Geometry of polysymbols

Masanori Morishita (Kyushu University) Yuji Terashima (Tokyo Institute of Technology)

Introduction

We discuss a multiple generalization of the classical tame symbol on a Riemann surface. Let us start to explain a motivation of our work which is coming from the analogies between knots and primes.

where we set $p^* := (-1)^{\frac{p-1}{2}} p$.

Now, let us consider the polynomial ring $\mathbb{F}_l[X]$ (l being an odd prime) in place of \mathbb{Z} . For monic irreducible polynomials $f, g \in \mathbb{F}_l[X]$ s.t. (f, g) = 1, we have:

$$\begin{pmatrix} \frac{f}{g} \end{pmatrix} = 1 \iff \exists h \in \mathbb{F}_{l}[X] \text{ s.t. } h^{2} \equiv f \mod g$$

$$\Leftrightarrow f \mod g \in (\mathbb{F}_{l}[X]/(g))^{2}$$

$$\Leftrightarrow \prod_{g(\beta)=0} f(\beta) \in (\mathbb{F}_{l}^{\times})^{2}.$$

where
$$R(f,g):=\prod_{g(\beta)=0}f(\beta)=\prod_{f(\alpha)=g(\beta)=0}(\beta-\alpha)$$
 is the resultant of f and g . Hence we have
$$\left(\frac{f}{g}\right)=R(f,g)^{\frac{l-1}{2}}.$$

Note that the resultant R(f, g) can be defined for any ground field k and $f, g \in k[X]$. Summing up, we have the following analogies:

The symbol in the title means the tame symbol over C defined by

$$\{f,g\}_x := (-1)^{\operatorname{ord}_x(f)\operatorname{ord}_x(g)} \frac{f^{\operatorname{ord}_x(g)}}{g^{\operatorname{ord}_x(f)}}$$

for $f, g \in \mathbb{C}(X)$ and $x \in \mathbb{C} \cup \{\infty\}$. The connection with the resultant is given by

$$R(f,g) = \prod_{g(\beta)=0} \{f,g\}_{\beta}$$

for $f, g \in \mathbb{C}[X]$ and hence the tame symbol plays a local and more basic role like the Hilbert symbol.

Now, it is known in knot theory that there is a higher order generalization of the linking number for a link. For example, the Borromean ring $K_1 \cup K_2 \cup K_3$ has the linking numbers $lk(K_i, K_j) = 0$ for all $i \neq j$ and the triple linking number $lk(K_1, K_2, K_3) = \pm 1$:

There are known two ways to construct the higher linking numbers; 1) Massey's higher order cup products ([Ma]) 2) Milnor's invariants defined as unipotent monodromies ([Mi]). For Z, both constructions are known ([Mo]). The following question was asked by M. Kapranov:

Question. Is there Massey-Milnor type construction for a multiple $\{f_1, \ldots, f_n\}_x$ (or $R(f_1, \ldots, f_n)$) under a certain condition?

Our result is to give the Massey type construction of a line bundle with holomorphic flat connection $\langle f_1, \ldots, f_n \rangle$, called a polysymbol, on a Riemann surface so that $\{f_1,\ldots,f_n\}_x$ is obtained as its holonomy along a loop encircling x, and also to give a global geometric construction of $\langle f_1, \ldots, f_n \rangle$.

In the following, we shall discuss only triple symbols, i.e, the case n=3, though we have similar results for any n ([MT]). Let us fix the notations:

X := a closed Riemann surface,

 $f_1, f_2, f_3 \in \mathbb{C}(\overline{X}),$ $X := \overline{X} \setminus \bigcup_{i=1}^3 \operatorname{Supp}(f_i).$

1. Massey product construction

For $p \in \mathbb{N}$, the Deligne complex is defined by

$$\mathbb{Z}(p)_D := ((2\pi\sqrt{-1})^p \mathbb{Z} \to \mathcal{O}_X \stackrel{d}{\to} \Omega_X^1 \stackrel{d}{\to} \cdots \stackrel{d}{\to} \Omega_X^{p-1})$$

which is quasi-isomorphic to

$$(\mathcal{O}_X^{\times} \xrightarrow{d \log} \Omega_X^1 \xrightarrow{d} \cdots \xrightarrow{d} \Omega_X^{p-1})[-1].$$

