On integral bases of real octic 2-elementary abelian extensions (Algebraic Number Theory and Related Topics)

Author(s)
PARK, Kyoung Ho; NAKAHARA, Toru; MOTODA, Yasuo

Citation
数理解析研究所講究録 (2006), 1521: 176-184

Issue Date
2006-10

URL
http://hdl.handle.net/2433/58782

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
On integral bases of real octic 2-elementary abelian extensions
(実8次2-基本アーベル拡大体の整数基について)

Graduate school of Science and Engineering,
Saga University

Faculty of Science and Engineering,
Saga University

Faculty of General Education,
Yatsushiro National College of Technology

Abstract. Let K be an abelian field whose Galois group is 2-elementary abelian over the rationals Q. If an octic field K is monogenic and a quadratic subfield with odd discriminant and a quartic subfield of K are linearly disjoint, then K coincides with the field $Q(\sqrt{-1}, \sqrt{2}, \sqrt{-3})$, namely K is equal to the cyclotomic field $Q(\zeta_{24})$ [MN]. In this article, we explain how to prove that all the real octic fields K are non-monomogenic, that is, the rings Z_{K} of integers in K do not have any power integral basis. Finally, we propose a few problems on the evaluation on the field index of K and the non-essential factor (außerwesentliche Diskriminanteil) of K.

§1. Introduction

Let K be an algebraic number field over the rationals Q. We denote the ring of integers in K by Z_{K}. When $Z_{K} = Z[\alpha]$ for some element α of Z_{K}, it is said that α generates a power integral basis of the ring Z_{K} or simply Z_{K} has a power integral basis. The field K is called monogenic if Z_{K} has a power integral basis. It is known as a problem of Hasse to characterize whether a field K is monogenic or not[1]. In this article, we consider the fields K whose Galois groups are 2-elementary abelian. Since the field K for $[K : Q] \geq 16$

AMS subject classification: Primary: 11R04.

1) Partially supported by grant (116540029) from the Japan Society for the Promotion of Science.
On integral bases of real octic 2-elementary abelian extensions

is non-monogenic, i.e., the ring Z_K of integers in K has no power integral basis by virtue of the decomposition theory of a prime number ([Lemma 1, SN], [MNS], [Wa]) and by the works of K. S. Williams, M.-N. Gras and F. Tanoé for Dirichlet fields $K,([Wi], [GT])$ it is enough for us to investigate the octic 2-elementary abelian fields. Let k and L be a quadratic subfield of odd discriminant and a quartic subfield of K, respectively. If k and L are linearly disjoint, then such an octic field $K = kL$ is non-monogenic except for the cyclotomic field $Q(\zeta_{24})$ of conductor 24 [MN]. In this paper, we will show an integral basis of the ring Z_K over the ring Z of rational integers in an octic field K [Theorem 1]. Next, being based on the linear equations

$$a_1 E_{1i} + a_2 E_{2i} + a_3 E_{3i} = 0 \quad (1 \leq i \leq 7)$$

with suitable factors a_{ij} of the field discriminant D_K, where $(a_{ij}, D_i) = 1$ and units E_{ij} as coefficients of valuables a_{ij} in each quadratic subfield $k_j = Q(\sqrt{D_j})$ [Proposition 2], we can prove that all the real 2-elementary abelian fields K of degree 8 have no power integral basis [Theorem 2].

§2. Integral bases

We determine explicit integral bases of some octic fields K whose Galois groups are 2-elementary abelian. We denote the Galois group

$$\langle \tau, \sigma, \rho \mid \tau: \sqrt{mn} \mapsto -\sqrt{mn}, \sigma: \sqrt{dn} \mapsto -\sqrt{dn}, \rho: \sqrt{d_1m_1n_1\ell} \mapsto -\sqrt{d_1m_1n_1\ell} \rangle$$

of K/Q by G.

The following lemma and proposition are available to deduce the type of 2-elementary abelian extension fields K which would have power integral bases.

