Toeplitz Ψ^*-algebras via unitary group representations

W. Bauer *

Science University of Tokyo,
Department of Mathematics,
Noda, Chiba (278-8510)
Japan
Email: bauerwolfram@web.de

Abstract

As it was pointed out in [12] there are construction methods for spectral invariant Fréchet operator algebras such as Ψ^*- and Ψ_0-algebras in the bounded operators on a Hilbert space having prescribed properties. For the Segal-Bargmann space H and using systems of unbounded closable Toeplitz operators T_f where f is in a certain class $\text{SP}_{\text{Lip}}(\mathbb{C}^n)$ of symbols we show that these algebras contain all Toeplitz operators T_h with $h \in L^\infty(\mathbb{C}^n)$. Let ρ be the Segal-Bargmann representation of the Heisenberg group \mathbb{H}_n in the bounded operators on H. As an application of our results above we characterize a class of smooth Toeplitz operators in the Ψ^*-algebra of smooth elements with respect to ρ.

1 Introduction

Subsequent to the results in [12] it frequently has been remarked that the abstract concept of (locally) spectral invariant Fréchet algebras such as Ψ_0- and Ψ^*-algebras successfully can be applied to the structural analysis of certain algebras of pseudo-differential operators. Applications arise in complex analysis, analytic perturbation theory of Fredholm operators and non-abelian cohomology for analyzing isomorphisms of abelian groups in K-theory. By generalizing a characterization of the Hörmander classes $\Psi_{\rho,\delta}^0$ by commutator conditions (see Theorem 2.1) a construction method for algebras of the above mentioned type with prescribed properties have been given in [12].

*The author was supported by a JSPS postdoctoral fellowship (PE 05570) for North American and European Researchers.

$0 \leq \delta \leq \rho \leq 1$ and $\delta < 1$
Let \(H := H^2(\mathbb{C}^n, \mu) \) be the Segal-Bargmann space of Gaussian square integrable entire functions on \(\mathbb{C}^n \). We denote by \(P \) the orthogonal projection from \(L^2(\mathbb{C}^n, \mu) \) onto \(H \) and we write \(M_f \) for the multiplication with a measurable symbol \(f \). In the initial stage of this paper we consider iterated commutators of closable Toeplitz operators \(T_f := PM_f \) on \(H \) having symbols in a certain class \(\text{SP}_{\text{lip}}(\mathbb{C}^n) \) of measurable and in general unbounded functions on \(\mathbb{C}^n \). For a system \(\mathcal{S}_m := \{T_{f_1}, \ldots, T_{f_m}\} \) of operators with \(f_j \in \text{SP}_{\text{lip}}(\mathbb{C}^n) \) and in the sense of [12] the \(\Psi_0 \)-algebra \(\Psi^{S_m}_\infty \) in the bounded operators \(\mathcal{L}(H) \) on \(H \) can be defined by commutator methods with respect to \(\mathcal{S}_m \). We show that \(\Psi^{S_m}_\infty \) contains all Toeplitz operators with bounded measurable symbols. More precisely:

Theorem A The symbols map \(L^\infty(\mathbb{C}^n) \ni h \mapsto T_h \in \Psi^{S_m}_\infty \) is well-defined and continuous.

Let \(\mathbb{H}_n \) be the Heisenberg group and \(\alpha \) be the Segal-Bargmann representation of \(\mathbb{H}_n \) in \(\mathcal{L}(H) \), c.f. [10]. The map \(\alpha \) is well-known to be unitary, irreducible and strongly continuous. In particular, the \(\Psi^* \)-algebra \(\Psi^\infty(\mathbb{H}_n) \subset \mathcal{L}(H) \) of smooth elements with respect to \(\alpha \) arise in a natural way and it can be characterized by commutator methods. We describe a symmetric subspace \(\mathcal{S}_s \subset L^\infty(\mathbb{C}^n) \) with the induced topology such that:

Theorem B The symbols map \(\mathcal{S}_s \ni h \mapsto T_h \in \Psi^\infty(\mathbb{H}_n) \) is well-defined and continuous.

This result can be stated in terms of the algebra construction. Let \(A \) be the algebra of multiplication operators on \(V := L^2(\mathbb{C}^n, \mu) \) with bounded measurable symbols. In a natural way \(\alpha \) extends to a representation of \(\mathbb{H}_n \) into \(\mathcal{L}(V) \) and the corresponding operator algebras \(\Psi^k(A, \mathbb{H}_n) \) of \(C^k \)-elements in \(A \) form a decreasing scale. Note that \(M_f \in \Psi^k(A, \mathbb{H}_n) \) is related to the smoothness of the symbols \(f \in L^\infty(\mathbb{C}^n) \). Clearly, \(A \) projects under \(P \) onto the space \(A_P := PAP \) of Toeplitz operators with bounded symbols. Theorem B states:

\[
P \Psi^k(A, \mathbb{H}_n) P = P \Psi^{k+1}(A, \mathbb{H}_n) P \subset \mathcal{L}(H) \quad \text{for all } k \in \mathbb{N}.
\]

Heuristically, the smoothness of \(f \) cannot be recovered by commutator methods from the Toeplitz operator \(T_f \). We want to remark here that these results are related to an observation in [14], [3]. Let \(\beta : L^2(\mathbb{R}^n) \rightarrow H \) be the Bargmann isometry and \(f \) a bounded measurable function on \(\mathbb{C}^n \). The assignment \(\beta^{-1}T_f\beta \) can be shown to be a pseudo-differential operator \(W_{\sigma(f)} \) on \(L^2(\mathbb{R}^n) \) in its Weyl quantization. By identifying \(\mathbb{R}^{2n} \) and \(\mathbb{C}^n \) the Weyl symbol \(\sigma(f) \) and \(f \) are related via the heat equation on \(\mathbb{R}^{2n} \). There is \(t_0 > 0 \) such that:

\[
\sigma(f) = e^{-t_0 \Delta} f := \text{solution of the heat equation with initial data } f \text{ at the time } t_0.
\]

Moreover, \(\sigma \) maps the space of continuous functions with compact support into the symbol class \(S_{\rho, \delta}^\infty \), \(0 \leq \delta \leq \rho \leq 1 \) and \(\delta < 1 \). Corresponding to Theorem A and B it can be checked that \(f \mapsto \sigma(f) \) is continuous with respect to the \(L^\infty(\mathbb{C}^n) \) topology and the usual Fréchet topology on \(S_{\rho, \delta}^\infty \).

In our first section we remind of some basic definitions and results related to the construction of \(\Psi_0 \)- and \(\Psi^* \)-algebras. For Toeplitz operators having symbols of polynomial growth at infinity an invariant subspace \(H_{\exp}(\mathbb{C}^n) \) of \(H \) is defined in section 3. Moreover,
the existence of bounded extensions for a class of iterated commutators of Toeplitz operators on $H_{\exp}(\mathbb{C}^{n})$ and Theorem A are proved. Section 4 contains the proof of Theorem B and finally we have added some examples and applications in section 5.

2 Fréchet operator algebras with prescribed properties

The following definition due to B. Gramsch have been given in [11]:

Definition 2.1 Let B be a Banach-algebra with unit e and let \mathcal{F} be a continuously embedded Fréchet algebra in B with $e \in \mathcal{F}$. Then \mathcal{F} is called Ψ_{0}-algebra if it is locally spectral invariant in B, i.e. there is $\varepsilon > 0$ with

$$\{ a \in \mathcal{F} : \| e - a \|_{B} < \varepsilon \} \subset \mathcal{F}^{-1}.$$

Moreover, one defines:

- If B is a C^{*}-algebra and \mathcal{F} is a symmetric Ψ_{0}-algebra in B, then \mathcal{F} is called Ψ^{*}-algebra. (\mathcal{F} automatically is spectral invariant, i.e. $\mathcal{F} \cap B^{-1} = \mathcal{F}^{-1}$).

- If the topology of \mathcal{F} is generated by a system $[q_{j} : j \in \mathbb{N}]$ of sub-multiplicative semi-norms with $q_{j}(e) = 1$ for $j \in \mathbb{N}$, then \mathcal{F} is called sub-multiplicative or locally m-convex (E. Michael, 1952) Ψ_{0}- resp. Ψ^{*}-algebra.

The concept of Ψ^{*}- and Ψ_{0}-algebras allows to treat phenomenas of local structure. As it was observed for algebras of Pseudo-differential operators, C^{∞}-properties such as pseudo- or micro-locality are preserved by taking closures in the Fréchet topology. Important examples of Ψ^{*}-algebras are given by the Hörmander classes $\Psi_{\rho,\delta}^{0}$ 2 of zero order where $B := \mathcal{L}(L^{2}(\mathbb{R}^{n}))$. It is known that $\Psi_{\rho,\delta}^{0}$ can be described in terms of commutator conditions.