The Deligne cohomology is then defined by the hypercohomology groups

$$\mathbb{H}^{q}(X,\mathbb{Z}(p)_{D}) = \mathbb{H}^{q-1}(X,\mathcal{O}_{X}^{\times} \stackrel{d \log}{\to} \Omega_{X}^{1} \stackrel{d}{\to} \cdots \stackrel{d}{\to} \Omega_{X}^{p-1}), \quad q \geq 1.$$

We compute Deligne cohomology groups in terms of Čech cohomology and so we take an open cover $\mathcal{U} = \bigcup_a U_a$ of X. (For the properties of the Deligne cohomology, we refer to [Br], [EV]).

(1) For p = q = 1, we have

$$\begin{array}{ccc} H^0(X, \mathcal{O}_X^{\times}) & \simeq & \mathbb{H}^1(X, \mathbb{Z}(1)_D) \\ f & \leftrightarrow & [(2\pi\sqrt{-1}n_{ab}, (\log f)_a)] \end{array}$$

where $(\log f)_a$ means a branch of $\log f$ on U_a with $(\log f)_b - (\log f)_a = 2\pi \sqrt{-1} n_{ab}$ on $U_{ab} = U_a \cap U_b$.

Let $\operatorname{Pic}^{\nabla}(X)$ denote the group of isomorphism classes of line bundles with holomorphic (flat) connection on X.

(2) For p = q = 2, we have

$$\begin{array}{cccc} \mathbb{H}^2(X,\mathbb{Z}(2)_D) & \simeq & \mathbb{H}^1(X,\mathcal{O}_X^{\times} \stackrel{\mathrm{dlog}}{\to} \Omega_X^{-1}) & \simeq & \mathrm{Pic}^{\nabla}(X) \\ [((2\pi\sqrt{-1})^2 n_{abc}, (\log f)_{ab}, \Omega_a)] & \leftrightarrow & [(\exp \frac{1}{2\pi\sqrt{-1}} (\log f)_{ab}, \frac{1}{2\pi\sqrt{-1}} \Omega_a)] & \leftrightarrow & [(L,\nabla)] \end{array}$$

where ξ_{ab} gives the transition function of a \mathbb{C} -line bundle L on U_{ab} and local 1-forms ω_a 's define a connection ∇ on L.

The Deligne complexes have the product $\mathbb{Z}(p)_D \times \mathbb{Z}(q)_D \to \mathbb{Z}(p+q)_D$ which induces the cup product

$$\mathbb{H}^q(X,\mathbb{Z}(p)_D) \times \mathbb{H}^{q'}(X,\mathbb{Z}(q)) \xrightarrow{\cup} \mathbb{H}^{q+q'}(X,\mathbb{Z}(p+p')_D).$$

By (1) and (2), $f_1 \cup f_2$ determines the isomorphism class of line bundles with holomorphic connection on X, which we denote by $\langle f_1, f_2 \rangle$. Deligne ([D]) interpreted the tame symbol $\{f_1, f_2\}_x$ as the holonomy of $\langle f_1, f_2 \rangle$ along a loop l based at x_0 and encircling x:

$$\{f_1, f_2\}_x = \exp \frac{1}{2\pi\sqrt{-1}} \left(\int_I \log f_1 \frac{df_2}{f_2} - \log f_2(x_0) \int_I \frac{df_1}{f_1} \right).$$

Now, assume that $f_1 \cup f_2 = f_2 \cup f_3 = 0$ in the following so that

$$\begin{array}{ll} \alpha_1 \cup \alpha_2 = \partial \alpha_{12}, & \alpha_2 \cup \alpha_3 = \partial \alpha_{23}, & \exists \alpha_{ij} \in C^1(\mathcal{U}, \mathbb{Z}(2)_D) \\ \Leftrightarrow & (\log f_1)_a \frac{df_2}{f_2} = \frac{df_{12}}{f_{12}}, & (\log f_2)_a \frac{df_3}{f_3} = \frac{df_{23}}{f_{23}}, & \exists f_{ij} \in H^0(X, \mathcal{O}_X^{\times}) \\ + \text{some equations} \end{array}$$