Lemma 1([SN]). Let ℓ be a prime number and let F/Q be a Galois extension of degree $n = efg$ with ramification index e and the relative degree f with respect to ℓ. If one of the following conditions is satisfied, then Z_F has no power integral basis, i.e., F is non-monogenic;

1. $ef\ell < n$ if $f = 1$;

 or

2. $ef\ell \leq n + e - 1$ if $f \geq 2$.

Proposition 1([MN]). Let a_1, a_2, \cdots, a_r be square free rational integers and F be the field $Q(\sqrt{a_1}, \sqrt{a_2}, \cdots, \sqrt{a_r})$ of degree $2^r, r \geq 4$. Then F is non-monogenic.

Proof. Without loss of generality, we may assume that there exists at most two generators $\sqrt{a_1}, \sqrt{a_2}$ of F with $a_j \not\equiv 1 \pmod{4}(1 \leq j \leq 2)$. Then the ramification index e of the prime
is at most 2^2. Since the Galois group $G = Gal(F/Q)$ is 2-elementary, the relative degree f of the prime 2 is at most 2, because the inertia subgroup of G is cyclic. In Lemma 1 let ℓ be equal to 2. Then we can deduce $e\ell^j \leq 2^2 \cdot 2^1 < 2^r$ if $f = 1$ and $e\ell^j \leq 2^2 \cdot 2^2 \leq 2^f + e - 1$ if $f = 2$. Thus F is non-monogenic.

By the proof of Proposition 1, if an octic field K is monogenic, it is sufficient to consider that K contains two quadratic subfields of even discriminant and one of odd discriminant.

The main theorem is based on the following theorem, which is an extension of a result of the case of quartic fields [M1, M2, Wi].

Theorem 1 ([PMN]). Let K be an octic field $Q(\sqrt{mn}, \sqrt{dn}, \sqrt{d_1m_1n_1\ell})$ with $d = d_1d_2, m = m_1m_2, n = n_1n_2, mn \equiv 3, dn \equiv 2, d_1m_1n_1\ell \equiv 1, d_2 \equiv 2 \text{ (mod 4)}, d_1, m_1, n_1 \geq 1$ and $dmn\ell$ is square free. Let D_K be the field discriminant of the octic field K. Then we have $D_K = 2^{12}(dmn\ell)^4$ and an integral basis of K is:

$$Z_K = \mathbb{Z}\left[1, \sqrt{mn}, \sqrt{dn}, \frac{\sqrt{dm} + \sqrt{dn}}{2}, \frac{1 + \sqrt{d_1m_1n_1\ell}}{2}, \frac{\sqrt{mn} + \sqrt{d_1m_2n_2\ell}}{2}, \frac{\sqrt{dn} + \sqrt{d_2m_1n_2\ell}}{2}\right]$$

where $e_i = \pm 1$ ($i = 1, 2$), $e_1 \equiv d_1m_1, e_2 \equiv d_1n_1 \text{ (mod 4)}$.

§ 3. Non-monogenic field

It is known that in the case of $d_1m_1n_1 = 1$ that is, there exist a quartic subfield L and a quadratic k of K with $(D_L, D_k) = 1$, the fields K are non-monogenic except for the cyclotomic field $Q(\zeta_{24})$ of conductor 24 [MN], where D_F means the discriminant of an algebraic number field F over Q. From now on, we consider the case of $d_1m_1n_1 \geq 1$ and as an application of Theorem 1, we can slightly generalize Proposition 5 in [MN], whose proof was done using the relative different with respect to K over a suitable quadratic subfield. We assume that K is monogenic.