Theorem 2.1 (R. Beals, '77, [6])

An operator $B : S(\mathbb{R}^{n}) \to S'(\mathbb{R}^{n})$ is of class $\Psi_{\rho,\delta}^{0}$ iff for $\alpha, \beta \in \mathbb{N}_{0}^{n}$ all iterated commutators:

$$ad[-ix]^{\alpha} ad[i\partial_{x}]^{\beta}(B) : H^{s-\rho|\alpha|+\delta|\beta|} \to H^{s}$$

admit bounded extensions between suitable Sobolev spaces to $L^{2}(\mathbb{R}^{n})$.

On the one hand the spectral invariance of $\Psi_{\rho,\delta}^{0}$ follows from the commutator characterizations in Theorem 2.1, see [19], [20]. On the other hand, by replacing ix and $i\partial_{x}$ above with a system of closable and densely defined operators, conditions of the type (2.1) have been used to define (submultiplicative) Ψ_{0}-algebras in a fairly general situation, see [12]. Below we give the definitions and remind of some basic results.

\[0 \leq \delta \leq \rho \leq 1 \text{ and } \delta < 1 \]
2.1 Commutator Methods

Given a topological vector space X we write $L(X)$ (resp. $\mathcal{L}(X)$) for the linear (resp. bounded linear) operators on X.

Definition 2.2 (Iterated commutators)

For a system $S_m := [A_1, \cdots, A_m]$ where $A_j, B \in L(X)$ we call m the length of S_m. We inductively define the iterated commutators $\text{ad}[\emptyset](B) := B$ and:

- $\text{ad}[S_j](B) := [A_j, B] = A_jB - BA_j$,
- $\text{ad}[S_{j+1}](B) := \text{ad}[A_{j+1}](\text{ad}[S_j](B))$ for $j = 1, \cdots, m - 1$.

In the case of $A = A_j$ where $j = 1, \cdots, m$ we also write:

- $\text{ad}^0[A](B) := B$ and $\text{ad}^m[A](B) := \text{ad}[S_m](B)$.

With these notations it follows for finite systems S_j and S_k in $L(X)$:

$$\text{ad}[S_j](\text{ad}[S_k](B)) = \text{ad}[S_k, S_j](B).$$

Let H be a Hilbert space and $\mathcal{F} \subset \mathcal{L}(H)$ be a sub-multiplicative Ψ^*-algebra. Assume that the topology of \mathcal{F} is generated by a sequence $(q_j)_{j \in \mathbb{N}}$ of semi-norms and without loss of generality let $q_0 := \| \cdot \|_{\mathcal{L}(H)}$. Given a finite system \mathcal{V} of closed and densely defined operators $A : H \supset D(A) \rightarrow H$ and following [12] we define:

- $\mathcal{I}(A) := \{ a \in \mathcal{F} : a(D(A)) \subset D(A) \}$,
- $B(A) := \{ a \in \mathcal{I}(A) : [A, a] \text{ extends to an element } \delta_A(a) \in \mathcal{F} \}$.

Inductively, one obtains:

- $\Psi_0^\mathcal{V} := \mathcal{F}$, with semi-norms $q_{0,j} := q_j$ for $j \in \mathbb{N}$,
- $\Psi_1^\mathcal{V} := \bigcap_{A \in \mathcal{V}} B(A)$,
- $\Psi_k^\mathcal{V} := \{ a \in \Psi_{k-1}^\mathcal{V} : \delta_A a \in \Psi_{k-1}^\mathcal{V} \text{ for all } A \in \mathcal{V} \}$ where $k \geq 2$,
- $\Psi_\infty^\mathcal{V} := \bigcap_{k \in \mathbb{N}} \Psi_k^\mathcal{V}$.

This process leads to a decreasing scale of algebras in \mathcal{F}:

$$\mathcal{F} = \Psi_0^\mathcal{V} \supset \cdots \supset \Psi_n^\mathcal{V} \supset \Psi_{n+1}^\mathcal{V} \supset \cdots \supset \Psi_\infty^\mathcal{V} := \bigcap_{k \in \mathbb{N}} \Psi_k^\mathcal{V}. \quad (2.2)$$

For $n \geq 1$, we inductively define a system $(q_{n,j})_{j \in \mathbb{N}}$ (resp. $(q_{n,j})_{j,n \in \mathbb{N}}$) of norms on $\Psi_n^\mathcal{V}$ (resp. on $\Psi_\infty^\mathcal{V}$) by:

$$q_{n,j}(a) := q_{n-1,j}(a) + \sum_{A \in \mathcal{V}} q_{n-1,j}(\delta_A a). \quad (2.3)$$
According to [12], Ψ^∞_0 is a sub-multiplicative Ψ_0-algebra in \mathcal{F}. In the case where each $A \in \mathcal{V}$ is symmetric we replace $B(A)$ by:

$$B^*(A) := \{ a \in B(A) : a^* \in B(A) \}.$$

Then the algebras Ψ^n_0 are symmetric and Ψ^∞_0 is a Ψ^*-algebra in $\mathcal{L}(H)$. Let $D \subset H$ be a core for \mathcal{V}, i.e. the inclusion $D \hookrightarrow \mathcal{D}(A)$ is dense with respect to the graph norm for all $A \in \mathcal{V}$. Then it was shown in [2], [3]:

Proposition 2.1 Assume that $a \in \mathcal{F}$ and property (E_k) holds for $k \in \mathbb{N} \cup \{\infty\}$:

(E_k): D is invariant under all $A \in \mathcal{V}$ and $a \in \mathcal{F}$. Moreover, assume that for any system

$$A \subset S_k(\mathcal{V}) := \{ [A_1, \cdots, A_j] : \text{where } A_l \in \mathcal{V} \text{ and } 1 \leq l \leq j \leq k \}.$$

Then $a \in \Psi^n_k$ and $C(A, a)$ is a bounded extension of $\text{ad}[A](a) : H \subset \mathcal{D}(A) \rightarrow H$ to H for any operator $A \in \mathcal{V}$.

The (locally) spectral invariance of $\mathcal{A} \subset \mathcal{B}$ is preserved under projections $p = p^2 \in \mathcal{A}$. It is readily verified that $\mathcal{A}_p := p \mathcal{A} p$ is (locally) spectral invariant in $\mathcal{B}_p := p \mathcal{B} p$. If in addition \mathcal{B} is a C^*-algebra, \mathcal{A} is symmetric in \mathcal{B} and $p = p^*$, then \mathcal{A}_p is symmetric and spectral invariant in \mathcal{B}_p.

With (2.2) and an orthogonal projection $p \in \Psi^n_k$, $n \in \mathbb{N} \cup \{\infty\}$ from H onto a closed subspace $H_0 \subset H$ there is a scale of projected algebras in $\mathcal{L}(H_0)$:

$$\mathcal{L}(H_0) \supset \mathcal{F}_p = \Psi^1_{p} \supset \cdots \supset \Psi^1_{-1} \supset \Psi^1_{p}.$$

It can be shown that (2.4) arises by commutator methods with a system \mathcal{V}_p of closed operators on H_0 where $\mathcal{D}(A_p) := p[\mathcal{D}(A)]$ and

$$\mathcal{V}_p := \{ A_p := p A p : H_0 \supset \mathcal{D}(A_p) \rightarrow H_0 : A \in \mathcal{V} \}.$$

Defining (2.4) by commutator conditions with respect to \mathcal{V}_p only requires that $p \in \Psi_1^\infty$. Thus this method gives a natural extension of (2.4) to an infinite scale for $n \in \mathbb{N}$.

There is a corresponding scale of \mathcal{V}-Sobolev spaces in H:

- $\mathcal{H}^0_\mathcal{V} := H$ with the norm $p_0 := \| \cdot \|_H$.
- $\mathcal{H}^1_\mathcal{V} := \bigcap_{A \in \mathcal{V}} \mathcal{D}(A)$.
- $\mathcal{H}^k_\mathcal{V} := \{ x \in \mathcal{H}^{k-1}_\mathcal{V} : Ax \in \mathcal{H}^{k-1}_\mathcal{V} \text{ for all } A \in \mathcal{V} \}, \ k \geq 2$.
- $\mathcal{H}^\infty_\mathcal{V} := \bigcap_{k \in \mathbb{N}} \mathcal{H}^k_\mathcal{V}$.

