<table>
<thead>
<tr>
<th>Title</th>
<th>Uniform non-l_1^n-ness of direct sums of Banach spaces (The structure of Banach spaces and Function spaces)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kato, Mikio; Saito, Kichi-Suke; Tamura, Takayuki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1520: 104-108</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58766</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Uniform non-ℓ_1^n-ness of direct sums of Banach spaces

九州工業大学・工学部 加藤幹雄 (Mikio Kato)
Department of Mathematics, Kyushu Institute of Technology
e-mail: katom@tobata.isc.kyutech.ac.jp

新潟大学・理学部 斎藤喜助 (Kichi-Suke Saito)
Department of Mathematics, Faculty of Science, Niigata University
e-mail: saito@math.sc.niigata-u.ac.jp

千葉大学大学院・人文社会科学研究科 田村高幸 (Takayuki Tamura)
Graduate School of Humanities and Social Sciences, Chiba University
e-mail: tamura@le.chiba-u.ac.jp

Abstract. This is a résumé of some recent results on the uniform non-ℓ_1^n-ness of direct sums of Banach spaces. In particular we present those for the ℓ_1- and ℓ_∞-sums as well.

1. Introduction

Since it was introduced in [24], the ψ-direct sum of Banach spaces have attracted a good deal of attention ([5, 6, 7, 13, 14, 19, 20, 17, 16, etc.]; see also [22, 23]). The aim of this note is to present a sequence of recent results on the uniform non-ℓ_1^n-ness of direct sums of Banach spaces. Our starting point is Theorem 1 below concerning the uniform non-squareness by the authors ([14]). To treat the uniform non-ℓ_1^n-ness is much more complicated than expected. The results presented here is almost taken from the recent paper of the present authors [16].

Let Ψ be the family of all convex (continuous) functions ψ on $[0, 1]$ satisfying

$$\psi(0) = \psi(1) = 1 \text{ and } \max\{1 - t, t,\} \leq \psi(t) \leq 1 \quad (0 \leq t \leq 1).$$

(1)

For any $\psi \in \Psi$ define

$$\|(z, w)\|_\psi = \left\{ \begin{array}{ll}
(|z| + |w|)\psi\left(\frac{|w|}{|z|+|w|}\right) & \text{if } (z, w) \neq (0,0), \\
0 & \text{if } (z, w) = (0,0).
\end{array} \right.$$

(2)
Then \(|| \cdot || = || \cdot ||_\psi \) is an absolute normalized norm on \(\mathbb{C}^2 \) (that is, \(||(z, w)|| = ||(|z|, |w|)|| \) and \(||(1, 0)|| = ||(0, 1)|| = 1 \) and satisfies
\[
\psi(t) = ||(1-t, t)|| \quad (0 \leq t \leq 1).
\] (3)

Conversely for any absolute normalized norm \(|| \cdot || \) on \(\mathbb{C}^2 \) define a convex function \(\psi \in \Psi \) by (3). Then \(|| \cdot || = || \cdot ||_\psi \).

The \(\ell_p \)-norms \(|| \cdot ||_p \) are such examples and for all absolute normalized norms \(|| \cdot || \) on \(\mathbb{C}^2 \) we have
\[
|| \cdot ||_\infty \leq || \cdot || \leq || \cdot ||_1 \quad (4)
\]
([2]). By (3) the convex functions corresponding to the \(\ell_p \)-norms are given by
\[
\psi_p(t) := \begin{cases}
((1-t)^p + t^p)^{1/p} & \text{if } 1 \leq p < \infty, \\
\max\{1-t, t\} & \text{if } p = \infty.
\end{cases}
\] (5)

Let \(X \) and \(Y \) be Banach spaces and let \(\psi \in \Psi \). The \(\psi \)-direct sum \(X \oplus_{\psi} Y \) of \(X \) and \(Y \) is the direct sum \(X \oplus Y \) equipped with the norm
\[
||(x, y)||_\psi = ||(||x||, ||y||)||_\psi,
\] (6)
where the \(||(\cdot, \cdot)||_\psi \) term in the right hand side is the absolute normalized norm on \(\mathbb{C}^2 \) corresponding to the convex function \(\psi \) ([24, 13]; see [21] for several examples). This extends the notion of the \(\ell_p \)-sum \(X \oplus_p Y \).

