On rational torsion points of central \mathbb{Q}-curves

Fumio Sairaiji (Hiroshima International University)
Takuya Yamauchi 1 (Hiroshima University)

1 Introduction

Let E be an elliptic curve over a number field k of degree d. Let $E(k)$ be the group of k-rational points on E and let $E_{\text{tors}}(k)$ be its torsion subgroup. When k is the rational number field \mathbb{Q}, Mazur [12] shows that $E_{\text{tors}}(\mathbb{Q})$ is isomorphic to one of 15 abelian groups. Kunku-Momose [10] and Kamienny [9] generalize the result of Mazur to the case where k is a quadratic field.

Assume that the degree d is greater than one. Then Merel [15] shows that each prime divisor of the order $\#E_{\text{tors}}(k)$ is less than d^{3d^2}. Merel's bound is effective, but it is large.

In this paper we discuss about prime divisors of the order $\#E_{\text{tors}}(k)$ in case where we restrict E to a central \mathbb{Q}-curve over a polyquadratic field k. Our results assert that each prime divisor of $\#E_{\text{tors}}(k)$ is less than or equal to 13 or that it belongs to a finite set of prime numbers depending on k.

In Section 2, we review some known results on $E_{\text{tors}}(k)$. In Section 3, we give the definition of central \mathbb{Q}-curves and we introduce our results. In Sections 4-6, we give outline of proofs of our results.

2 Known Results

Let E be an elliptic curve over a number field k. Let $E(k)$ be the group of k-rational points on E.

Theorem 2.1 (Mordell-Weil Theorem). The group $E(k)$ is a finitely generated abelian group. Specially, $E_{\text{tors}}(k)$ is a finite abelian group.

When k is equal to either \mathbb{Q} or a quadratic field, the group structure of $E_{\text{tors}}(k)$ is completely determined.

Theorem 2.2 (Mazur [12]). Assume that k is equal to \mathbb{Q}. Then the group $E_{\text{tors}}(\mathbb{Q})$ is isomorphic to one of the following 15 abelian groups.

$$
\begin{align*}
\mathbb{Z}/N\mathbb{Z} & \quad (1 \leq N \leq 10, \; N = 12) \\
\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z} & \quad (1 \leq N \leq 4)
\end{align*}
$$

1The author is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.
Specially, each prime divisor of $\# E_{\text{tors}}(\mathbb{Q})$ is less than or equal to 7. For each group G in Theorem 2.2, Kubert [11] gives a defining equation parameterizing elliptic curves E such that $E_{\text{tors}}(\mathbb{Q})$ contains G. For example, if $E_{\text{tors}}(\mathbb{Q})$ contains $\mathbb{Z}/6\mathbb{Z}$, E is isomorphic to

$$y^2 + (1 - s)xy - (s^2 + s)y = x^3 - (s^2 + s)x^2$$

for some s in \mathbb{Q} such that $\Delta = s^6(s + 1)^3(9s + 1) \neq 0$. Then the point $(0, 0)$ is of order 6.

The existance of an elliptic curve over \mathbb{Q} with a \mathbb{Q}-rational torsion of order N is equivalent to that of a non-cuspidal \mathbb{Q}-rational point of the modular curve $X_1(N)$.

Theorem 2.3 (Kenku-Momose [10], Kamienny [9]). Let k be a quadratic field. Then the group $E_{\text{tors}}(k)$ is isomorphic to one of the following 25 abelian groups.

- $\mathbb{Z}/N\mathbb{Z}$, $(1 \leq N \leq 14, N = 16, 18)$
- $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}$, $(1 \leq N \leq 6)$
- $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3N\mathbb{Z}$, $(N = 1, 2)$, $(k = \mathbb{Q}(\sqrt{-3}))$
- $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$, $(k = \mathbb{Q}(\sqrt{-1}))$

Specially, each prime divisor of $\# E_{\text{tors}}(k)$ is less than or equal to 13. For elliptic curves over number fields of degree greater than two, there exist some results on the group structure of $E(k)_{\text{tors}}$ under some conditions (cf. e.g. [6], [21]).