W. BAUER
We endow \mathcal{H}_V^k with the norm
\[p_k(x) := p_{k-1}(x) + \sum_{A \in \mathcal{V}} p_{k-1}(Ax), \quad x \in \mathcal{H}_V^k. \]

Let the topology of \mathcal{H}_V^∞ be defined by the system of norms $(p_k)_{k \in \mathbb{N}_0}$. It can be shown that (\mathcal{H}_V^k, p_k) is a Banach spaces and $(\mathcal{H}_V^\infty, (p_k)_{k \in \mathbb{N}})$ turns into a Fréchet space. Moreover, each $A \in \mathcal{V}$ induces a bounded operator $A_k : \mathcal{H}_V^k \to \mathcal{H}_V^{k-1}$. For $n \in \mathbb{N} \cup \{\infty\}$ it was shown in [12] that all maps
\[\Psi^*_k \times \mathcal{H}_V^k \to \mathcal{H}_V^k : (a, x) \mapsto a(x) \]
are bilinear and continuous. The following result on regularity was proved in [13]:

\begin{theorem}
Let $A \in \Psi^*_\infty$ be a Fredholm operator and $u \in H$ with $Au = f \in \mathcal{H}_V^k$ for some $k \in \mathbb{N} \cup \{\infty\}$. Then it follows that $u \in \mathcal{H}_V^k$.
\end{theorem}

3 On the Segal-Bargmann Projection

Throughout this paper we write $(x, y) := x_1 \bar{y}_1 + \cdots x_n \bar{y}_n$ for the Hermitian inner product on \mathbb{C}^n and $|x| := \sqrt{(x, x)}$. For $c > 0$ and the Lebesgue measure v let us denote by μ_c the Gaussian measure on \mathbb{C}^n given by:
\[d\mu_c = c^n \pi^{-n} \exp(-c |\cdot|^2) \, dv. \]

With $\mu := \mu_1$ let $H^2(\mathbb{C}^n, \mu)$ be the Segal-Bargmann space of μ-square integrable entire functions on \mathbb{C}^n. We denote by P the orthogonal projection from $L^2(\mathbb{C}^n, \mu)$ onto $H^2(\mathbb{C}^n, \mu)$. The reproducing kernel K (resp. the normalized kernel k) corresponding to $H^2(\mathbb{C}^n, \mu)$ are known to be:

(a) $K(y, x) := \exp((y, x))$,

(b) $k_x(y) := K(y, x) \| K(\cdot, x) \|^{-1} = \exp((y, x) - \frac{1}{2} |x|^2)$

where $\| \cdot \|$ denotes the $L^2(\mathbb{C}^n, \mu)$-norm. For $z, w \in \mathbb{C}^n$ we write $\tau_w(z) := z + w$ for the shift by w. Consider the space of measurable symbols on \mathbb{C}^n given by:
\[T(\mathbb{C}^n) := \{ g : g \circ \tau_x \in L^2(\mathbb{C}^n, \mu) \text{ for all } x \in \mathbb{C}^n \}. \]

For $g \in T(\mathbb{C}^n)$ and with the natural domain of definition
\[D(T_g) := \{ f \in H^2(\mathbb{C}^n, \mu) : gf \in L^2(\mathbb{C}^n, \mu) \} \quad (3.1) \]
the Toeplitz operator T_g on $H^2(\mathbb{C}^n, \mu)$ is densely defined by:
\[T_g : D(T_g) \ni f \mapsto P(fg). \]

If g has polynomial growth at infinity we can determine an invariant subspace for T_g.

We inductively define a sequence $(a_n)_{n \in \mathbb{N}}$ with $a_1 := \frac{1}{4}$ and $a_{n+1} := [4 \cdot (1 - a_n)]^{-1}$ for all $n \geq 2$. It can be checked that:
(a) $a_n < \frac{1}{2}, \quad \forall n \in \mathbb{N},$
(b) $(a_n)_{n \in \mathbb{N}}$ is strictly increasing,
(c) $\lim_{n \to \infty} a_n = \frac{1}{2}.$

Let $\mathbb{P}[\mathbb{C}^n]$ be the space of all polynomials on \mathbb{C}^n in the variables $z := (z_1, \cdots, z_n)$ and $\overline{z} := (\overline{z}_1, \cdots, \overline{z}_n).$ We write $\mathbb{P}_a[\mathbb{C}^n]$ for all analytic polynomials and set:

$$L_{\exp}(\mathbb{C}^n) := \{ f \in L^2(\mathbb{C}^n, \mu) : \exists c < \frac{1}{2}, 0 < D \text{ s.t. } |f(z)| \leq D \exp\left(c |z|^2 \right) \text{ a.e.} \}.$$

Because of $\mathbb{P}[\mathbb{C}^n] \subset L_{\exp}(\mathbb{C}^n)$ it follows that $L_{\exp}(\mathbb{C}^n)$ is dense in $L^2(\mathbb{C}^n, \mu).$

With the space $\mathcal{H}(\mathbb{C}^n)$ of entire functions on \mathbb{C}^n we define a subspace of $H^2(\mathbb{C}^n, \mu)$ by:

$$H_{\exp}(\mathbb{C}^n) := \mathcal{H}(\mathbb{C}^n) \cap L_{\exp}(\mathbb{C}^n).$$

Consider the symbols having polynomial growth at ∞:

$$\mathrm{Pol}(\mathbb{C}^n) := \{ f : \exists j \in \mathbb{N} \text{ s.t. } |f(z)| (1 + |z|^2)^{-\frac{1}{2}} \in L^\infty(\mathbb{C}^n) \}.$$

Proposition 3.1 It holds $P[L_{\exp}(\mathbb{C}^n)] \subset H_{\exp}(\mathbb{C}^n)$ and for f in $\mathrm{Pol}(\mathbb{C}^n):$

$$T_f[H_{\exp}(\mathbb{C}^n)] \subset H_{\exp}(\mathbb{C}^n) \subset D(T_f) \quad (3.2)$$

Proof: It is obvious that $H_{\exp}(\mathbb{C}^n) \subset D(T_f).$ Because the multiplication by f clearly maps $H_{\exp}(\mathbb{C}^n)$ into $L_{\exp}(\mathbb{C}^n)$ it is sufficient to prove the first assertion of Proposition 3.1. For $g \in L_{\exp}(\mathbb{C}^n)$ there are $c < \frac{1}{2}$ and $D > 0$ such that a.e.:

$$|g(z)| \leq D \exp\left(c |z|^2 \right).$$

By (a), (b) and (c) with $(a_n)_{n \in \mathbb{N}}$ above we can choose $n_0 \in \mathbb{N}$ with $c < a_{n_0} < \frac{1}{2}.$

Using the transformation formula and the reproducing property of K we obtain:

$$|\mathbb{P}g(z)| \leq \int_{\mathbb{C}^n} |g \exp\{ \langle z, \cdot \rangle \}| d\mu$$

$$\leq D \pi^{-n} \int_{\mathbb{C}^n} \exp\left\{ \mathrm{Re}\langle z, \cdot \rangle - \left(1 - a_{n_0} \right) |\cdot|^2 \right\} d\nu$$

$$= D \left(1 - a_{n_0} \right)^{-n} \int_{\mathbb{C}^n} \exp\left\{ \frac{\mathrm{Re}\langle 2^{-1} (1 - a_{n_0})^{-\frac{1}{2}} z, \cdot \rangle}{\sqrt{4(1 - a_{n_0})}} \right\} d\mu$$

$$= D \left(1 - a_{n_0} \right)^{-n} \exp\left\{ \left[\frac{4(1 - a_{n_0})}{2^{-1}} \right]^{-\frac{1}{2}} |z|^2 \right\}.$$

From (a) above we conclude that $Pg \in H_{\exp}(\mathbb{C}^n).$

Hence all finite products of Toeplitz operators with symbols in $\mathrm{Pol}(\mathbb{C}^n)$ are well-defined on the dense subspace $H_{\exp}(\mathbb{C}^n)$ of $H^2(\mathbb{C}^n, \mu).$ In particular, all iterated commutators of P and multiplication operators M_f with $f \in \mathrm{Pol}(\mathbb{C}^n)$ can be considered as elements in $L(L_{\exp}(\mathbb{C}^n)).$ In fact, they can be written as integral operators and a standard application of the Schur test leads to a criterion for the boundedness.
Lemma 3.1 Let $L : \mathbb{C}^n \times \mathbb{C}^n \to \mathbb{C}$ be a measurable function such that:

$$|L(x, y)| \leq |F(x - y)| \exp \left\{ Re \langle x, y \rangle \right\}$$

where $F \in L^1(\mathbb{C}^n, \mu_{\frac{1}{2}})$. Then the integral operator A on $L^2(\mathbb{C}^n, \mu)$ defined by

$$[A f](z) := \int_{\mathbb{C}^n} L(z, \cdot) f d\mu$$

is bounded on $L^2(\mathbb{C}^n, \mu)$ with $\| A \| \leq 2^n \| F \|_{L^1(\mathbb{C}^n, \mu_{\frac{1}{2}})}$.