A Banach space \(X \) is said to be uniformly non-\(\ell^*_1 \) (cf. [1, 18]) provided there exists \(\epsilon \) \((0 < \epsilon < 1)\) such that for any \(x_1, \ldots, x_n \in S_X \), the unit sphere of \(X \), there exists an \(n \)-tuple of signs \(\theta = (\theta_j) \) for which
\[
\left\| \sum_{j=1}^{n} \theta_j x_j \right\| \leq n(1 - \epsilon).
\] (7)
We may take \(x_1, \ldots, x_n \) from the unit ball \(B_X \) of \(X \) in the definition. In case of \(n = 2 \) \(X \) is called uniformly non-square ([12]; cf. [1, 18]).

As is well known ([3, 11]), if \(X \) is uniformly non-\(\ell^*_1 \), then \(X \) is uniformly non-\(\ell^*_1 \) for every \(n \in \mathbb{N} \).

2. Uniform non-\(\ell^*_1 \)-ness of \(X \oplus_{\psi} Y \), \(\psi \neq \psi_1, \psi_\infty \)

The following result by the authors [14] is our starting point.
Theorem 1 (Kato-Saito-Tamura [14]). Let X and Y be Banach spaces and $\psi \in \Psi$. Then the following are equivalent.

(i) $X \oplus_{\psi} Y$ is uniformly non-square.

(ii) X and Y are uniformly non-square and $\psi \neq \psi_1, \psi_\infty$.

To treat the uniform non-ℓ_1^n-ness is much more complicated than expected. Indeed we need to prepare several lemmas, though we skip to mention them.

Theorem 2. Let X and Y be Banach spaces and let $\psi \in \Psi$, $\psi \neq \psi_1, \psi_\infty$. Then the following are equivalent.

(i) $X \oplus_{\psi} Y$ is uniformly non-ℓ_1^n.

(ii) X and Y are uniformly non-ℓ_1^n.

Theorem 2 does not answer the following question: Let X and Y be uniformly non-ℓ_1^n. Is it possible for $X \oplus_{\psi} Y$ to be uniformly non-ℓ_1^n with $\psi = \psi_1$ or $\psi = \psi_\infty$?

The next theorem will give an answer.

Theorem 3. Let X and Y be Banach spaces and let $\psi \in \Psi$. Assume that neither X nor Y is uniformly non-ℓ_1^{n-1}. Then the following are equivalent.

(i) $X \oplus_{\psi} Y$ is uniformly non-ℓ_1^n.

(ii) X and Y are uniformly non-ℓ_1^n and $\psi \neq \psi_1, \psi_\infty$.

Theorem 3 includes Theorem 1 as the case $n = 2$.

Remark 1. In Theorem 3 we can not remove the condition that neither X nor Y is uniformly non-ℓ_1^{n-1} ([16, Section 6]).

3. The ℓ_1- and ℓ_∞-sums

Theorem 4. Let X and Y be Banach spaces. The following are equivalent.

(i) $X \oplus_1 Y$ is uniformly non-ℓ_1^n.

(ii) There exist positive integers n_1 and n_2 with $n_1 + n_2 = n - 1$ such that X is uniformly non-$\ell_1^{n_1+1}$ and Y is uniformly non-$\ell_1^{n_2+1}$.

According to Theorem 1 the uniform non-squareness of X and Y is not inherited to the ℓ_1-sum $X \oplus_1 Y$, whereas we have the following result as the case $n = 3$ of Theorem 4.
Theorem 5. Let X and Y be Banach spaces. Then the following are equivalent.

(i) $X \oplus_1 Y$ is uniformly non-ℓ_1^3.
(ii) X and Y are uniformly non-square.

For the ℓ_∞-sum we obtain the following.

Theorem 6. Let X_1, \ldots, X_m be uniformly non-square Banach spaces. Then $(X_1 \oplus \cdots \oplus X_m)_\infty$ is uniformly non-ℓ_1^n if and only if $m < 2^{n-1}$.

According to Theorem 5 the ℓ_1-sum $X \oplus_1 Y$ is uniformly non-ℓ_1^3 if and only if X and Y are uniformly non-square. On the other hand for the ℓ_∞-sum, by Theorem 6, if X and Y are uniformly non-square, then $X \oplus_\infty Y$ is uniformly non-ℓ_1^3, whereas the converse is not true ([16, Remark 5.5]). Instead we obtain the following result which is interesting in contrast with the ℓ_1-sum case.

Theorem 7. Let X, Y and Z be Banach spaces. Then the following are equivalent.

(i) $(X \oplus Y \oplus Z)_\infty$ is uniformly non-ℓ_1^3.
(ii) X, Y and Z are uniformly non-square.

References

[16] M. Kato, K.-S. Saito and T. Tamura, Uniform non-ℓ_1^n-ness of ψ-direct sums of Banach spaces $X \oplus_{\psi} Y$, submitted.