Merel [15] obtains an effective upper bound for prime divisors of $\# E_{\text{tors}}(k)$ depending only the degree d of k over \mathbb{Q}.

Theorem 2.4 (Merel [15]). Let k be a number field of degree $d > 1$. Each prime divisor of $\# E_{\text{tors}}(k)$ is less than d^{3d^2}.

Theorem 2.4 implies the following corollary (cf. e.g. [2]), what is called, the universal boundness conjecture.

Corollary 2.5. Let d be a positive integer. Then there exists a constant C_d depending only on d such that $\# E_{\text{tors}}(k) < C_d$ for any number field k of degree d and for any elliptic curve E over k.

3 Our Results

The Merel’s bound d^{3d^2} is effective, but it is large. For example, when $d = 2$, we have $d^{3d^2} = 2^{12} = 4096$. We want to improve Merel’s bound in case where we restrict E to central \mathbb{Q}-curves.
Definition 3.1. We call a non-CM elliptic curve E over $\overline{\mathbb{Q}}$ a \mathbb{Q}-curve if there exists an isogeny ϕ_σ from $^\sigma E$ to E for each σ in the absolute Galois group $G_\mathbb{Q}$ of \mathbb{Q}. Furthermore, we call a \mathbb{Q}-curve E central if we can take an isogeny ϕ_σ with square-free degree for each σ in $G_\mathbb{Q}$.

Let $X_0^*(N)$ be the quotient curve of the modular curve $X_0(N)$ by the group of Atkin-Lehner involutions of level N. Let π be the natural projection from $X_0(N)$ to $X_0^*(N)$. The isomorphism classes of central \mathbb{Q}-curves are obtained from $\pi^{-1}(P)$ where P is a non-cuspidal non-CM point of $X_0^*(N)(\mathbb{Q})$ and N runs over the square-free integers.

Theorem 3.2 (Elkies [3]). Each \mathbb{Q}-curve is isogenous to a central \mathbb{Q}-curve defined over a polyquadratic field.

Let E be a central \mathbb{Q}-curve. As below in this paper we always assume that E is defined over a polyquadratic field k of degree 2^d and that $\phi_\sigma = \phi_\tau$ if and only if $\sigma|_k = \tau|_k$.

Since E is a central \mathbb{Q}-curve, there exists an isogeny ϕ_σ from $^\sigma E$ to E with square-free degree d_σ for each σ in $G_\mathbb{Q}$. We put

$$c(\sigma, \tau) = \phi_\sigma \phi_\tau \phi_{\sigma\tau}^{-1} \quad \text{for each } \sigma, \tau \text{ in } G_\mathbb{Q}. \quad (1)$$

Then a mapping c is a two-cocycle of $G_\mathbb{Q}$ with values in \mathbb{Q}^*. By taking the degree of both sides, we have $c(\sigma, \tau)^2 = d_\sigma d_\tau d_{\sigma\tau}^{-1}$. Since it follows from $\mathrm{H}^1(G_\mathbb{Q}, \overline{\mathbb{Q}}) = \{1\}$ that there exists a mapping β from $G_\mathbb{Q}$ to $\overline{\mathbb{Q}}$ such that

$$c(\sigma, \tau) = \beta(\sigma)\beta(\tau)\beta(\sigma\tau)^{-1} \quad \text{for each } \sigma, \tau \text{ in } G_\mathbb{Q}, \quad (2)$$

we see that

$$\epsilon(\sigma) := \frac{d_\sigma}{\beta(\sigma)^2} \quad (3)$$

is a character of $G_\mathbb{Q}$. We obtain:

Theorem 3.3. If a prime number N divides $\#E_{\text{tors}}(k)$, then N satisfies at least one of the following conditions.

(i) $N \leq 13$.

(ii) $N = 2^{m+2} + 1, \ 3 \cdot 2^{m+2} + 1$ for some $m \leq d$.

(iii) ϵ is real quadratic and N divides the generalized Bernoulli number $B_{2,\epsilon}$.

