<table>
<thead>
<tr>
<th>Title</th>
<th>Uniform non-l_1^n-ness of direct sums of Banach spaces(The structure of Banach spaces and Function spaces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kato, Mikio; Saito, Kichi-Suke; Tamura, Takayuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1520: 104-108</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58766</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Uniform non-ℓ_1^n-ness of direct sums of Banach spaces

Mikio Kato
Department of Mathematics, Kyushu Institute of Technology
e-mail: katom@tobata.isc.kyutech.ac.jp

Kichi-Suke Saito
Department of Mathematics, Faculty of Science, Niigata University
e-mail: saito@math.sc.niigata-u.ac.jp

Takayuki Tamura
Graduate School of Humanities and Social Sciences, Chiba University
e-mail: tamura@le.chiba-u.ac.jp

Abstract. This is a résumé of some recent results on the uniform non-ℓ_1^n-ness of direct sums of Banach spaces. In particular we present those for the ℓ_1- and ℓ_∞-sums as well.

1. Introduction

Since it was introduced in [24], the ψ-direct sum of Banach spaces have attracted a good deal of attention ([5, 6, 7, 13, 14, 19, 20, 17, 16, etc.]; see also [22, 23]). The aim of this note is to present a sequence of recent results on the uniform non-ℓ_1^n-ness of direct sums of Banach spaces. Our starting point is Theorem 1 below concerning the uniform non-squareness by the authors ([14]). To treat the uniform non-ℓ_1^n-ness is much more complicated than expected. The results presented here is almost taken from the recent paper of the present authors [16].

Let Ψ be the family of all convex (continuous) functions ψ on $[0,1]$ satisfying

$$
\psi(0) = \psi(1) = 1 \quad \text{and} \quad \max\{1-t, t\} \leq \psi(t) \leq 1 \quad (0 \leq t \leq 1). \quad (1)
$$

For any $\psi \in \Psi$ define

$$
\|(z, w)\|_\psi = \begin{cases}
(|z| + |w|)\psi \left(\frac{|w|}{|z|+|w|} \right) & \text{if } (z, w) \neq (0, 0), \\
0 & \text{if } (z, w) = (0, 0).
\end{cases} \quad (2)
$$
Then $\| \cdot \| = \| \cdot \|_\psi$ is an absolute normalized norm on \mathbb{C}^2 (that is, $\|(z, w)\| = \|(|z|, |w|)\|$ and $\|(1, 0)\| = \|(0, 1)\| = 1$) and satisfies
\[
\psi(t) = \|(1 - t, t)\| \quad (0 \leq t \leq 1).
\]
(3)

Conversely for any absolute normalized norm $\| \cdot \|$ on \mathbb{C}^2 define a convex function $\psi \in \Psi$ by (3). Then $\| \cdot \| = \| \cdot \|_\psi$.

The ℓ_p-norms $\| \cdot \|_p$ are such examples and for all absolute normalized norms $\| \cdot \|$ on \mathbb{C}^2 we have
\[
\| \cdot \|_\infty \leq \| \cdot \| \leq \| \cdot \|_1
\]
(4) ([2]). By (3) the convex functions corresponding to the ℓ_p-norms are given by
\[
\psi_p(t) := \begin{cases}
(1 - t)^p + t^p \frac{1}{p} & \text{if } 1 \leq p < \infty, \\
\max\{1 - t, t\} & \text{if } p = \infty.
\end{cases}
\]
(5)

Let X and Y be Banach spaces and let $\psi \in \Psi$. The ψ-direct sum $X \oplus_{\psi} Y$ of X and Y is the direct sum $X \oplus Y$ equipped with the norm
\[
\|(x, y)\|_\psi = \|(\|x\|, \|y\|)\|_\psi,
\]
where the $\|(\cdot, \cdot)\|_\psi$ term in the right hand side is the absolute normalized norm on \mathbb{C}^2 corresponding to the convex function ψ ([24, 13]; see [21] for several examples). This extends the notion of the ℓ_p-sum $X \oplus_p Y$.

A Banach space X is said to be uniformly non-ℓ_1^n (cf. [1, 18]) provided there exists ϵ ($0 < \epsilon < 1$) such that for any $x_1, \ldots, x_n \in S_X$, the unit sphere of X, there exists an n-tuple of signs $\theta = (\theta_j)$ for which
\[
\left\| \sum_{j=1}^{n} \theta_j x_j \right\| \leq n(1 - \epsilon).
\]
(7)

We may take x_1, \ldots, x_n from the unit ball B_X of X in the definition. In case of $n = 2$ X is called uniformly non-square ([12]; cf. [1, 18]).

