<table>
<thead>
<tr>
<th>Title</th>
<th>On rational torsion points of central \mathbb{Q}-curves (Algebraic Number Theory and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sairaiji, Fumio; Yamauchi, Takuya</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2006), 1521: 139-149</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58787</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On rational torsion points of central \mathbb{Q}-curves

Fumio Sairaiji (Hiroshima International University)
Takuya Yamauchi ¹ (Hiroshima University)

1 Introduction

Let E be an elliptic curve over a number field k of degree d. Let $E(k)$ be the group of k-rational points on E and let $E_{\text{tors}}(k)$ be its torsion subgroup. When k is the rational number field \mathbb{Q}, Mazur [12] shows that $E_{\text{tors}}(\mathbb{Q})$ is isomorphic to one of 15 abelian groups. Kunku-Momose [10] and Kamienny [9] generalize the result of Mazur to the case where k is a quadratic field.

Assume that the degree d is greater than one. Then Merel [15] shows that each prime divisor of the order $\#E_{\text{tors}}(k)$ is less than $d^{3d^{2}}$. Merel's bound is effective, but it is large.

In this paper we discuss about prime divisors of the order $\#E_{\text{tors}}(k)$ in case where we restrict E to a central \mathbb{Q}-curve over a polyquadratic field k. Our results assert that each prime divisor of $\#E_{\text{tors}}(k)$ is less than or equal to 13 or that it belongs to a finite set of prime numbers depending on k.

In Section 2, we review some known results on $E_{\text{tors}}(k)$. In Section 3, we give the definition of central \mathbb{Q}-curves and we introduce our results. In Sections 4-6, we give outline of proofs of our results.

2 Known Results

Let E be an elliptic curve over a number field k. Let $E(k)$ be the group of k-rational points on E.

Theorem 2.1 (Mordell-Weil Theorem). The group $E(k)$ is a finitely generated abelian group. Specially, $E_{\text{tors}}(k)$ is a finite abelian group.

When k is equal to either \mathbb{Q} or a quadratic field, the group structure of $E_{\text{tors}}(k)$ is completely determined.

Theorem 2.2 (Mazur [12]). Assume that k is equal to \mathbb{Q}. Then the group $E_{\text{tors}}(\mathbb{Q})$ is isomorphic to one of the following 15 abelian groups.

\[
\begin{array}{c}
\mathbb{Z}/N\mathbb{Z} \\
\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}
\end{array} \quad \begin{array}{c}
(1 \leq N \leq 10, \ N = 12) \\
(1 \leq N \leq 4)
\end{array}
\]

¹The author is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.
Specially, each prime divisor of \(\#E_{\text{tors}}(\mathbb{Q}) \) is less than or equal to 7. For each group \(G \) in Theorem 2.2, Kubert [11] gives a defining equation parameterizing elliptic curves \(E \) such that \(E_{\text{tors}}(\mathbb{Q}) \) contains \(G \). For example, if \(E_{\text{tors}}(\mathbb{Q}) \) contains \(\mathbb{Z}/6\mathbb{Z} \), \(E \) is isomorphic to
\[
y^2 + (1 - s)xy - (s^2 + s)y = x^3 - (s^2 + s)x^2
\]
for some \(s \) in \(\mathbb{Q} \) such that \(\Delta = s^6(s + 1)^3(9s + 1) \neq 0 \). Then the point \((0, 0)\) is of order 6.

The existance of an elliptic curve over \(\mathbb{Q} \) with a \(\mathbb{Q} \)-rational torsion of order \(N \) is equivalent to that of a non-cuspidal \(\mathbb{Q} \)-rational point of the modular curve \(X_1(N) \).

