1 Lemma Let E be a closed subset of A (R) and p €
P(R)\E. Then, p ¢ E if and only if g € HY for some (and
hence all) g € My°.

4.2 Lemma If E is a closed subset of .4 (R), then every
connected component V of 2(R) \ E satisfies either V C E
or VNE=0.

A subset U of R is called dominating for H*(R) if || f||y =
| fllg for all f € H*(R). The next lemma, is a key.

4.3 Lemma Suppose that E is a closed subset of ./ (R) such
that III(R) ¢ E, and that Q is a subset of R satisfying either
of the following properties;

| fllo < ||f|lr for all nonconstant f € H*®(R) (4.1)

() is contained in the zero set of some " 2).

nonconstant g € H*(R)

Then, EUQ is not a closed boundary for H °°(R), and hence,

EuQ@ does not include any dominating subset of R for H*(R).

Proof: Let U be a dominating subset of R. Since E is not
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a boundary, there this a function f in H*(R) with ||fl||lg <
I/ 1|z

If Q satisfies (4.1), then we also have ||f|lo < ||fllr, and

hence, || fllzug < IIfllr = || fllu. This shows the conclusion.

If ) satisfies (4.2), then we have a nonconstant g € H*(R) |

with ¢ = 0 on Q. Since ||f|lg > ||fl|lz, and since Q is
nowhere dense in R, there exists a point a in R\ @ such
that |f(a)] > ||f|le. Multiplying a constant to f, we may
assume that f(a) = 1. For a sufficently large positive inte-
ger n, we have |[f"gllzug = [l/"9lle < lg(a)] = [(F"g)(a)| <
MNf™gllzr = || f"gllu- This yields the conclusion. [

The proof of the next lemma is routine.

4.4 Lemma If an open subset U of R is dominating for
H*(R), then U contains a dominating sequence S for H*(R)
such that S has no accumulating points in U (in the standard

topology of R).

4.5 Lemma Suppose (3.1) and that the points qi’s are as in
(3.2). Define a linear functional A on H*(R) by

M) =) flg27™ (4.3)
k

If u is a measure on #(R) \ P(R) representing A, i.e.,
A(f) = [ fdp for f € H®(R), then supp(u) D II(R) .
Moreover, among such representing meausures there exists u
with supp(u) = II(R).

Proof: Suppose that III(R) \ supp(x) is not empty. By
hypothesis (3.2), the set Q@ = {gx|k = 1,2,3,...} satisfies
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(4.1). Let E be the clusure of the set supp(u) U Q. Since
H(R) is dense in R, Z(R) \ @ is a dominating subset of
R. By Lemmad.3, there is a function h € H*(R) such that
|h(po)| > ||h]| £ for some point py in Z(R)\ @ . Let Q; be the
connected component of #(R) containing the point py. By
Lemma 4.2, Q,\ Q is disjoint from E. The Shilov idenpotent
theorem shows that there is a sequence h, € H*(R) such that
ha(pe) — 1 and h, — 0 uniformly on E \ {p;} as n — oo.
For arbitrary f € H®(R),

f(pe)2~ =1im Y  f(qe)hn(g)27" = lim A(fhn)
k

= / fhndu - O,
supp(u)

a contradiction. Thus, supp(x) D II(R). The last assurtion

follows form the Hahn-Banach extension theorem and the
Riesz representation theorem. [J

~ Now the proof of Theorem3.1 follows in a similar line due

to Gamelin’s. The details will be appear somewhere.
Finally, we note here that the hypothesis (3.2) can be re-

laxed to the following weaker one in the above argument:

The union of a subfamily {Qx} of the connected
components of Z(R) satisfying (3.2) forms a

boundary for H*(R)
(4.4)

Instead of (4.1), we may consider the set @ = {qx} satisfy-
ing (4.2) .
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