As is well known ([3, 11]), if X is uniformly non-ℓ_1^n, then X is uniformly non-ℓ_1^{n+1} for every $n \in \mathbb{N}$.

2. Uniform non-ℓ_1^n-ness of $X \oplus_{\psi} Y$, $\psi \neq \psi_1, \psi_\infty$

The following result by the authors [14] is our starting point.
Theorem 1 (Kato-Saito-Tamura [14]). Let X and Y be Banach spaces and $\psi \in \Psi$. Then the following are equivalent.

(i) $X \oplus_{\psi} Y$ is uniformly non-square.
(ii) X and Y are uniformly non-square and $\psi \neq \psi_1, \psi_\infty$.

To treat the uniform non-ℓ_1^n-ness is much more complicated than expected. Indeed we need to prepare several lemmas, though we skip to mention them.

Theorem 2. Let X and Y be Banach spaces and let $\psi \in \Psi, \psi \neq \psi_1, \psi_\infty$. Then the following are equivalent.

(i) $X \oplus_{\psi} Y$ is uniformly non-ℓ_1^n.
(ii) X and Y are uniformly non-ℓ_1^n.

Theorem 2 does not answer the following question: Let X and Y be uniformly non-ℓ_1^n. Is it possible for $X \oplus_{\psi} Y$ to be uniformly non-ℓ_1^n with $\psi = \psi_1$ or $\psi = \psi_\infty$? The next theorem will give an answer.

Theorem 3. Let X and Y be Banach spaces and let $\psi \in \Psi$. Assume that neither X nor Y is uniformly non-ℓ_1^{n-1}. Then the following are equivalent.

(i) $X \oplus_{\psi} Y$ is uniformly non-ℓ_1^n.
(ii) X and Y are uniformly non-ℓ_1^n and $\psi \neq \psi_1, \psi_\infty$.

Theorem 3 includes Theorem 1 as the case $n = 2$.

Remark 1. In Theorem 3 we can not remove the condition that neither X nor Y is uniformly non-ℓ_1^{n-1} ([16, Section 6]).

3. The ℓ_1- and ℓ_∞-sums

Theorem 4. Let X and Y be Banach spaces. The following are equivalent.

(i) $X \oplus_1 Y$ is uniformly non-ℓ_1^n.
(ii) There exist positive integers n_1 and n_2 with $n_1 + n_2 = n - 1$ such that X is uniformly non-$\ell_1^{n_1+1}$ and Y is uniformly non-$\ell_1^{n_2+1}$.

According to Theorem 1 the uniform non-squareness of X and Y is not inherited to the ℓ_1-sum $X \oplus_1 Y$, whereas we have the following result as the case $n = 3$ of Theorem 4.
Theorem 5. Let X and Y be Banach spaces. Then the following are equivalent.

(i) $X \oplus_{1} Y$ is uniformly non-ℓ_{1}^{3}.
(ii) X and Y are uniformly non-square.

For the ℓ_{∞}-sum we obtain the following.

Theorem 6. Let X_{1}, \ldots, X_{m} be uniformly non-square Banach spaces. Then $(X_{1} \oplus \cdots \oplus X_{m})_{\infty}$ is uniformly non-ℓ_{1}^{n} if and only if $m < 2^{n-1}$.

According to Theorem 5 the ℓ_{1}-sum $X \oplus_{1} Y$ is uniformly non-ℓ_{1}^{3} if and only if X and Y are uniformly non-square. On the other hand for the ℓ_{∞}-sum, by Theorem 6, if X and Y are uniformly non-square, then $X \oplus_{\infty} Y$ is uniformly non-ℓ_{1}^{3}, whereas the converse is not true ([16, Remark 5.5]). Instead we obtain the following result which is interesting in contrast with the ℓ_{1}-sum case.

Theorem 7. Let X, Y and Z be Banach spaces. Then the following are equivalent.

(i) $(X \oplus Y \oplus Z)_{\infty}$ is uniformly non-ℓ_{1}^{3}.
(ii) X, Y and Z are uniformly non-square.

References

[16] M. Kato, K.-S. Saito and T. Tamura, Uniform non-ℓ^1_1-ness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, submitted.