Theorem 2.3 (Kenku-Momose [10], Kamienny [9]). Let \(k \) be a quadratic field. Then the group \(E_{\text{tors}}(k) \) is isomorphic to one of the following 25 abelian groups.
\[
\begin{align*}
\mathbb{Z}/N\mathbb{Z} & \quad (1 \leq N \leq 14, \ N = 16, 18) \\
\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z} & \quad (1 \leq N \leq 6) \\
\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/3N\mathbb{Z} & \quad (N = 1, 2, \ k = \mathbb{Q}(\sqrt{-3})) \\
\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} & \quad (k = \mathbb{Q}(\sqrt{-1}))
\end{align*}
\]
Specially, each prime divisor of \(\#E_{\text{tors}}(k) \) is less than or equal to 13. For elliptic curves over number fields of degree greater than two, there exist some results on the group structure of \(E(k)_{\text{tors}} \) under some conditions (cf. e.g. [6], [21]).

Merel [15] obtains an effective upper bound for prime divisors of \(\#E_{\text{tors}}(k) \) depending only the degree \(d \) of \(k \) over \(\mathbb{Q} \).

Theorem 2.4 (Merel [15]). Let \(k \) be a number field of degree \(d > 1 \). Each prime divisor of \(\#E_{\text{tors}}(k) \) is less than \(d^{3d^2} \).

Theorem 2.4 implies the following corollary (cf. e.g. [2]), what is called, the universal boundness conjecture.

Corollary 2.5. Let \(d \) be a positive integer. Then there exists a constant \(C_d \) depending only on \(d \) such that \(\#E_{\text{tors}}(k) < C_d \) for any number field \(k \) of degree \(d \) and for any elliptic curve \(E \) over \(k \).

3 Our Results

The Merel’s bound \(d^{3d^2} \) is effective, but it is large. For example, when \(d = 2 \), we have \(d^{3d^2} = 2^{12} = 4096 \). We want to improve Merel’s bound in case where we restrict \(E \) to central \(\mathbb{Q} \)-curves.
Definition 3.1. We call a non-CM elliptic curve E over $\overline{\mathbb{Q}}$ a Q-curve if there exists an isogeny ϕ_{σ} from $^{\sigma} E$ to E for each σ in the absolute Galois group $G_{\mathbb{Q}}$ of \mathbb{Q}. Furthermore, we call a Q-curve E central if we can take an isogeny ϕ_{σ} with square-free degree for each σ in $G_{\mathbb{Q}}$.

Let $X_{0}^{*}(N)$ be the quotient curve of the modular curve $X_{0}(N)$ by the group of Atkin-Lehner involutions of level N. Let π be the natural projection from $X_{0}(N)$ to $X_{0}^{*}(N)$. The isomorphism classes of central Q-curves are obtained from $\pi^{-1}(P)$ where P is a non-cuspidal non-CM point of $X_{0}^{*}(N)(\mathbb{Q})$ and N runs over the square-free integers.

Theorem 3.2 (Elkies [3]). Each Q-curve is isogenous to a central Q-curve defined over a polyquadratic field.

Let E be a central Q-curve. As below in this paper we always assume that E is defined over a polyquadratic field k of degree 2^d and that $\phi_{\sigma} = \phi_{\tau}$ if and only if $\sigma_{|k} = \tau_{|k}$.

Since E is a central Q-curve, there exists an isogeny ϕ_{σ} from $^{\sigma} E$ to E with square-free degree d_{σ} for each σ in $G_{\mathbb{Q}}$. We put
\[c(\sigma, \tau) = \phi_{\sigma} \phi_{\tau} \phi_{\sigma \tau}^{-1} \text{ for each } \sigma, \tau \text{ in } G_{\mathbb{Q}}. \]

Then a mapping c is a two-cocycle of $G_{\mathbb{Q}}$ with values in \mathbb{Q}^*. By taking the degree of both sides, we have $c(\sigma, \tau)^2 = d_{\sigma} d_{\tau} d_{\sigma \tau}^{-1}$. Since it follows from $H^1(G_{\mathbb{Q}}, \overline{\mathbb{Q}}) = \{1\}$ that there exists a mapping β from $G_{\mathbb{Q}}$ to $\overline{\mathbb{Q}}$ such that
\[c(\sigma, \tau) = \beta(\sigma) \beta(\tau) \beta(\sigma \tau)^{-1} \text{ for each } \sigma, \tau \text{ in } G_{\mathbb{Q}}, \]
we see that
\[\epsilon(\sigma) := \frac{d_{\sigma}}{\beta(\sigma)^2} \]
is a character of $G_{\mathbb{Q}}$. We obtain:

Theorem 3.3. If a prime number N divides $\#E_{\text{tors}}(k)$, then N satisfies at least one of the following conditions.