Proof: With $p := q = \exp(\frac{1}{2} |\cdot|^2)$ on \mathbb{C}^n it follows that:

$$\int_{\mathbb{C}^n} |L(\cdot, y)| p d\mu \leq \frac{1}{\pi^n} \int_{\mathbb{C}^n} |F(\cdot - y)| \exp \left\{ Re \langle \cdot, y \rangle - \frac{1}{2} |\cdot|^2 \right\} dv$$

$$= \frac{1}{\pi^n} \int_{\mathbb{C}^n} |F| \exp \left\{ Re \langle \cdot + y, y \rangle - \frac{1}{2} |\cdot + y|^2 \right\} dv$$

$$= 2^n p(y) \| F \|_{L^q(\mathbb{C}^n, \mu)}.$$

Similarly, we get $\int |L(x, \cdot)| p d\mu \leq 2^n p(x) \| F \|_{L^1(\mathbb{C}^n, \mu_{\frac{1}{2}})}$. Applying the Schur test we obtain the desired result.

Consider the subspace $\text{SP}_{\text{Lip}}(\mathbb{C}^n)$ of $\text{Pol}(\mathbb{C}^n)$ defined by:

$$\text{SP}_{\text{Lip}}(\mathbb{C}^n) := \{ f \in \text{Pol}(\mathbb{C}^n) : \exists c, D > 0 \text{ s.t. } |f(z) - f(w)| \leq D \exp(c |z - w|) \}.$$

As an application of Lemma (3.1) we can prove:

Proposition 3.2 Let $m \in \mathbb{N}$ and $S_m := \{ M_{f_1}, \ldots, M_{f_m} \}$ with $f_j \in \text{SP}_{\text{Lip}}(\mathbb{C}^n)$. Then the commutator $\text{ad}[S_m](P) \in L(L^2(\mathbb{C}^n, \mu))$ has a continuous extension to $L^2(\mathbb{C}^n, \mu)$.

Proof: It is easy to check that the commutator $\text{ad}[S_m](P)$ can be written as an integral operator on $L^2(\mathbb{C}^n, \mu)$ with kernel:

$$K_m(z, u) = \exp(\langle z, u \rangle) \prod_{j=1}^m \{ f_j(z) - f_j(u) \}.$$ \hspace{1cm} (3.3)

By (3.3) and our assumptions on $f_j \in S_m$ we can choose $c, D > 0$ such that

$$|K_m(z, u)| \leq D \exp(\langle c |z - u| + \text{Re} \langle z, u \rangle \rangle).$$

Because of $F := D \exp(\langle c |\cdot| \rangle) \in L^1(\mathbb{C}^n, \mu_{\frac{1}{2}})$ Lemma 3.1 implies the assertion.

We remark that by (3.3) the maps $\text{ad}[S_m](P)$ are invariant under permutations of the system S_m. Now, we can prove the boundedness of a class of iterated commutators.
Corollary 3.1 Let $g \in L^\infty(\mathbb{C}^n)$ and $S_m := \{M_{f_1}, \ldots, M_{f_m}\}$ with $f_j \in SP_{Lip}(\mathbb{C}^n)$. Then the commutator
\[\text{ad} [S_m] \left([P, M_g] \right) \in L(L^\infty(\mathbb{C}^n)) \]
has a bounded extension $A(S_m, g)$ to $L^2(\mathbb{C}^n, \mu)$ and (3.4) below is continuous between Banach spaces:
\[L^\infty(\mathbb{C}^n) \ni g \mapsto A(S_m, g) \in \mathcal{L}(L^2(\mathbb{C}^n, \mu)). \] (3.4)

Proof: It can be checked by induction or our remark following Proposition 3.2 that:
\[\text{ad} [S_m] \left([P, M_g] \right) = \left[\text{ad} [S_m] (P), M_g \right] \in L(L^\infty(\mathbb{C}^n)). \]

Because M_g is bounded and $\text{ad} [S_m] (P)$ has a bounded extension to $L^2(\mathbb{C}^n, \mu)$ by Proposition 3.2 we conclude the desired result. □

Given a finite set $X := \{X_1, \ldots, X_n\} \subset \mathcal{L}(L^2(\mathbb{C}^n, \mu))$ we denote by $\mathcal{A}(X)$ the algebra generated by X. Moreover, we write:
\[A_P(X) := P \mathcal{A}(X) P := \{PAP : A \in \mathcal{A}(X)\}. \]
for the corresponding projected algebra in $\mathcal{L}(H^2(\mathbb{C}^n, \mu))$. By Proposition 3.1 and for all $m \geq 1$ it follows that the commutator:
\[\text{ad} [S_{m-1}] \left([P, M_{f_m}] \right) = -\text{ad} [S_m] (P) \]
can be regarded as bounded operators on $L^2(\mathbb{C}^n, \mu)$.

Proposition 3.3 Let $g \in L^\infty(\mathbb{C}^n)$ and $T_m := \{T_{f_1}, \ldots, T_{f_m}\}$ with $f_j \in SP_{Lip}(\mathbb{C}^n)$. Then
\[\text{ad} [T_m] \left(T_g \right) \in L(H^\infty(\mathbb{C}^n)) \]
is well-defined. More precisely, with $S_m := \{M_{f_1}, \ldots, M_{f_m}\}$ it holds:
\[\text{ad} [T_m] \left(T_g \right) \in A_P \left\{ \text{ad} [N] (P), M_g : \text{with } N \subset S_m \right\} \] (3.5)
and $\text{ad} [T_m] \left(T_g \right)$ has a bounded extension $C(T_m, g)$ to $H^2(\mathbb{C}^n, \mu)$. Moreover, the symbols map
\[L^\infty(\mathbb{C}^n) \ni g \mapsto C(T_m, g) \in \mathcal{L}(H^2(\mathbb{C}^n, \mu)) \] (3.6)
is continuous between Banach spaces.

Proof: By Proposition 3.1 the iterated commutators $\text{ad} [T_m] \left(T_g \right)$ are well-defined. It is a straightforward computation that:
\[\text{ad} [T_1] \left(T_g \right) = P \left[\left[P, M_{f_1} \right], \left[P, M_g \right] \right] P \]
which proves (3.5) in the case $m = 1$. By induction assume $\text{ad}[T_j](T_g)$ has the form:

$$\text{ad}[T_j](T_g) = \sum_{l \in \mathcal{I}} P A_l M_g B_l P$$

(3.7)

where \mathcal{I} is a finite index set, I the identity operator and

$$A_l, B_l \in \mathcal{A}(S_j) := \mathcal{A}\{\text{ad}[\mathcal{N}](P), I : \text{ with } \mathcal{N} \subset S_j\}.$$

(3.8)

Then it follows that:

$$\text{ad}[T_{j+1}](T_g) = \sum_{l \in \mathcal{I}} [T_{f_{j+1}}, P A_l M_g B_l P].$$

To prove (3.7) in the case $j + 1$ it is sufficient to show for all $l \in \mathcal{I}$ the existence of a finite set $\tilde{\mathcal{I}} \subset \mathbb{N}$ and operators $C_k, D_k \in \mathcal{A}(S_{j+1})$ such that

$$[T_{f_{j+1}}, P A_l M_g B_l P] = \sum_{k \in \tilde{\mathcal{I}}} P C_k M_g D_k P.$$

(3.9)

Note that (3.9) follows from $T_{f_{j+1}} P A_l M_g B_l P = P M_{f_{j+1}} P A_l M_g B_l P$ and

$$[M_{f_{j+1}}, Q] \in \mathcal{A}(S_{j+1})$$

for $Q \in \{P, A_l, B_l\}$. The continuity of (3.6) is a direct consequence of (3.7).

As an immediate consequence of Proposition 3.2 we remark:

Lemma 3.2 Let $f \in \text{SP}_{\text{Lip}}(\mathbb{C}^n)$ and $\mathcal{D}(T_f)$ as in (3.1). Then the Toeplitz operator T_f is densely defined and closed on $\mathcal{D}(T_f)$.