141
The condition (iii) depends on the definition field k of E. If the scalar restriction of E from k to \mathbb{Q} is of GL_2-type with real multiplications, we have $\varepsilon = 1$ and thus N is bounded by the constant depending only on the degree of k.

Furthermore, under the assumption that each d_σ divides $\#E_{\text{tors}}(k)$, we completely determine the square-free divisor of $E_{\text{tors}}(k)$.

Theorem 3.4. Assume that each d_σ divides $\#E_{\text{tors}}(k)$. Let N be the product of all prime divisors of $\#E_{\text{tors}}(k)$. Then $[k : \mathbb{Q}]$ and N satisfy the following.

<table>
<thead>
<tr>
<th>$[k : \mathbb{Q}]$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$1, 2, 3, 5, 6, 7, 10$</td>
</tr>
<tr>
<td>2</td>
<td>$2, 3, 6, 14$</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>≥ 8</td>
<td>empty</td>
</tr>
</tbody>
</table>

We note that each case in the above list occurs. Specially, there is a family of infinitely many \mathbb{Q}-curves with rational torsion points corresponding to each element in the above list except for $N = 14$. In the case of $[k : \mathbb{Q}] = 1$ it is given by Kubert [11]. In the case of $[k : \mathbb{Q}] = 2$ and $N = 2, 3$ it is given by Hasegawa [5]. For example, when $[k : \mathbb{Q}] = 4$ and $N = 6$, E is isomorphic to

$$y^2 + (1 - s)xy - (s^2 + s)y = x^3 - (s^2 + s)x^2$$

$$s = \frac{1}{12}(\sqrt{a} + \sqrt{4 + a})(3\sqrt{a} + \sqrt{4 + 9a})$$

for a in \mathbb{Q} such that $\Delta = s^6(s + 1)^3(9s + 1) \neq 0$.

When $N = 14$, there is only one \mathbb{Q}-curve corresponding to the above list. More precisely, $k = \mathbb{Q}(\sqrt{-7})$ and E is defined by the global minimal model:

$$y^2 + (2 + \sqrt{-7})xy + (5 + \sqrt{-7})y = x^3 + (5 + \sqrt{-7})x^2.$$

Furthermore E is a $\overline{\mathbb{Q}}$-simple factor of $J_0^{\text{new}}(98)$ and there exists an isogeny of degree 2 between E and its non-trivial Galois conjugate curve.

Let π be the natural projection from $X_1(N)$ to $X_0^5(N)$ via $X_0(N)$. Each element in the list of Theorem 3.4 corresponds to the existence of a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^5(M)(\mathbb{Q})$, where M is the least common multiple of d_σ, which is a divisor of N by the assumption of Theorem 3.4.
4 Central \(\mathbb{Q} \)-curves over polyquadratic fields

Let notations and assumptions be the same as in the previous section. We denote the group of \(N \)-torsion points on \(E \) by \(E[N] \). We take a \(\mathbb{Z}/N\mathbb{Z} \)-basis \(\{ Q_1, Q_2 \} \) of \(E[N] \) such that \(Q_1 \) is \(k \)-rational. Let \(G \) be the Galois group of \(k \) over \(\mathbb{Q} \).

If \(Q_1 \) is in the kernel of \(\phi_\sigma \) for some \(\sigma \) in \(G_\mathbb{Q} \), we can see that the \(N \)-th root \(\zeta_N \) of unity is in the definition field of \(\phi_\sigma \). Thus we have:

Proposition 4.1. If \(N \) divides \(d_\sigma \) for some \(\sigma \) in \(G_\mathbb{Q} \), then \(N \) is either 2 or 3.

As below we assume that \(N > 3 \). Then \(Q_1 \) is not in the kernel of \(\phi_\sigma \) for any \(\sigma \) in \(G_\mathbb{Q} \). Using the fact that \(\phi_\sigma \) induces the isomorphism from \(E[N] \) to \(E[N] \), we have Propositions 4.2 and 4.3.

Proposition 4.2. \(\phi_\sigma \) is defined over \(k \) for each \(\sigma \) in \(G_\mathbb{Q} \). Specially, \(E \) is completely defined over \(k \).