(i) $N \leq 13$.

(ii) $N = 2^{m+2} + 1, 3 \cdot 2^{m+2} + 1$ for some $m \leq d$.

(iii) ϵ is real quadratic and N divides the generalized Bernoulli number $B_{2,\epsilon}$.
The condition (iii) depends on the definition field k of E. If the scalar restriction of E from k to \mathbb{Q} is of GL_2-type with real multiplications, we have $\varepsilon = 1$ and thus N is bounded by the constant depending only on the degree of k.

Furthermore, under the assumption that each d_σ divides $\# E_{\text{tors}}(k)$, we completely determine the square-free divisor of $E_{\text{tors}}(k)$.

Theorem 3.4. Assume that each d_σ divides $\# E_{\text{tors}}(k)$. Let N be the product of all prime divisors of $\# E_{\text{tors}}(k)$. Then $[k : \mathbb{Q}]$ and N satisfy the following.

<table>
<thead>
<tr>
<th>$[k : \mathbb{Q}]$</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 2, 3, 5, 6, 7, 10</td>
</tr>
<tr>
<td>2</td>
<td>2, 3, 6, 14</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>≥ 8</td>
<td>empty</td>
</tr>
</tbody>
</table>

We note that each case in the above list occurs. Specially, there is a family of infinitely many \mathbb{Q}-curves with rational torsion points corresponding to each element in the above list except for $N = 14$. In the case of $[k : \mathbb{Q}] = 1$ it is given by Kubert [11]. In the case of $[k : \mathbb{Q}] = 2$ and $N = 2, 3$ it is given by Hasegawa [5]. For example, when $[k : \mathbb{Q}] = 4$ and $N = 6$, E is isomorphic to

$$y^2 + (1 - s)xy - (s^2 + s)y = x^3 - (s^2 + s)x^2$$

$$s = \frac{1}{12}(\sqrt{a} + \sqrt{4 + a})(3\sqrt{a} + \sqrt{4 + 9a})$$

for a in \mathbb{Q} such that $\Delta = s^6(s + 1)^3(9s + 1) \neq 0$.

When $N = 14$, there is only one \mathbb{Q}-curve corresponding to the above list. More precisely, $k = \mathbb{Q}(\sqrt{-7})$ and E is defined by the global minimal model:

$$y^2 + (2 + \sqrt{-7})xy + (5 + \sqrt{-7})y = x^3 + (5 + \sqrt{-7})x^2.$$

Furthermore E is a $\overline{\mathbb{Q}}$-simple factor of $J_0^{\text{new}}(98)$ and there exists an isogeny of degree 2 between E and its non-trivial Galois conjugate curve.

Let π be the natural projection from $X_1(N)$ to $X_0(N)$ via $X_0(N)$. Each element in the list of Theorem 3.4 corresponds to the existence of a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^*(M)(Q)$, where M is the least common multiple of d_σ, which is a divisor of N by the assumption of Theorem 3.4.
4 Central \mathbb{Q}-curves over polyquadratic fields

Let notations and assumptions be the same as in the previous section. We denote the group of N-torsion points on E by $E[N]$. We take a $\mathbb{Z}/N\mathbb{Z}$-basis $\{Q_1, Q_2\}$ of $E[N]$ such that Q_1 is k-rational. Let G be the Galois group of k over \mathbb{Q}.

If Q_1 is in the kernel of ϕ_{σ} for some σ in $G_{\mathbb{Q}}$, we can see that the N-th root ζ_N of unity is in the definition field of ϕ_{σ}. Thus we have:

Proposition 4.1. If N divides d_σ for some σ in $G_{\mathbb{Q}}$, then N is either 2 or 3.