Proof: Because of $f \in T(\mathbb{C}^n)$ it follows that T_f is densely defined. Moreover,

$$M_f = T_f + [M_f, P] : \mathcal{D}(T_f) \subset H^2(\mathbb{C}^n, \mu) \rightarrow L^2(\mathbb{C}^n, \mu).$$

(3.10)

Proposition 3.2 with $j = 1$ shows that the commutator $[M_f, P]$ has a continuous extension to $H^2(\mathbb{C}^n, \mu)$. Choose a sequence $(h_n)_{n \in \mathbb{N}} \subset \mathcal{D}(T_f)$ such that:

(i) $\lim_{n \to \infty} h_n = h \in H^2(\mathbb{C}^n, \mu),$

(ii) $\lim_{n \to \infty} T_f h_n = g \in H^2(\mathbb{C}^n, \mu).$

Then we conclude from the continuity of $[M_f, P]$ and (3.10) that

$$fh = \lim_{n \to \infty} fh_n \in L^2(\mathbb{C}^n, \mu)$$

Hence $h \in \mathcal{D}(T_f)$ and $g = \lim_{n \to \infty} P(fh_n) = T_f h.$

\square
Let $\mathcal{T}_m := \{T_{f_1}, \cdots, T_{f_m}\}$ be a system of Toeplitz operators where $f_j \in \text{SP}_{\text{Lip}}(\mathbb{C}^n)$ for $j = 1, \cdots, n$. From Lemma 3.2 it follows that the domains $\mathcal{D}(T_{f_j})$ are closed with respect to the graph norm $\| \cdot \|_{\text{gr}} := \| \cdot \| + \| T_{f_j} \cdot \|$. Consider $D_j \subset H^2(\mathbb{C}^n, \mu)$ defined by:

$$D_j := \| \cdot \|_{\text{gr}} - \text{closure of } \text{H}_{\exp}(\mathbb{C}^n) \text{ in } \mathcal{D}(T_{f_j}).$$

If we consider T_{f_j} as a closed operator on D_j we can define a scale of algebras (2.2) by commutator methods with the system \mathcal{S}_m. By Lemma 2.1 with $D := \text{H}_{\exp}(\mathbb{C}^n)$ our result in Proposition 3.3 can be formulated as follows:

Theorem 3.1 The symbol map $L^\infty(\mathbb{C}^n) \ni h \mapsto T_h \in \Psi_{\infty}^{S_m}$ is well-defined and continuous.

Note that an application of Theorem 2.2 in the case of $\mathcal{V} := \mathcal{S}_m$ gives a regularity result for Fredholm Toeplitz operators with bounded symbols.

4 Toeplitz Ψ^*-algebras via the Segal-Bargmann representation

There is a unitary representation of the Heisenberg group \mathbb{H}_n in $\mathcal{L}(L^2(\mathbb{C}, \mu))$. By identifying \mathbb{H}_n with $\mathbb{C}^n \times \mathbb{R}$ the group law is given by, [10]:

$$(z, t) \ast (w, s) := (z + w, t + s + 2^{-1} \text{Im}(w, z)).$$

For $z \in \mathbb{C}^n$ and $f \in L^2(\mathbb{C}^n, \mu)$ we define the operator $W_z f := k_z \cdot f \circ \tau_z$. It follows by an easy calculation:

Lemma 4.1 $H^2(\mathbb{C}^n, \mu)$ is an invariant subspace for all W_z where $z \in \mathbb{C}^n$. Moreover,

1. W_z is unitary with $W_z^* = W_{-z} = W_z^{-1}$,
2. The commutator $\text{ad}[P] W_z$ vanishes,
3. For $z, w \in \mathbb{C}^n : W_z W_w = \exp(i \text{Im}(w, z)) W_{z+w}$.

By Lemma 4.1 a unitary representation $\tilde{\rho} : \mathbb{H}_n \to \mathcal{L}(L^2(\mathbb{C}^n, \mu))$ of \mathbb{H}_n is given by:

$$\tilde{\rho}(z, t) := e^{it} W_{\frac{z}{\sqrt{2}}}.$$

Moreover, the restriction of $\tilde{\rho}(z, t)$ to $H^2(\mathbb{C}^n, \mu)$ gives rise to a unitary representation ρ of \mathbb{H}_n in $\mathcal{L}(H^2(\mathbb{C}^n, \mu))$. It is well-known that ρ is irreducible and strongly continuous and it is referred to as Segal-Bargmann representation, c.f. [10].

For any $A \in B := \mathcal{L}(H^2(\mathbb{C}^n, \mu))$ we define the map:

$$\Phi_A : \mathbb{H}_n \to B$$

$$\begin{array}{c}
(z, t) \mapsto \rho(z, t) A \rho(z, t)^{-1} = W_{\frac{z}{\sqrt{2}}} A W_{\frac{z}{\sqrt{2}}}^{-1}.
\end{array}$$

(4.1)
In particular, note that for \(f \in L^\infty(\mathbb{C}^n) \)
\[
\Phi_{T_f}(z, t) = T_{f \circ \tau_{-\frac{t}{2}}}.
\]

For \(k \in \mathbb{N} \cup \{ \infty \} \) we consider the \(C^k \)-elements
\[
\Psi^k := \{ A \in B : \Phi_A \in C^k(\mathbb{H}_n, B) \}
\]
defined via \(\rho \). To any \(z \in \mathbb{C}^n \) we associate \(\varphi_A^z : \mathbb{R} \rightarrow B \) by \(\varphi_A^z(s) := W_{sz}AW_{-sz} \). According to (4.1) it follows that:
\[
\Psi^k = \bigcap_{z \in \mathbb{C}^n} \Psi^{k,z}
\]
where \(\Psi^{k,z} := \{ A \in B : \varphi_A^z \in C^k(\mathbb{R}, B) \} \).

Here we characterize the \(C^k \)-Toeplitz operators (i.e. the Toeplitz operators \(T_f \in \Psi^k \)) in terms of their symbols. We use a characterization of \(\Psi^\infty \) by commutator conditions and apply our results of the previous section.

For all \(z \in \mathbb{C}^n \) the map \((W_{sz})_{s \in \mathbb{R}} \subset B \) defines a strongly continuous unitary group. By \(V^z \) we denote its infinitesimal generator with domain of definition:
\[
\mathcal{D}(V^z) := \{ h \in H^2(\mathbb{C}^n, \mu) : V^z h := \lim_{s \rightarrow 0} s^{-1}(W_{sz} - I)h \text{ exists} \}.
\]

By Stone's Theorem \(iV^z \) is selfadjoint and associated to \(V^z := [iV^z] \) there is a scale:
\[
B := \Psi^V_0 \supset \cdots \supset \Psi^V_n \supset \cdots \supset \Psi^V_{\infty} := \bigcap_{k \in \mathbb{N}} \Psi^V_k
\]
of algebras in \(B \) defined by commutator methods with \(V^z \) as it was described in (2.2) of section 2.1. In particular, \(\Psi^V_\infty \) is a \(\Psi^* \)-algebra and it is well-known that (4.2) and (4.3) are related as follows, see [16]:

Proposition 4.1 For \(z \in \mathbb{C}^n \) let \(V^z := [iV^z] \) then:

(i) \(\Psi^{k,z} \subset \Psi^V_k \) for \(k \in \mathbb{N} \),

(ii) \(\Psi^V_{k+1} \subset \Psi^{k,z} \) for \(k \in \mathbb{N}_0 \) and \(\Psi^V_{\infty} = \Psi^V_{\infty,z} \).

Using the fact that convergence in \(H^2(\mathbb{C}^n, \mu) \) implies uniformly compact convergence on \(\mathbb{C}^n \) we can calculate \(V^z \) explicitly. Let \(h \in \mathcal{D}(V^z) \) and \(w \in \mathbb{C}^n \):
\[
[V^z h](w) = \frac{d}{ds} [k_{sz}(w) h(w - sz)]_{s=0} = \{ \langle w, z \rangle - \sum_{j=1}^{n} z_j \frac{\partial}{\partial w_j} \} h(w).
\]

It easily can be seen that all the monomials \(m_\alpha(z) := z^\alpha \) for \(\alpha \in \mathbb{N}_0^n \) are contained in the domain \(\mathcal{D}(V^z) \). Moreover, from the standard identities \(M_{w_j} := T_{w_j} \) and \(\frac{\partial}{\partial w_j} := T_{\overline{w_j}} \) it follows that the restriction of \(V^z \) to \(\mathbb{P}_a[\mathbb{C}^n] \) coincides with an unbounded Toeplitz operator:
\[
V^z p := T_{\langle \cdot, z \rangle - (z, \cdot)} p = 2i T_{\text{Im} \langle \cdot, z \rangle} p, \quad p \in \mathbb{P}_a[\mathbb{C}^n].
\]
In the following we write:

$$g_z := 2i \text{Im} \langle \cdot, z \rangle$$

for the symbol of the Toeplitz operator appearing above. Consider the space $D(T_{g_z})$ with the graph norm $\| \cdot \|_{gr} := \| \cdot \| + \| T_{g_z} \cdot \|$. By Lemma 3.2 it follows that $(D(T_{g_z}), \| \cdot \|_{gr})$ is a Banach space containing $\mathbb{P}_a[\mathbb{C}^n]$ and $H_{\exp}(\mathbb{C}^n)$.