Proposition 4.3. The 2-cocycle \(c \) is symmetric. That is, \(c(\sigma, \tau) = c(\tau, \sigma) \) for each \(\sigma, \tau \) in \(G_\mathbb{Q} \).

Since \(c \) is symmetric and \(G \) is commutative, we may consider that \(\beta \) is a mapping from \(G \) to \(\overline{\mathbb{Q}}^* \) (cf. e.g. [7]). By (3) the character \(\epsilon \) is either trivial or quadratic. Since we can see \(\phi_\sigma \phi_\sigma = \epsilon(\sigma)d_\sigma \), we have:

Proposition 4.4. The character \(\epsilon \) is even, that is, \(\epsilon(\rho) = 1 \), where \(\rho \) is the complex conjugation.

We denote by \(F \) the extension of \(\mathbb{Q} \) adjoining all values \(\beta(\sigma) \). Since \(\beta(\sigma) = \pm \sqrt{\epsilon(\sigma)d_\sigma} \), \(F \) is a polyquadratic field. We denote by \(A \) the scalar restriction of \(E \) from \(k \) to \(\mathbb{Q} \). Since \(E \) is a central \(\mathbb{Q} \)-curve completely defined over \(k \), \(A \) is an abelian variety of \(GL_2 \)-type with \(\text{End}_{\mathbb{Q}}^0 A = F \). By using the isomorphisms \(\lambda \)-adic (\(\lambda \)-adic) Tate modules, \(V_1(A) \cong \oplus_{\lambda|l} V_\lambda(A) \) and \(V_1(A) \cong \oplus_{\tau \in G} V_1(\tau E) \), we have:

Proposition 4.5. Let \(k_{\epsilon} \) be a field corresponding to the kernel of \(\epsilon \). If \(E \) is semistable, \(k \) is an unramified extension of \(k_{\epsilon} \).

By the definition of the scalar restriction, \(A(\mathbb{Q}) \) and \(E(k) \) are bijective. Since \(\zeta_N \) is not in \(k \), the group of \(k \)-rational \(N \)-torsion points on \(E \) must be \(\langle Q_1 \rangle \). Thus \(A \) has the unique \(\mathbb{Q} \)-rational \(N \)-torsion group \(\langle R_1 \rangle \). There exists the unique prime \(\lambda \) of \(F \) dividing \(N \) such that \(R_1 \) is in \(A[\lambda] \).

Proposition 4.6. \(k(E[N]) = k(A[\lambda]) \).
For τ in G_{Q} we have

$$\tau[R_{1}, R_{2}] = [R_{1}, R_{2}]\begin{pmatrix} 1 & * \\ 0 & \epsilon(\tau)\chi(\tau) \end{pmatrix},$$

where χ is the cyclotomic character modulo N. Thus $k_{\epsilon}(A[\lambda])/k_{\epsilon}(\zeta_{N})$ is an $\epsilon\chi^{-1}$-extension (cf. [8], p.547). By modifying Herbrand's Theorem (cf. e.g. [20], p.101), we have:

Proposition 4.7. If $k(E[N])/k(\zeta_{N})$ is unramified and N does not divide the generalized Bernoulli number $B_{2,\epsilon}$, then $k(E[N]) = k(\zeta_{N})$.

5 Proof of Theorem 3.3

Throughout this section we always assume the following:

(i) $N > 13$

(ii) $N \neq 2^{m+2} + 1, 3 \cdot 2^{m+2} + 1$

(iii) $N \nmid B_{2,\epsilon}$

In this section we give a proof of Theorem 3.3 by modifying the result of Kamienny [8].

Let S be the spectrum of the ring of integers in k. Let p be a prime ideal of k above a prime integer p.

Proposition 5.1. E is semistable over S.