As below we assume that $N > 3$. Then Q_1 is not in the kernel of ϕ_{σ} for any σ in $G_{\mathbb{Q}}$. Using the fact that ϕ_{σ} induces the isomorphism from $^\sigma E[N]$ to $E[N]$, we have Propositions 4.2 and 4.3.

Proposition 4.2. ϕ_{σ} is defined over k for each σ in $G_{\mathbb{Q}}$. Specially, E is completely defined over k.

Proposition 4.3. The 2-cocycle c is symmetric. That is, $c(\sigma, \tau) = c(\tau, \sigma)$ for each σ, τ in $G_{\mathbb{Q}}$.

Since c is symmetric and G is commutative, we may consider that β is a mapping from G to \mathbb{Q}^* (cf. e.g. [7]). By (3) the character ϵ is either trivial or quadratic. Since we can see $\phi_{\sigma}^* \phi_{\sigma} = \epsilon(\sigma)d_\sigma$, we have:

Proposition 4.4. The character ϵ is even, that is, $\epsilon(\rho) = 1$, where ρ is the complex conjugation.

We denote by F the extension of \mathbb{Q} adjoining all values $\beta(\sigma)$. Since $\beta(\sigma) = \pm \sqrt{\epsilon(\sigma)d_\sigma}$, F is a polyquadratic field. We denote by A the scalar restriction of E from k to \mathbb{Q}. Since E is a central \mathbb{Q}-curve completely defined over k, A is an abelian variety of GL_2-type with $\text{End}_{\mathbb{Q}}^0 A = F$. By using the isomorphisms l-adic (λ-adic) Tate modules, $V_l(A) \cong \oplus_{\lambda|l} V_{\lambda}(A)$ and $V_l(A) \cong \oplus_{\tau \in G} V_{l}^*(\tau E)$, we have:

Proposition 4.5. Let k_ϵ be a field corresponding to the kernel of ϵ. If E is semistable, k is an unramified extension of k_ϵ.

By the definition of the scalar restriction, $A(\mathbb{Q})$ and $E(k)$ are bijective. Since ζ_N is not in k, the group of k-rational N-torsion points on E must be $\langle Q_1 \rangle$. Thus A has the unique \mathbb{Q}-rational N-torsion group $\langle R_1 \rangle$. There exists the unique prime λ of F dividing N such that R_1 is in $A[\lambda]$.

Proposition 4.6. $k(E[N]) = k(A[\lambda])$.
For τ in $G_{\mathbb{Q}}$ we have

$$\tau[R_1, R_2] = [R_1, R_2] \begin{bmatrix} 1 & \ast \\ 0 & \varepsilon(\tau)\chi(\tau) \end{bmatrix},$$

where χ is the cyclotomic character modulo N. Thus $k_e(A[\lambda])/k_e(\zeta_N)$ is an $\varepsilon\chi^{-1}$-extension (cf. [8], p.547). By modifying Herbrand's Theorem (cf. e.g. [20], p.101), we have:

Proposition 4.7. If $k(E[N])/k(\zeta_N)$ is unramified and N does not divide the generalized Bernoulli number $B_{2,e}$, then $k(E[N]) = k(\zeta_N)$.

5 Proof of Theorem 3.3

Throughout this section we always assume the following:

(i) $N > 13$

(ii) $N \neq 2^{m+2} + 1, 3 \cdot 2^{m+2} + 1$

(iii) $N \nmid B_{2,e}$

In this section we give a proof of Theorem 3.3 by modifying the result of Kamienny [8].

Let S be the spectrum of the ring of integers in k. Let \mathfrak{p} be a prime ideal of k above a prime integer p.

Proposition 5.1. E is semistable over S.