Lemma 4.2 For all $z \in \mathbb{C}^n$ the embedding $\mathbb{P}_a[\mathbb{C}^n] \hookrightarrow H_{\exp}(\mathbb{C}^n)$ is dense with respect to the graph norm topology. Moreover,

$$H_{\exp}(\mathbb{C}^n) \subset D(V^z) \cap D(T_{g_z}) \quad (4.5)$$

and the restrictions of V^z and T_{g_z} to $H_{\exp}(\mathbb{C}^n)$ coincide.

Proof: For $f \in H_{\exp}(\mathbb{C}^n)$ we can choose $c_1 \in (0, \frac{1}{2})$ and $D_1 > 0$ such that:

$$|f(w)| \leq D_1 \exp (c_1 |w|^2)$$

for all $z \in \mathbb{C}^n$. Hence, $f \in L^2(\mathbb{C}^n, \mu_r)$ for all $r \in (2c_1, 1)$. Fix c_2, c_3 with $2c_1 < c_2 < c_3 < 1$ and choose $D_2 > 0$ with

$$|w|^2 \leq D_2 \exp (c_3 - c_2 |w|^2)$$

for all $w \in \mathbb{C}^n$. Then we obtain for all $p \in \mathbb{P}_a[\mathbb{C}^n]$:

$$\| T_{g_z} (f - p) \|^2 \leq \| g_z (f - p) \|^2 \leq 2 |z|^2 \int_{\mathbb{C}^n} |:|^2 |f - p|^2 d\mu$$

$$\leq 2D_2 |z|^2 r^{-n} \| f - p \|_{L^2(\mathbb{C}^n, \mu_r)}^2 < \infty$$

where $r = 1 - c_3 + c_2 \in (2c_1, 1)$. Because $\mathbb{P}_a[\mathbb{C}^n]$ is dense in $L^2(\mathbb{C}^n, \mu_r) \cap \mathcal{H}(\mathbb{C}^n)$ for all $r > 0$ the first assertion follows.

Now, (4.5) immediately can be derived from $T_{g_z} p = V^z p$ for $p \in \mathbb{P}_a[\mathbb{C}^n]$ and the density result above which implies that:

$$H_{\exp}(\mathbb{C}^n) \subset \text{closure}(\mathbb{P}_a[\mathbb{C}^n], \| \cdot \|_{gr}) \subset D(V^z) \cap D(T_{g_z}).$$

Finally, we apply the continuity of $V^z, T_{g_z} : (\mathbb{P}_a[\mathbb{C}^n], \| \cdot \|_{gr}) \to H^2(\mathbb{C}^n, \mu)$. □

For $z \in \mathbb{C}^n$ we denote by \tilde{V}^z the infinitesimal generator of $(W_{sz})_{s \in \mathbb{R}}$ considered as strongly continuous group of unitary operators on $L^2(\mathbb{C}^n, \mu)$. Let $\mathcal{D}(\tilde{V}^z)$ be its domain of definition, then V^z can be obtained by restricting \tilde{V}^z to $\mathcal{D}(V^z)$. For $f \in \text{SP}_{\text{Lip}}(\mathbb{C}^n)$ and $r \in \mathbb{N}$ we write

$$\mathcal{A}_r(f) := \mathcal{A}([M_{\rho}, \cdots, M_{\rho}]) \subset \mathcal{L}(L^2(\mathbb{C}^n, \mu))$$

where the algebra on the right hand side was defined in (3.8) of Proposition 3.3.
Lemma 4.3 The domain $D(\tilde{V}^z)$ is invariant under $A \in \mathcal{A}_r(f)$ where f is a linear function on \mathbb{C}^n. Moreover, the commutator $[A, \tilde{V}^z]$ vanishes as an operator on $D(\tilde{V}^z)$.

Proof: It is sufficient to show that for all $j \in \mathbb{N}$ the space $D(\tilde{V}^z)$ is invariant under the operators

$$a_j(f) := \text{ad}^j[M_f](P).$$

Note that $L_{\exp}(\mathbb{C}^n)$ is an invariant under W_z and it holds $W_z M_f W_z = M_{f \exp_z}$. Because W_z commutes with P it follows that:

$$W_{-z} a_j(f) W_z = \text{ad}^j[M_{f \exp_z}](P) = a_j(f).$$

We have used the linearity of f for the second equality. Hence, the commutator $[A, W_z]$ vanishes for all $A \in \mathcal{A}_r(f)$. Fix $h \in D(\tilde{V}^z)$ and $A \in \mathcal{A}_r(f)$, then:

$$\frac{1}{s} \{ W_z - I \} A h = A \frac{1}{s} \{ W_z - I \} h \rightarrow A \tilde{V}^z h$$

as s tends to 0. It follows that $Ah \in D(\tilde{V}^z)$ with $\tilde{V}^z Ah = A \tilde{V}^z h$. \qed

Remark 4.1 Let W be any subspace of $H := H^2(\mathbb{C}^n, \mu)$ such that $H_{\exp}(\mathbb{C}^n) \subset W$. Consider the operators:

$$O_W := \{ A \in \mathcal{L}(W, H) : H_{\exp}(\mathbb{C}^n) \text{ is an invariant space for } A \}.$$

Let $A \in O_W$ and assume there is $A^* \in O_W$ with $\langle Af, g \rangle = \langle f, A^* g \rangle$ for all $f, g \in W$. Because of $K(\cdot, \lambda) \in H_{\exp}(\mathbb{C}^n)$ for all $\lambda \in \mathbb{C}^n$ it follows that A can be written as an integral operator with kernel:

$$K_A(z, w) = A^* K(\cdot, z)(w). \quad (4.6)$$

In particular, A completely is determined by the restriction of A^* to $H_{\exp}(\mathbb{C}^n)$. Assume that A has a continuous extensions \tilde{A} from $H_{\exp}(\mathbb{C}^n)$ to $H^2(\mathbb{C}^n, \mu)$. Fix $g \in H^2(\mathbb{C}^n, \mu)$ and a sequence $(g_n)_n \subset H_{\exp}(\mathbb{C}^n)$ with $g = \lim_{n \rightarrow \infty} g_n$. Then it follows for $z \in \mathbb{C}^n$:

$$[\tilde{A} g](z) = \lim_{n \rightarrow \infty} \langle Ag_n, K(\cdot, z) \rangle = \lim_{n \rightarrow \infty} \langle g_n, A^* K(\cdot, z) \rangle = \langle g, A^* K(\cdot, z) \rangle$$

and \tilde{A} is given by the same integral formula. In particular, A has a (unique) extension from W to $H^2(\mathbb{C}^n, \mu)$.

Let $h \in L^\infty(\mathbb{C}^n)$ and $f : \mathbb{C}^n \rightarrow \mathbb{C}$ be a linear function. We write $C_j(f, h)$ for the continuous extensions of the commutators

$$\text{ad}^j[T_f](T_h) \in \mathcal{L}(H_{\exp}(\mathbb{C}^n))$$

to $H^2(\mathbb{C}^n, \mu)$, (note that $f \in \text{SP}_{\text{Lip}}(\mathbb{C}^n)$ and Proposition 3.3).
Corollary 4.1 Let \(h \in L^{\infty}(\mathbb{C}^{n}) \). Assume that \(D(V^{z}) \) is invariant under the multiplication operator \(M_{h} \). Then \(D(V^{z}) \) is invariant under \(C_{j}(f, h) \) for all \(j \in \mathbb{N} \).

Proof: According to (3.7) there is a finite index set \(I \) and \(A_{i}, B_{i} \in \mathcal{A}_{j}(f) \) such that

\[
\text{ad}^{t}[T_{f}] (T_{h}) = \sum_{i \in I} P A_{i} M_{h} B_{i} P.
\]

Due to our assumption on \(h \) and by Lemma 4.3 the assertion follows. \(\square \)

Now, we can proof our main result on the smoothness of Toeplitz operators with respect to the Segal-Bargmann representation \(\rho \) of the Heisenberg group:

Theorem 4.1 Let \(h \in S_{\rho} := S \cap \overline{S} \) where \(\overline{S} = \{ \overline{h} : h \in S \} \) and

\[
S := \{ h \in L^{\infty}(\mathbb{C}^{n}) : \text{s. t. } D(V^{z}) \text{ is invariant under } M_{h} \text{ for all } z \in \mathbb{C}^{n} \}.
\]

Then the symbol map into the \(\Psi^{*} \)-algebra \(\Psi^{\infty} \) given by:

\[
S_{\rho} \ni h \mapsto T_{h} \in \Psi^{\infty}
\]

is well-defined and continuous if \(S_{\rho} \) carries the \(L^{\infty}(\mathbb{C}^{n}) \)-topology.