Let

$$\xi = b_1\sqrt{mn} + b_2\sqrt{dn} + b_3\frac{\sqrt{dm} + \sqrt{dn}}{2} + b_4\frac{1 + \sqrt{d_1m_1n_1\ell}}{2} + b_5\frac{\sqrt{mn} + \sqrt{d_1m_2n_2\ell}}{2}$$

$$+ b_6\frac{\sqrt{dn} + \sqrt{d_2m_1n_2\ell}}{2} + b_7\frac{\sqrt{dm} + \sqrt{dn} + e_1\sqrt{d_2m_2n_1\ell} + e_2\sqrt{d_2m_1n_2\ell}}{4}$$

be a generator of a power integral basis of Z_K. Now we calculate a factor $(\xi - \xi^\sigma)(\xi - \xi^\rho)$
of the discriminant $d_{K/Q}(\xi) = \Delta^2 \left[1, \xi, \xi^2, \xi^3, \xi^4, \xi^5, \xi^6, \xi^7 \right]$ of a number ξ.

$$(\xi - \xi^\sigma)(\xi - \xi^\rho)^\rho = \left\{ (2b_2 + b_3 + b_6 + \frac{b_7}{2}) \sqrt{dn} + (b_6 + \frac{b_7e_2}{2}) \sqrt{d_2m_1n_2\ell} + b_7e_1\sqrt{d_2m_1n_2\ell} \right\} \times \left\{ (2b_2 + b_3 + b_6 + \frac{b_7}{2}) \sqrt{dm} - (b_6 + \frac{b_7e_2}{2}) \sqrt{d_2m_1n_2\ell} - b_7e_1\sqrt{d_2m_1n_2\ell} \right\}^2$$

$$= \left\{ (2b_2 + b_3 + b_6 + \frac{b_7}{2}) \sqrt{dn} + (b_6 + \frac{b_7e_2}{2}) \sqrt{d_2m_1n_2\ell} + b_7e_1\sqrt{d_2m_1n_2\ell} \right\}^2 - \left\{ (b_6 + \frac{b_7e_2}{2}) \sqrt{d_2m_1n_2\ell} + b_7e_1\sqrt{d_2m_1n_2\ell} \right\}^2$$

$$= \left\{ (2b_2 + b_3 + b_6)^2 + (2b_2b_7 + b_3b_7 + b_6b_7) + \frac{b_7^2}{4} \right\}dn^\lrcorner - \left\{ (b_3^2 + b_3b_7 + \frac{b_7^2}{4})dm - \left\{ (b_6^2 + b_6b_7\ell + \frac{b_7^2}{4})d_2m_1n_2\ell - \frac{b_7^2m_2n_1p}{4} \right\} \right\} \sqrt{mn},$$

namely, this factor is an integer of the quadratic field $k_1 = Q(\sqrt{mn})$ of the fixed field by the subgroup $< \sigma, \rho >$ in G. Then we denote it by $\eta_{11} = B + C(\sqrt{mn})$. Thus we obtain

$$B/d_2 \equiv \left\{ b_3^2 + b_6^2 + b_3b_7 + \frac{b_7^2}{4} \right\}d_1n + \left\{ b_3^2 + b_3b_7 + \frac{b_7^2}{4} \right\}d_1m$$

$$- \left\{ b_6^2 + b_6b_7 + \frac{b_7^2}{4} \right\}m_1n_2\ell - \frac{b_7^2m_2n_1\ell}{4}$$

$$\equiv \frac{b_7^2}{4} (d_1(m + n) - (m_1n_2 + m_2n_1)\ell)$$

$$\equiv \frac{1}{4} \left\{ d_1(m + n) - (d_1n + 4k + d_1m + 4k) \right\} \equiv 0 \pmod{2},$$

by $d_1m_1n_1\ell \equiv 1 + 4k \pmod{8}$ and $m + n \equiv 0 \pmod{4}$, since $m_1n_2\ell \cdot 1 \equiv d_1m_2n_1n_2\ell^2 + 4m_1n_2\ell k \equiv d_1n + 4k \pmod{8}$ and $m_2n_1(1) \equiv d_1m_1m_2n_1^2\ell^2 + 4m_2n_1\ell k \equiv d_1m + 4k \pmod{8}$.