We fix branches $(\log f_{ij})_a$'s on U_a 's so that we have a unique cohomology class of the Massey product $[\alpha_1 \cup \alpha_{23} + \alpha_{12} \cup \alpha_3] \in \mathbb{H}^2(X, \mathbb{Z}(3)_D)$. We then define $\langle f_1, f_2, f_3 \rangle$ as the corresponding isomorphism class of line bundles with holomorphic connection under the isomorphisms:

$$\mathbb{H}^2(X,\mathbb{Z}(3)_D) \simeq \mathbb{H}^2(X,\mathbb{Z}(2)_D) \simeq \operatorname{Pic}^{\nabla}(X).$$

Let $x_0 \in X$ be a base point and put $a_i := \frac{1}{2\pi\sqrt{-1}} \log f_i(x_0)$, $a_{ij} := \frac{1}{(2\pi\sqrt{-1})^2} \log f_{ij}(x_0)$ and $\omega_i := \frac{1}{2\pi\sqrt{-1}} \frac{df_i}{f_i}$.

Theorem 1. For $[l] \in \pi_1(X, x_0)$, the holonomy of $\langle f_1, f_2, f_3 \rangle$ along l is

$$\exp(2\pi\sqrt{-1}m_{123}(l)),$$

where $m_{123}(l)$ is given by

$$m_{123}(l) = \int_{l} \omega_{1} \omega_{2} \omega_{3} + a_{1} \int_{l} \omega_{2} \omega_{3} + a_{12} \int_{l} \omega_{3} - \int_{l} \omega_{1} a_{23} - \int_{l} \omega_{1} \omega_{2} a_{3} - a_{1} \int_{l} \omega_{2} a_{3} + \int_{l} \omega_{1} a_{2} a_{3}.$$

Here $\int_{l} \omega_{i_1} \cdots \omega_{i_k}$ denotes the iterated integral ([C])

$$\int_{0 \leq t_1 < \cdots < t_k \leq 1} F_1(t_1) \cdots F_k(t_k) dt_1 \cdots dt_k, \ l^*(\omega_{i_j}) = F_j(t_j) dt_j.$$

For $x \in \overline{X}$, we define $\{f_1, f_2, f_3\}_x$ by the holonomy of $\langle f_1, f_2, f_3 \rangle$ along a loop encircling x.

Theorem 2. (Reciprocity)
$$\prod_{x \in \overline{X}} \{f_1, f_2, f_3\}_x = 1.$$

2. Global geometric construction

We give a global geometric construction of $\langle f_1, f_2, f_3 \rangle$, which generalizes those by S. Bloch ([Bl]) and R. Hain ([H]) for $\langle f_1, f_2 \rangle$. We set:

$$N_4(R) := \{ egin{pmatrix} 1 & x_1 & x_{12} & x_{123} \ 0 & 1 & x_2 & x_{23} \ 0 & 0 & 1 & x_3 \ 0 & 0 & 0 & 1 \end{pmatrix} \mid x_* \in R \} \; (R: ext{a ring}),$$

$$C_4:=\{egin{pmatrix} 1 & 0 & 0 & z \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix} \mid z\in\mathbb{C}\},$$

$$P := N_4(\mathbb{Z}) \setminus N_4(\mathbb{C}), \ B := N_4(\mathbb{Z}) \setminus N_4(\mathbb{C}) / C_4.$$