Proof: Using our notation in (4.2) and (4.3) we must show that \(T_{h} \in \Psi^{\infty,z} = \Psi^{\infty} \) for all complex directions \(z \in \mathbb{C}^{n} \) and \(V^{z} := [iv^{z}] \):

\[
D(V^{z}) \text{ is invariant under } T_{q} \text{ for } q \in \{ h, \overline{h} \} \subset S_{\rho} \text{ and by Lemma 4.2 it follows that }
\]

the commutators \(A_{1} := [iv^{z}, T_{q}] \) and \([T_{ig_{z}}, T_{q}] \) coincide on \(H_{\exp}(\mathbb{C}^{n}) \). Because \(iv^{z} \) is self-adjoint we can define \(A_{1}^{*} := [T_{q}, iv^{z}] \) and \(W := D(V^{z}) \) in Remark 4.1. The operator \([T_{ig_{z}}, T_{q}] \) has a bounded extension \(C_{1}(ig_{z}, q) \) from \(H_{\exp}(\mathbb{C}^{n}) \) to \(H^{2}(\mathbb{C}^{n}, \mu) \). We conclude from Remark 4.1 that \(C_{1}(ig_{z}, q) \) is an extension of \(A_{1} \) from \(W \) to \(H^{2}(\mathbb{C}^{n}, \mu) \) and \(T_{q} \in \Psi_{1}^{\infty} \).

By induction we must prove for \(j \in \mathbb{N} \):

(1) The domain of definition \(D(V^{z}) \) is invariant under \(C_{j}(ig_{z}, q) \),

(2) The commutators \(A_{j+1} := [iv^{z}, C_{j}(ig_{z}, q)] \) have the bounded extension \(C_{j+1}(ig_{z}, q) \) from \(D(V^{z}) \) to \(H^{2}(\mathbb{C}^{n}, \mu) \).

Assertion (1) is a direct consequence of Corollary 4.1 and (2) can be derived from Remark 4.1 with \(A_{j+1}^{*} := [C_{j}(ig_{z}, q)^{*}, iv^{z}] \) on \(W := D(V^{z}) \) \(^{3}\) and the fact that \(A_{j+1} \) has the continuous extension \(C_{j+1}(ig_{z}, q) \) from \(H_{\exp}(\mathbb{C}^{n}) \) to \(H^{2}(\mathbb{C}^{n}, \mu) \). The continuity of the symbols map follows from (2.3) together with the continuity of (3.6) in Proposition 3.3. \(\square \)

\(^{3}\)Note that by Corollary 4.1 and the identity \(C_{j}(ig_{z}, q)^{*} = (-1)^{j}C_{j}(ig_{z}, \overline{q}) \) the commutator \(A_{j+1}^{*} \) is well-defined on \(D(V^{z}) \).
5 Examples and Applications

Let A denote the subalgebra of $\mathcal{L}(L^2(\mathbb{C}^n, \mu))$ of all multiplication operators with bounded symbols $h \in L^\infty(\mathbb{C}^n)$. For $z \in \mathbb{C}^n$ and with $\tilde{V}^z := [i\tilde{V}^z]$ there is a scale of algebras arising by commutator methods:

$$A \supset \Psi_1^{\tilde{V}^z} \supset \cdots \supset \Psi_n^{\tilde{V}^z} \supset \cdots \supset \Psi_{\infty}^{\tilde{V}^z} = \bigcap_{n \in \mathbb{N}} \Psi_n^{\tilde{V}^z}. \quad (5.1)$$

In general, the inclusions above will be proper. As an immediate consequence of Theorem 4.1 it follows for the projected scale of vector spaces:

$$A_P \supset \Psi_1^{-P}^{\tilde{V}^{\sim}} = \cdots = \Psi_{nP}^{-P}^{\tilde{V}^{\sim}} = \Psi_{n+1_P}^{-P} = \cdots = \Psi_{\infty P}^{-P}^{\tilde{V}^{\sim}}z. \quad (5.2)$$

Here $A_P \subset \mathcal{L}(H^2(\mathbb{C}^n, \mu))$ is the space of Toeplitz operators with bounded measurable symbols. By passing from (5.1) to the scale (5.2) the underlying C^k-structure is lost.

We give an example of a class of bounded functions g such that $D(V^z)$ is an invariant subspace for M_g and $M_\mathbb{H}$ for all $z \in \mathbb{C}^n$.

Example 5.1 Denote by $C^\infty_c(\mathbb{C}^n)$ the space of compactly supported smooth functions. For $z = (z_1, \cdots, z_n) \in \mathbb{C}^n$ we write $z_j := x_j + iy_j$ and with $\alpha, \beta \in \mathbb{N}_0^n$:

$$z^{\alpha,\beta} := x^\alpha y^\beta, \quad \partial^{\alpha,\beta} := \frac{\partial^{\left|\alpha\right|}}{\partial x^\alpha} \frac{\partial^{\left|\beta\right|}}{\partial y^\beta}.$$

Fix $h \in D(\tilde{V}^z)$ and $z \in \mathbb{C}^n$. For $g \in C^\infty_c(\mathbb{C}^n)$ (real valued) and $s \neq 0$ we write:

$$\frac{1}{s} \left[W_{sz} - I \right] M_g h = \frac{1}{s} \left[M_{g \circ \tau_{-sz}} - M_g \right] W_{sz} h + M_g \frac{1}{s} \left[W_{sz} - I \right] h. \quad (5.3)$$

The second term converges in $L^2(\mathbb{C}^n, \mu)$ as $s \to 0$. Consider the smooth and compactly supported function $dg(z, \cdot) = -\langle \text{grad} g(\cdot), z \rangle_{\mathbb{R}^{2n}}$. Then:

$$C_{s,z} := \left\| \frac{1}{s} \left[M_{g \circ \tau_{-sz}} - M_g \right] - M_{dg(z, \cdot)} \right\| \leq \sum_{\left|\alpha \right| + \left|\beta\right| = 2} \frac{|s|}{(\alpha + \beta)!} \left\| \partial^{\alpha,\beta} g \right\|_\infty \left| z^{\alpha,\beta} \right|.$$

Hence $\lim_{s \to 0} C_{s,z} = 0$ and the right hand side of

$$\left\| \frac{1}{s} \left[M_{g \circ \tau_{-sz}} - M_g \right] W_{sz} h - M_{dg(z, \cdot)} h \right\| \leq C_{s,z} \left\| h \right\| + \left\| dg(z, \cdot) \right\|_\infty \left\| (W_{sz} - I) h \right\|$$

tends to 0 as $s \to 0$. It follows $gh \in D(V^z)$. With our notation of Theorem 4.1 we conclude that $C^\infty_c(\mathbb{C}^n) \subset S_s$. By the continuity of $L^\infty(\mathbb{C}^n) \subset S_s \ni h \mapsto T_h \in \Psi^\infty$

and the fact that $C^\infty_c(\mathbb{C}^n)$ is uniformly dense in the space $C_0(\mathbb{C}^n)$ of all continuous functions vanishing at infinity it follows that $\{ T_h : h \in C_0(\mathbb{C}^n) \} \subset \Psi^\infty$.

In our second example we construct a compact operator $A \in \mathcal{B} := \mathcal{L}(H^2(\mathbb{C}, \mu))$ which is not contained in $\Psi^{1,z}$ for any $z \in \mathbb{C}$ (with our notation in (4.2)). As a consequence and using Example 5.1 A is not limit point of finite sums of finite products of Toeplitz operators with symbols in $C_0(\mathbb{C})$ and with respect to the Fréchet topology of $\Psi^{\infty,z}$. However, since A is compact it can be approximated by Toeplitz operators with smooth and compactly supported symbols in the topology of \mathcal{B}, c.f. [8].