Proof. Let k_{p} be the completion of k at p and let O_{p} be its ring of integers. Let E/O_{p} be the Néron model of E/k_{p} over Spec O_{p}. By the universal property of Néron models the morphism from $Z/NZ/k_{p}$ to E/k_{p} extends to a morphism from $Z/NZ/O_{p}$ to E/O_{p} which maps to the Zariski closure in E/O_{p} of $Z/NZ/k_{p} \subset E/k_{p}$. This group scheme extension H/O_{p} is a separated quasi-finite group scheme over O_{p} whose generic fibre is Z/NZ. Since it admits a map from $Z/NZ/O_{p}$ which is an isomorphism on the generic fibre, it follows from that H/O_{p} is a finite flat group scheme of order N. Since k is polyquadratic and N is odd, the absolute ramification index e_{p} over Spec Z is equal to 1 or 2. Since e_{p} is less than $N - 1$, by the theorem of Raynaud [17, Cor. 3.3.6] we have $H/O_{p} \cong Z/NZ/O_{p}$. Therefore we shall identify H/O_{p} with $Z/NZ/O_{p}$.

Suppose that the component $(E/p)^{0}$ is an additive group. Then the index of $(E/p)^{0}$ in E/p is less than or equal to 4. It follows that $Z/NZ/p \subset (E/p)^{0}$.

Thus, the residue characteristic p is equal to N. By Serre-Tate [18] there exists a field extension k'_p/k_p whose relative ramification index is less than or equal to 6, and such that E/k'_p possess a semi-stable Néron model $\mathcal{E}_{/\mathcal{O}_p'}$ where \mathcal{O}_p' is the ring of integers in k'_p. Then we have a morphism ψ from $E_{/\mathcal{O}_p'}$ to $E_{/\mathcal{O}_p}$ which is an isomorphism on generic fibres, using the universal Néron property of $\mathcal{E}_{/\mathcal{O}_p'}$. The mapping ψ is zero on the connected component of the special fibre of $E_{/\mathcal{O}_p'}$ since there are no non-zero morphisms from an additive to a multiplicative type group over a field. Consequently, the mapping ψ restricted to the special fibre of $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p'$ is zero. Using Raynaud [17, Cor. 3.3.6], again, we see that this is impossible. Indeed, since k is polyquadratic and N is odd, the absolute ramification index of k'_p is less than or equal to 12, which leads to a contradiction to the assumption $N-1 > 12$. \qed

Proposition 5.2. Assume that p is neither 2 nor 3. Then p a multiplicative prime of E. Furthermore the reduction Q_1 does not specialize mod p to $(E/p)^0$.

Proof. If p is a good prime of E, then E/p is an elliptic curve over \mathcal{O}/p containing a rational torsion point of order N. By the Riemann hypothesis of elliptic curves over the finite field \mathcal{O}/p, N must be less than or equal to $(1+p^{f_p/2})^2$, where f_p is the degree of residue field. Since k is polyquadratic, we have $f_p = 1, 2$. Thus we have $(1+p^{f_p/2})^2 \geq 16$. Since N is prime, $N \geq 17$ follows from the assumption $N > 13$. Hence this is impossible, and E has multiplicative reduction at p.

Suppose that Q_1 specialize to $(E/p)^0$. Over a quadratic extension k of \mathcal{O}/p we have an isomorphism $E/k \cong G_{m/k}$, so that N divides the cardinality of k^*. Since it follows from $f_p = 1, 2$ that the cardinality of k^* is one of 3, 8, 15, 80, this is impossible by the assumption $N > 13$. \qed

The pair $(E, (Q_1))$ defines a k-rational point on the modular curve $X_0(N)_{/\mathbb{Q}}$. If $p \neq N$, we denote by x/p the image of x on the reduced curve $X_0(N)_{/(\mathcal{O}_{k}/p)}$. When p is a potentially multiplicative prime of E, we know that $x/p = \infty/p$ if the point Q_1 does not specialize to the connected component $(E/p)^0$ of the identity (cf. [8], p.547).