$$C/d_2 \equiv (b_6b_7 + \frac{b_7^2}{2})d_1 - \left\{ b_6b_7e_1\ell + \frac{b_7^2e_2e_1\ell}{2} \right\} \equiv b_6b_7(d_1 - e_1\ell) + \frac{b_7^2}{2} (d_1 - e_2e_1\ell) \equiv 0 \pmod{2}$$

by $e_1 \equiv d_1m_1$, $e_2 \equiv d_1n_1 \pmod{4}$, since $d_1 - e_2e_1\ell \equiv d_1 - e_1\ell \equiv d_1(1-d_1m_1n_1\ell) \equiv 0 \pmod{4}$. So we can write $\eta_{11} = (\xi - \xi^\sigma)(\xi - \xi^\rho)^\rho = 2d_2E_1$ for an integer $E_1 = B_1 + C_1\sqrt{mn}$ in $k_1 = Q(\sqrt{mn})$. By the same computation, we obtain $\eta_{12} = (\xi - \xi^\sigma)(\xi - \xi^\rho)^\sigma = \ell E_2$, $\eta_{13} = (\xi - \xi^\rho)(\xi - \xi^\rho)^\rho = d_1E_3$ for units E_j in $k_1(j = 2, 3)$. By the assumption that Z_K is generated by ξ, we have

$$d_{K/Q}(\xi) = \pm N_K(\mathfrak{a}(\xi)) = \pm D_K,$$
where $d(\alpha), N_K(\alpha)$ and $N_K(a)$ means the different of a number, norm of α and an ideal a with respect to K/Q, respectively [Wa]. Then, because η_{1j} is a partial factor of $d_{K/Q}(\xi)$, the integers E_j should be units in $k_1 = Q(\sqrt{m\ell})$. Here the following is our basic identity:

$$(\xi - \xi^\sigma)(\xi - \xi^\rho) - (\xi - \xi^\rho)(\xi - \xi^\sigma) = 0$$

for $(\xi - \xi^\sigma)(\xi - \xi^\rho) = \eta_{11}, (\xi - \xi^\rho)(\xi - \xi^\sigma) = \eta_{12}$ and $(\xi - \xi^\sigma)(\xi - \xi^\rho) = \eta_{13}$. Then we have the equation

$$2d_1E_1 - \ell E_2 - d_1E_3 = 0$$

in $k_1 = Q(\sqrt{D_1})$, $D_1 = m_1 \cdot 2m_2 \cdot n_1 \cdot 2n_2$, where E_1, E_2 and E_3 are units in k_1.

In the same way, we obtain seven equations corresponding to each of the seven quadratic subfields k_j of K.

Proposition 2. If $K = Q(\sqrt{mn}, \sqrt{dn}, \sqrt{d_1m_1n_1\ell})$ is monogenic, then the following simultaneous equations hold:

1. $\ell E_{11} + 2d_2E_{12} + d_1E_{13} = 0$ in $k_1 = Q(\sqrt{D_1})$, $D_1 = m_1 \cdot 2m_2 \cdot n_1 \cdot 2n_2$, E_{11}, E_{12}, E_{13} are units in the corresponding quadratic subfield k_1 of K and D_1 the field discriminant of k_1, respectively.

2. $\ell E_{21} + 2m_2E_{22} + m_1B_{3} = 0$ in $k_2 = Q(\sqrt{D_2})$, $D_2 = d_1 \cdot 2d_2 \cdot n_1 \cdot 2n_2$, E_{21}, E_{22}, E_{23} are units in the corresponding quadratic subfield k_2 of K and D_2 the field discriminant of k_2, respectively.

3. $\ell E_{31} + 2n_2E_{32} + n_1E_{33} = 0$ in $k_3 = Q(\sqrt{D_3})$, $D_3 = d_1 \cdot 2d_2 \cdot m_1 \cdot 2m_2$, E_{31}, E_{32}, E_{33} are units in the corresponding quadratic subfield k_3 of K and D_3 the field discriminant of k_3, respectively.