Example 5.2 For $j \in \mathbb{N}_0$ let $P_j \in \mathcal{B}$ be the rank one projection onto $\text{span}\{m_j := z^j\}$. With a sequence $a := (a_n)_{n \in \mathbb{N}}$ tending to zero consider the compact diagonal operator:

$$A := \sum_{j \in \mathbb{N}} a_j P_j \in \mathcal{B}.$$

With $z \in \mathbb{C}$, $|z| = 1$ and $g_z := 2i \text{Im} \langle \cdot, z \rangle$ we compute $[T_{g_z}, A] m_j = [V^z, A] m_j$ explicitly for all $j \in \mathbb{N}$. By (4.4) one obtains that:

$$[T_{g_z}, A] m_j = a_j T_{g_z} m_j - A[\bar{z} m_{j+1} - j z m_{j-1}]$$

$$= a_j (\bar{z} m_{j+1} - j z m_{j-1}) - (a_{j+1} \bar{z} m_{j+1} - j a_{j-1} z m_{j-1})$$

$$= (a_j - a_{j+1}) \bar{z} m_{j+1} - j z (a_j - a_{j-1}) m_{j-1}.$$

With $e_j := (j!)^{-\frac{1}{2}} z^j$ we have $\langle e_j, e_l \rangle_2 = \delta_{i,j}$ for all $j, l \in \mathbb{N}$. Hence it follows that

$$\| [T_{g_z}, A] e_j \|_2^2 = (j + 1) |a_j - a_{j+1}|^2 + j |a_j - a_{j-1}|^2. \quad (5.4)$$

We choose a such that the right hand side of (5.4) tends to infinity for $j \to \infty$. This can be done by the choice of an oscillating sequence $a_j := (-1)^j j^{-\frac{1}{4}}$. Then it follows

$$(j + 1) |a_j - a_{j+1}|^2 = (j + 1) |j^{-\frac{1}{4}} + (j + 1)^{-\frac{1}{4}}|^2 \geq \sqrt{j+1}$$

and so the right hand side of (5.4) is unbounded for $j \to \infty$. Hence $[T_{g_z}, A]$ has no bounded extension to $H^2(\mathbb{C}, \mu)$ and $A \notin \Psi^{1,z}$ by Proposition 4.1.

Let $\beta : L^2(\mathbb{R}^n) \to H^2(\mathbb{C}^n, \mu)$ denote the Bargmann isometrie, c.f. [10]. Our results on Toeplitz operators on $H^2(\mathbb{C}^n, \mu)$ can be used in the analysis of a class of *Gabor-Daubechies windowed localization operators* $L_h := \beta^{-1} T_h \beta$ on $L^2(\mathbb{R}^n)$ where $h \in L^\infty(\mathbb{C}^n)$, c.f. [9]. It was remarked in [14] the operator L_h can be considered as a pseudodifferential operator $W_{\sigma(h)}$ in Weyl quantization with *Weyl symbol* $\sigma(h)$ on \mathbb{R}^{2n}. Via the identification of \mathbb{R}^{2n} and \mathbb{C}^n the correspondence between h and $\sigma(h)$ can be expressed in terms of the heat equation on \mathbb{R}^{2n}. More precisely, $\sigma(h)$ is a solution with initial data h at a fixed time $t_0 > 0$. In the next example we describe how the operators introduced in the previous sections transform under β, c.f. [10].

4Here the window is a Hermite function on \mathbb{R}^n
Example 5.3 For \(u \in L^2(\mathbb{R}^n) \) it is well-known that \(\beta u \) can be expressed by the integral:
\[
[\beta u](z) = (2\pi)^{-\frac{n}{2}} \int_{\mathbb{R}^n} u(x) \exp \left\{ \langle x, z \rangle - \frac{1}{4} |x|^2 - \frac{1}{2} \langle z, \overline{z} \rangle \right\} dx.
\]

Fix \(a = p + iq \in \mathbb{C}^n \), then it can be checked that \(W_a \in L(H^2(\mathbb{C}^n, \mu)) \) transform as:
\[
B_a u := [\beta^{-1}W_a \beta](u) = u(\cdot - 2p) \exp \{ iq(p - \cdot) \}.
\]

In particular, in the case \(q = 0 \) the unitary operator \(B_a \) is a usual shift in direction \(2p \).

For \(j = 1, \ldots, n \) it is readily verified that \(T_{z_j} \) and \(T_{\overline{z}_j} \) transform in the following way:

(i) \(\beta^{-1}T_{z_j}\beta = \frac{1}{2}x_j - \partial_{x_j} \),
(ii) \(\beta^{-1}T_{\overline{z}_j}\beta = \frac{1}{2}x_j + \partial_{x_j} \).

From (i), (ii) and for \(\alpha \in \mathbb{N}_0^n \) one obtains the identity:
\[
\beta \partial_x^\alpha = (-1)^{|\alpha|}T_{i\text{Im} z_1}^\alpha \cdots T_{i\text{Im} z_n}^\alpha \beta =: (-1)^{|\alpha|}T_{i\text{Im} z}^\alpha \beta.
\]

Let \(g \in D(\mathbb{R}^n) \) be a test function and fix \(f \in H_{\exp}(\mathbb{C}^n) \). It follows that:
\[
\langle \beta^{-1}f, \partial_x^\alpha g \rangle_{L^2(\mathbb{R}^n)} = \langle f, \beta \partial_x^\alpha g \rangle = \langle \beta^{-1}T_{i\text{Im} z_1}^\alpha \cdots T_{i\text{Im} z_n}^\alpha f, g \rangle_{L^2(\mathbb{R}^n)}.
\]

Here we have used the fact that \(H_{\exp}(\mathbb{C}^n) \) is invariant under all unbounded Toeplitz operators \(T_{i\text{Im} z_j} \) which was proved in Proposition 3.1. It follows that:
\[
\mathcal{D} := \beta^{-1}[H_{\exp}(\mathbb{C}^n)] \subset H^\infty(\mathbb{R}^n) = \bigcap_{k \in \mathbb{N}} H^k(\mathbb{R}^n)
\]
where \(H^s(\mathbb{R}^n) \) denotes the \(k \)-th Sobolev space. Hence, for \(\alpha, \beta \in \mathbb{N}_0^n \) the restriction of (2.1) in Theorem 2.1 to \(\mathcal{D} \):
\[
\text{ad}[-ix]^\alpha \text{ad}[i\partial_x]^\beta(B) : \mathcal{D} \to \mathcal{D}
\]
is well-defined for any \(B \in L(\mathcal{D}) \). With the choice \(h \in L^\infty(\mathbb{C}^n) \) and \(L_h := \beta^{-1}T_h\beta \in L(\mathcal{D}) \) we obtain by conjugating (5.5) with \(\beta \) and using (i), (ii) above:
\[
\text{ad}[iT_{2\text{Re} z_j}]^\alpha \text{ad}[T_{i\text{Im} z_j}]^\beta(T_h) : H_{\exp}(\mathbb{C}^n) \to H_{\exp}(\mathbb{C}^n).
\]

It follows by Proposition 3.3 that the operators in (5.6) have bounded extensions to \(H^2(\mathbb{C}^n, \mu) \) and so (5.5) can be extended continuously to \(L^2(\mathbb{R}^n) \). Hence we have proved a weaker version of the defining property (2.1) for \(\Psi_{\rho, \delta}^{0} \) in Theorem 2.1.

Since the Gaussian measure \(\mu \) is invariant under unitary transformations of \(\mathbb{C}^n \), there is a natural group representation of \(U_n \) in \(\mathcal{L}(H^2(\mathbb{C}^n, \mu)) \) generating \(\Psi^*-\text{algebras} \) of smooth elements. As a final example we want to remark:
Example 5.4 Let $A \in \mathbb{R}^{n \times n}$ be self-adjoint and consider the unitary group:

$$\mathbb{R} \ni t \mapsto e^{itA} \in U_n.$$

The group of unitary composition operators $C_t f := f \circ e^{itA}$ on $H^2(\mathbb{C}^n, \mu)$ can be shown to be strongly continuous, cf. [3]. The restriction of the infinitesimal generator L_A of $(C_t)_{t \in \mathbb{R}}$ to $\mathbb{P}_a[\mathbb{C}^n]$ coincides with an (unbounded) Toeplitz operator. More precisely, it was shown in [3] that:

$$L_AP = \left[T_{(A_x,x)} - n \cdot \text{trace}(A) \right] p, \quad p \in \mathbb{P}_a[\mathbb{C}^n].$$

Hence, in general the symbol of L_A regarded as a Toeplitz operator is a polynomial of degree 2, which is not globally lipschitz continuous on \mathbb{C}^n. Proposition 3.3 cannot be applied in this situation and the smoothness of a Toeplitz operator T_f with bounded symbols f with respect to $(C_t)_t$ requires further assumption on the symbol f. For a more detailed calculation we refer to [3].

Acknowledgment: The author wishes to express his thanks to Professor B. Gramsch for many hints and explanations concerning the theory of spectral invariant Fréchet algebras.

References

TOEPLITZ Ψ^*-ALGEBRAS