We denote $J_0(N)_{/\mathbb{Q}}$ the jacobian of $X_0(N)_{/\mathbb{Q}}$. The abelian variety $J_0(N)$ is semi-stable and has good reduction at all primes $p \neq N$ ([1]). We denote by $\tilde{J}_{/\mathbb{Q}}$ the Eisenstein quotient of $J_0(N)_{/\mathbb{Q}}$. Then Mazur [13] shows that $\tilde{J}(\mathbb{Q})$ is finite of order the numerator of $(N-1)/12$, which is generated by the image of the class $0 - \infty$ by the projection from $J_0(N)$ to \tilde{J}

Proposition 5.3. Assume that N is not of the form $2^{m+2} + 1$, $3 \cdot 2^{m+2} + 1$. If p is any bad prime of E, then Q_1 does not specialize to $(E/p)^0$.
Proof. Define a map g from $X_0(N)(k)$ to $J_0(N)(Q)$ by $g(x) = \sum_{\sigma \in G} \sigma x - d \cdot \infty$, where $d := [k : Q]$. Let f be the composition of g with the projection h from $J_0(N)$ to \tilde{J}. Then $f(x)$ is a torsion point, since $\tilde{J}(Q)$ is a finite group and $f(x)$ is Q-rational. By Proposition 5.2 we have $\sigma x_p = \infty_p$ for each σ and p dividing 2, so we have

$$f(x)_p = h(\sum_{\sigma \in G} \sigma x_p - d \cdot \infty_p) = 0,$$

so $f(x)$ has order a power of 2. However, $f(x)_p = 0$ for p dividing 3 by the same reasoning. Thus, $f(x)$ has order a power of 3, and so $f(x) = 0$.

If p is a bad prime of E which Q_1 does not specialize to $(E/p)^0$, then $x_p = 0_p$. By Proposition 5.2 we may assume that the residue characteristic p is not 2, 3 or N. Since E is a Q-curve completely defined over k, we have $\sigma x_p = 0_p$ for each σ. Thus,

$$f(x)_p = h(\sum_{\sigma \in G} \sigma x_p - d \cdot \infty_p) = h(d(0 - \infty))_p.$$

Since $h(0 - \infty)$ is Q-rational point, the order of $h(0 - \infty)$ divides d. Since the order of $h(0 - \infty)$ is equal to the numerator of $(N - 1)/12$, N is of the form $2^{m+2} + 1$, $3 \cdot 2^{m+2} + 1$, which is impossible by the assumption. \qed

Proposition 5.4. $k(E[N])/k(\zeta_N)$ is everywhere unramified.

Proof. If E has good reduction at p and $p \neq N$, then $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above p (cf. Serre-Tate[18]).

If E has good reduction at p and $p = N$, then $E[N]$ is a finite flat group scheme over O_p. Then there is a short exact sequence of finite flat group schemes over O_p:

$$0 \to \mathbb{Z}/N\mathbb{Z} \to E[N] \to \mu_N \to 0.$$

However, $E[N]$ also fits into a short exact sequence

$$0 \to E[N]^0 \to E[N] \to E[N]^{\acute{e}t} \to 0,$$

where $E[N]^0$ is the largest connected subgroup of $E[N]$ and $E[N]^{\acute{e}t}$ is the largest étale quotient (cf. [14], p.134-138). Clearly we have $E[N]^0 = \mu_N$, and this gives us splitting of the above exact sequences. Since $[k(E[N]) : k(\zeta_N)]$ divides N, the action of the inertia subgroup for p in $G_{k(\zeta_N)}$ on $E[N]$ is trivial. Namely, $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above p.

Assume that E has bad reduction at p. Since $J_0(N)$ is semistable, $E[N]/p$ is a quasi-finite flat group scheme over O_p (cf. [4]), and fits into a short exact sequence

$$0 \to \mathbb{Z}/N\mathbb{Z} \to E[N] \to \overline{\mu}_N \to 0,$$
where $\overline{\mu}_N$ is a quasi-finite flat group with generic fibre isomorphic to μ_N. Since Q_1 does not specialize to $(E/p)^0$, we see that the kernel of multiplication by N on $(E/p)^0$ maps injectively to $\overline{\mu}_N$. Thus, $\overline{\mu}_N$ is actually a finite flat group scheme. If $p \neq N$, then $E[N]$ is etale, and so $k(E[N])/k(\zeta_N)$ is unramified at the primes above p. If $p = N$, then $\mu_N = \overline{\mu}_N$ by Raynaud [17, Cor. 3.3.6] and $e_N \leq 2 < N - 1$. We see that $E[N]_{/O_p} = \mathbb{Z}/N \oplus \mu_N$, so $k(E[N])/k(\zeta_N)$ is unramified at the primes above p. \qed

By Propositions 4.7 and 5.4, we see that $k(E[N]) = k(\zeta_N)$. Thus $\langle Q_2 \rangle$ is k-rational.