The projection $P \to B$ is a principal \mathbb{C}^{\times} -bundle. The 1-form

$$\theta := dx_{123} - x_{12}dx_3 - x_1d_{23} + x_1x_2dx_3$$

= (1, 4)-entry of $x^{-1}dx$

is left $N_4(\mathbb{Z})$ -invariant, right \mathbb{C}^{\times} -invariant and a Maurer-Cartan form along fibers so that it boils down to a connection form on P. Fixing a base point $x_0 \in X$ and $N_4(\mathbb{Z})AC_4 \in B$ where

$$A := \begin{pmatrix} 1 & a_1 & a_{12} & a_{123} \\ 0 & 1 & a_2 & a_{23} \\ 0 & 0 & 1 & a_3 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

we define a holomorphic map

$$T(f_1, f_2, f_3): X \to B$$

by

$$T(f_1, f_2, f_3) := N_4(\mathbb{Z}) A \begin{pmatrix} 1 & \int_{\gamma_x} \omega_1 & \int_{\gamma_x} \omega_1 \omega_2 & \int_{\gamma_x} \omega_1 \omega_2 \omega_3 \\ 0 & 1 & \int_{\gamma_x} \omega_2 & \int_{\gamma_x} \omega_2 \omega_3 \\ 0 & 0 & 1 & \int_{\gamma_x} \omega_3 \\ 0 & 0 & 0 & 1 \end{pmatrix} C_4$$

where γ_x is a path from x_0 to x. The map $T(f_1, f_2, f_3)$ is shown to be independent of the choice of γ_x . By computing the holonomy of $T(f_1, f_2, f_3)^*(P, \theta)$, we have

Theorem 3. $\langle f_1, f_2, f_3 \rangle = \text{the isomorphism class of } T(f_1, f_2, f_3)^*(P, \theta).$

Remark. We expect that $\langle f_1, f_2, f_3 \rangle$ would be an obstruction to a variation of the mixed Hodge structure V on X so that the weight filtration $V \supset W_3 \supset W_2 \supset W_1 \supset 0$ satisfies the properties:

- (i) $V/W_3 = \mathbb{Z}, W_3/W_2 = \mathbb{Z}(1), W_2/W_1 = \mathbb{Z}(2), W_1 = \mathbb{Z}(3),$
- (ii) V/W_1 and W_3 are classified respectively by

$$T(f_1, f_2): X \longrightarrow N_3(\mathbb{Z}) \backslash N_3(\mathbb{C}) / C_3$$

 $T(f_2, f_3): X \longrightarrow N_3(\mathbb{Z}) \backslash N_3(\mathbb{C}) / C_3$,

where $T(f_i, f_{i+1})$ (i = 1, 2) is defined in a similar manner to $T(f_1, f_2, f_3)$.

References

- [Bl] S. Bloch, The dilogarithm and extensions of Lie algebras, Algebraic K-theory, Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), pp. 1–23, Lecture Notes in Math., 854, Springer, Berlin-New York, 1981.
- [Br] J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, 107. Birkhäuser Boston, Inc., Boston, MA, 1993.
- [C] K.-T. Chen, Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977), no. 5, 831-879.
- [D] P. Deligne, Le symbole modéré, Inst. Hautes Etudes Sci. Publ. Math. 73, (1991), 147–181.
- [EV] H. Esnault, E. Viehweg, Deligne-Beilinson cohomology, Beilinson's conjectures on special values of *L*-functions, 43–91, Perspect. Math., 4, Academic Press, Boston, MA, 1988
- [H] R. Hain, Classical polylogarithms, Motives (Seattle, WA, 1991), 3–42, Proc. Sympos. Pure Math., 55, Part 2, Amer. Math. Soc., Providence, RI, 1994.
- [Ma] W.S. Massey, Higher order linking numbers. J. Knot Theory Ramifications 7 (1998), no. 3, 393-414.
- [Mi] J. Milnor, Isotopy of links, in Algebraic Geometry and Topology, A symposium in honour of S. Lefschetz (edited by R.H. Fox, D.S. Spencer and W. Tucker), Princeton Univ. Press, Princeton, (1957), 280-306.
- [Mo] M. Morishita, Milnor invariants and Massey products for prime numbers, Compositio Math., 140, (2004), 69-83.
- [MT] M. Morishita, Y. Terashima, Geometry of polysymbols, in preparation.