4. $2d_2E_{41} + 2m_2E_{42} + 2n_2E_{43} = 0$ in $k_4 = Q(\sqrt{D_4})$, $D_4 = d_1 \cdot m_1 \cdot n_1 \cdot \ell$, E_{41}, E_{42}, E_{43} are units in the corresponding quadratic subfield k_4 of K and D_4 the field discriminant of k_4, respectively.

5. $2d_2E_{51} + m_1E_{52} + n_1E_{53} = 0$ in $k_5 = Q(\sqrt{D_5})$, $D_5 = d_1 \cdot 2d_2 \cdot n_1 \cdot \ell$, E_{51}, E_{52}, E_{53} are units in the corresponding quadratic subfield k_5 of K and D_5 the field discriminant of k_5, respectively.

6. $d_2E_{61} + 2m_2E_{62} + n_1E_{63} = 0$ in $k_6 = Q(\sqrt{D_6})$, $D_6 = 2d_2 \cdot m_1 \cdot 2n_2 \cdot \ell$, E_{61}, E_{62}, E_{63} are units in the corresponding quadratic subfield k_6 of K and D_6 the field discriminant of k_6, respectively.

7. $d_1E_{71} + m_1E_{72} + 2n_2E_{73} = 0$ in $k_7 = Q(\sqrt{D_7})$, $D_7 = 2d_2 \cdot m_2 \cdot n_1 \cdot \ell$, E_{71}, E_{72}, E_{73} are units in the corresponding quadratic subfield k_7 of K and D_7 the field discriminant of k_7, respectively.

For the case of a real quadratic field, the following lemma holds:

Lemma 2. Let E_j be a power $\epsilon_0^j = \frac{u_j + v_j\sqrt{D}}{2}$ of the fundamental unit $\epsilon_0 = \frac{u + v\sqrt{D}}{2} > 1$ in a real quadratic field $Q(\sqrt{D})$ with the field discriminant D and $\overline{\alpha} = \alpha^\gamma$ for α in $Q(\sqrt{D})$ and $\gamma(\neq I)$ in $Gal(Q(\sqrt{D})/Q)$. Let

$$a + bE_j + cE_k = 0,$$

$$a + b\overline{E_j} + c\overline{E_k} = 0$$

for $abc \neq 0$. Denote the matrix

$$\begin{pmatrix}
1 & E_j & E_k \\
1 & \overline{E_j} & \overline{E_k}
\end{pmatrix}$$

for $abc \neq 0$. Denote the matrix

$$\begin{pmatrix}
1 & E_j & E_k \\
1 & \overline{E_j} & \overline{E_k}
\end{pmatrix}$$

for $abc \neq 0$. Denote the matrix

$$\begin{pmatrix}
1 & E_j & E_k \\
1 & \overline{E_j} & \overline{E_k}
\end{pmatrix}$$
On integral bases of real octic 2-elementary abelian extensions

attached to the equation (*) by A and the rank of A by r_D. Then we have a solution
(a, b, c) of rational integers:

$$\begin{cases}
a \pm b \pm c = 0 & \text{for } r_D = 1, \\
\frac{a}{u_k v_j - u_j v_k} = \frac{b}{2v_k} = \frac{c}{-2v_j} & \text{for } r_D = 2
\end{cases}$$

with $E_i = \frac{u_i + v_i \sqrt{D}}{2}$.

Proof. This lemma means that the integral solutions should be on the plane for the rank
$r_D = 1$ of the coefficient matrix A and on the line i.e. the intersection of two planes for
$r_D = 2$, respectively.