Proposition 5.5. The quotient curve $E/\langle Q_2 \rangle$ is again a central \mathbb{Q}-curve over k with N-rational torsion point. Furthermore the image of Q_1 is N-rational point of $E/\langle Q_2 \rangle$ and

\[
\begin{array}{ccc}
\sigma E & \xrightarrow{\phi_\sigma} & E \\
\downarrow & & \downarrow \\
\sigma \left(E/\langle Q_2 \rangle \right) & \xrightarrow{\phi_\sigma} & E/\langle Q_2 \rangle
\end{array}
\]

Proof. Since $\langle Q_2 \rangle$ is k-rational, the quotient curve $E/\langle Q_2 \rangle$ is a \mathbb{Q}-curve over k. We show that $\phi_\sigma(\langle \sigma Q_2 \rangle) \subset \langle Q_2 \rangle$. We may put $\phi_\sigma(\langle \sigma Q_2 \rangle) = aQ_1 + bQ_2$. Since Q_1 is k-rational, $\phi_\sigma(\tau \langle Q_2 \rangle) = aQ_1 + b\tau Q_2$ for each $\tau \in G_k$. Since $\langle Q_2 \rangle$ is k-rational, $a \neq 0$ implies $\tau Q_2 = Q_2$ and thus $k(E[N]) = k$. Since k is polyquadratic and $N > 3$, this leads to contradiction.

Since $\phi_\sigma(\langle \sigma Q_2 \rangle) \subset \langle Q_2 \rangle$, we have the above diagram. Specially $E/\langle Q_2 \rangle$ is again central \mathbb{Q}-curve. \qed

Proof of Theorem 3.3. By Proposition 5.5 we get a sequence central \mathbb{Q}-curves over k

\[E \to E^{(1)} \to E^{(2)} \to E^{(3)} \to \ldots\]

each obtained from the next by an N-isogeny, and such that the original group $\mathbb{Z}/N\mathbb{Z}$ maps isomorphically into every $E^{(j)}$.

It follows from Shafarevic theorem that among the set of $E^{(j)}$ there can be only a finite number of k-isomorphism class of elliptic curve represented. Consequently, for some indecies $j > j'$ we must have $E^{(j)} \cong E^{(j')}$. But $E^{(j)}$ maps to $E^{(j')}$ by nonscalar isogeny. Therefore $E^{(j)}$ is a CM elliptic curve and so is E. This contradicts to the assumption that E is non-CM. \qed
6 Proof of Theorem 3.4

We recall that each element in the list of Theorem 3.4 corresponds to existence of a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\mathbb{Q})} \pi^{-1}X_0^*(M)(\mathbb{Q})$. By Proposition 4.1 we have $M = 2, 3$. By using Theorem 3.3 and Proposition 4.5 we see that each divisor of N less than or equal to 13. Thus there are only finite couples (N, M) such that $X_1(N)(k) \times_{X_0(1)(\mathbb{Q})} \pi^{-1}X_0^*(M)(\mathbb{Q})$ has a non-cuspidal non-CM point. For such (N, M), by computing defining equations, we check whether there is a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\mathbb{Q})} \pi^{-1}X_0^*(M)(\mathbb{Q})$ or not.

References

Fumio SAIRAIJI,
Hiroshima International University,
Hiro, Hiroshima 737-0112, Japan.
e-mail address: sairaiji@it.hirokoku-u.ac.jp

Takuya YAMAUCHI,
Hiroshima University,
Higashi-hiroshima, Hiroshima 739-8526, Japan.
e-mail address: yamauchi@math.sci.hiroshima-u.ac.jp