First, we consider the case of $r_D = 1$, then for
$$\begin{cases}
E_i = \frac{u_i + v_i \sqrt{D}}{2}, \\
E_i = \frac{u_i - v_i \sqrt{D}}{2}
\end{cases}$$

E_i, E_i should be a rational number. Then we have $E_j = u_j = \pm 1$ and $E_k = u_k = \pm 1$.
Hence $a \pm b \pm c = 0$. Second, we assume $r_D = 2$. Then we have

$$a : b : c = \left| \begin{array}{ccc}
E_j & E_k & \frac{1}{E_j} \\
E_j & \frac{1}{E_k} & \frac{1}{E_j}
\end{array} \right| = u_k v_j - u_j v_k : 2v_k : -2v_j.$$

Hence

$$\frac{a}{u_k v_j - u_j v_k} = \frac{b}{2v_k} = \frac{c}{-2v_j}.$$

In the case of any octic field $Q(\sqrt{m_1 m_2 n_1 n_2}, \sqrt{d_1 d_2 n_1 n_2}, \sqrt{d_1 m_1 n_1 \ell})$, by the following
lemma, we can deduce to evaluate the rank r_D of a quadratic field $Q(\sqrt{D})$ for a few
cases with respect to the order of values $d_1, 2d_2, m_1, 2m_2, n_1, 2n_2, \ell$ in the set of seven
parameters.

Lemma 3. Let denote the set $\{d_1, 2d_2, m_1, 2m_2, n_1, 2n_2, \ell\}$ by D. Then it holds that:

1. For one parameter s in D, there exist only four quadratic subfields k_j whose
discriminants D_j are divisible by s.

2. For two parameters s, t in D, there exist only two quadratic subfields k_j whose
discriminants D_j are divisible by st.

3. Let s, t, u be three parameters in D, such that stu is a divisor of the field discrimi-
nant of D_j of k_j. Then there exists only one quadratic subfield k_j whose discriminant D_j
is divisible by stu.

\square
Proof. (1) We can confirm the claim (1) for each of \(\binom{\#D}{1} = 7 \) parameter in \(D \) from seven equations in Proposition 2, such that there exist just four fields \(k_1, k_3, k_4, k_6 \) whose discriminant is divisible by \(m_1 \).

(2) We can do the claim (2) of \(\binom{\#D}{2} = 21 \) pairs of parameters in \(D \) by the same way as in (1). For instance, there exist just two fields \(k_3, k_7 \) whose discriminants are divisible by \(d_2m_2 \).

(3) We assume that \(D_i = stua \) and \(D_j = stub \). Then we have \(D_iD_j = (stu)^2ab \). However, the quadratic subfield \(Q(\sqrt{ab}) \) does not coincide with any \(k_j(1 \leq j \leq 7) \).

Remark 1. We can confirm that the number of triplets \((s, t, u)\) within the order of parameters in \(D \) is equal to \(28 = 7 \times 1 \times 4 \) such that each of \(stu \) is a divisor of the field discriminant \(D_j \) of \(k_j \).

Next, we prepare the key lemma for the proof of Theorem 2.

Lemma 4. For the set \(D = \{a, b, c, d, e, f, g\} \) of seven positive rational integers, assume that \(a > b \geq c > \max\{d, e, f, g\} \) and \(d > f \) or \(a > b > c \geq \max\{d, e, f, g\} \) and \(d > f \).

Then

(1) For the field \(Q(\sqrt{bcst}) \), where \(s, t \in D \setminus \{a, b, c\} \) and units \(E_i \) in \(Q(\sqrt{bcst}) \), the rank \(r_{bcst} \) of the equations

\[
\begin{align*}
&\{a + uE_j + vE_k = 0, \\
&a + u\overline{E}_j + v\overline{E}_k = 0,
\end{align*}
\]

with \(\{u, v\} = D \setminus \{a, b, c, s, t\} \) is equal to 1.

(2) For the field \(Q(\sqrt{astu}) \), where \(s, t, u \in D \setminus \{a, b, c\} \) and units \(E_i \) in \(Q(\sqrt{astu}) \), the rank \(r_{astu} \) of the equations

\[
\begin{align*}
&\{b + cE_j + vE_k = 0, \\
&b + c\overline{E}_j + v\overline{E}_k = 0,
\end{align*}
\]

with \(\{v\} = D \setminus \{a, b, c, s, t, u\} \) is equal to 1.

Sketch of Idea. Our idea for the proof of this lemma is as follows. For the quadratic subfield \(k \) including the coefficients of the simultaneous equation (*), if the field discriminant \(D_k \) is divisible by the biggest parameter (case (1)) or the second and the third ones (case (2)), since the fundamental unit (> 1) of \(k \) is relatively big, the ratios for the line in Lemma 2 would not be permitted. Thus the ranks of the coefficient matrix for both cases should be equal to one, respectively, namely any integral solution of (*) lies on the plane [PMN].
Finally, we show the following main theorem, which is a generalization of a prototype [PMN].

Theorem 2. Let $K = \mathbb{Q}(\sqrt{a_1}, \ldots, \sqrt{a_r})$ be the 2-elementary abelian extensions over \mathbb{Q} whose degree 2^e is greater than 8 or real octic ones for square free integers a_1, \ldots, a_r. Then the fields K are non-monogenic.

Sketch of Proof. By Proposition 1, it is enough to consider an octic field K. Let $(2) = \mathcal{L}_1 \cdots \mathcal{L}_s$ be the prime ideal decomposition of a rational prime 2 in K. For the ramification index of 2, if $e \leq 1$, then by Lemma 1 and the relative degree f of a prime 2 is at most 2, we have $1 \cdot 2^1 < 8$ or $1 \cdot 2^2 \leq 8 + 1 - 1$ for $e = 1$ and $2 \cdot 2^2 \leq 8$ or $2 \cdot 2^2 \leq 8 + 2 - 1$ for $e = 2$, namely K is non-monogenic. Then in the case of $e \geq 3$, we can deduce that the type of an octic field is $K = \mathbb{Q}(\sqrt{a_1}, \sqrt{a_2}, \sqrt{a_3})$, where $a_1 = mn \equiv 3, a_2 = dn \equiv 2, a_3 = d_3m_3n_3 \ell \equiv 1 \pmod{4}$, for $d = d_1d_2, m = m_1m_2, n = n_1n_2$ and $dmn\ell$ is square free. Put $D = \{d_1, 2d_2, m_1, 2m_2, n_1, 2n_2, \ell\}$. We denote again by $\{a, b, c, d, e, f, g\}$ any transposition on the seven parameters in D. Without loss of generality, we may assume that $a > b > c \geq \max\{d, e, f, g\}$. Using Lemma 4, it is enough for us to consider the following two cases.

Case (I). The field K includes $k_{ji} = \mathbb{Q}(\sqrt{abc})$ for some $t \in D \{a, b, c\}$, for instance, $t = d$.

Case (II). The field K does not include the field $\mathbb{Q}(\sqrt{abc})$ for any $s \in D \{a, b, c\}$.

In the case (I), we can deduce that the four parameters a, b, c, d with $c = d$ must lie on suitable two planes and in the case (II), a, b, e, g with $e = g$ do on four planes, respectively. However, the order of the parameters would be destroyed. Then we can prove that any real octic fields K does not have a power integral basis [PMN].

Remark 2. Recently, in [PNM] we proved that all the 2-elementary abelian fields K with degree $[K : \mathbb{Q}] \geq 8$ are non-monogenic except for the field $\mathbb{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{-3}) = \mathbb{Q}(\zeta_{24})$.

Problem. For a primitive element ξ in K, let $\text{Ind}(\xi)$, $\hat{m}(K)$ and $m(K)$ be the index $\sqrt{\frac{d_k(\xi)}{d_K}}$ of an element ξ, the minimum index $\min_{\xi \in K}\{\text{Ind}(\xi)\}$ of K and the field index $\text{gcd}(\text{Ind}(\xi))$ of K, respectively. Let the fields K run through all the real octic fields whose Galois groups are 2-elementary abelian. Then evaluate the values of

$$\inf_K \hat{m}(K) \text{ and } \inf_K m(K),$$
Acknowledgement. We wish to express our gratitude to Prof. Y. Taguchi and M. Ozaki for their valuable comments on this article.

References