Proof. Let $k_{\mathfrak{p}}$ be the completion of k at \mathfrak{p} and let $\mathcal{O}_{\mathfrak{p}}$ be its ring of integers. Let $E/\mathcal{O}_{\mathfrak{p}}$ be the Néron model of $E/k_{\mathfrak{p}}$ over $\text{Spec} \, \mathcal{O}_{\mathfrak{p}}$. By the universal property of Néron models the morphism from $\mathbb{Z}/N\mathbb{Z}/k_{\mathfrak{p}}$ to $E/k_{\mathfrak{p}}$ extends to a morphism from $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_{\mathfrak{p}}$ to $E/\mathcal{O}_{\mathfrak{p}}$ which maps to the Zariski closure in $E/\mathcal{O}_{\mathfrak{p}}$ of $\mathbb{Z}/N\mathbb{Z}/k_{\mathfrak{p}} \subset E/k_{\mathfrak{p}}$. This group scheme extension $H/\mathcal{O}_{\mathfrak{p}}$ is a separated quasi-finite group scheme over $\mathcal{O}_{\mathfrak{p}}$ whose generic fibre is $\mathbb{Z}/N\mathbb{Z}$. Since it admits a map from $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_{\mathfrak{p}}$ which is an isomorphism on the generic fibre, it follows from that $H/\mathcal{O}_{\mathfrak{p}}$ is a finite flat group scheme of order N. Since k is polyquadratic and N is odd, the absolute ramification index $e_{\mathfrak{p}}$ over $\text{Spec} \, \mathbb{Z}$ is equal to 1 or 2. Since $e_{\mathfrak{p}}$ is less than $N - 1$, by the theorem of Raynaud [17, Cor. 3.3.6] we have $H/\mathcal{O}_{\mathfrak{p}} \cong \mathbb{Z}/N\mathbb{Z}/\mathcal{O}_{\mathfrak{p}}$. Therefore we shall identify $H/\mathcal{O}_{\mathfrak{p}}$ with $\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_{\mathfrak{p}}$.

Suppose that the component $(E/\mathfrak{p})^0$ is an additive group. Then the index of $(E/\mathfrak{p})^0$ in E/\mathfrak{p} is less than or equal to 4. It follows that $\mathbb{Z}/N\mathbb{Z}/\mathfrak{p} \subset (E/\mathfrak{p})^0$.

Thus, the residue characteristic \(p \) is equal to \(N \). By Serre-Tate [18] there exists a field extension \(k'_p/k_p \) whose relative ramification index is less than or equal to 6, and such that \(E_{/k'_p} \) possess a semi-stable Néron model \(\mathcal{E}/\mathcal{O}_p' \) where \(\mathcal{O}_p' \) is the ring of integers in \(k'_p \). Then we have a morphism \(\psi \) from \(E_{/\mathcal{O}_p'} \) to \(\mathcal{E}_{/\mathcal{O}_p'} \) which is an isomorphism on generic fibres, using the universal Néron property of \(\mathcal{E}_{/\mathcal{O}_p'} \). The mapping \(\psi \) is zero on the connected component of the special fibre of \(E_{/\mathcal{O}_p'} \) since there are no non-zero morphisms from an additive to a multiplicative type group over a field. Consequently, the mapping \(\psi \) restricted to the special fibre of \(\mathbb{Z}/N\mathbb{Z}/\mathcal{O}_p' \) is zero. Using Raynaud [17, Cor. 3.3.6], again, we see that this is impossible. Indeed, since \(k \) is polyquadratic and \(N \) is odd, the absolute ramification index of \(k'_p \) is less than or equal to 12, which leads to a contradiction to the assumption \(N - 1 > 12 \).

\[\square \]

Proposition 5.2. Assume that \(p \) is neither 2 nor 3. Then \(p \) a multiplicative prime of \(E \). Furthermore the reduction \(Q_1 \) does not specialize mod \(p \) to \((E/\mathfrak{p})^0 \).

Proof. If \(p \) is a good prime of \(E \), then \(E/\mathfrak{p} \) is an elliptic curve over \(\mathcal{O}/\mathfrak{p} \) containing a rational torsion point of order \(N \). By the Riemann hypothesis of elliptic curves over the finite field \(\mathcal{O}/\mathfrak{p} \), \(N \) must be less than or equal to \((1 + p^{f_p/2})^2 \), where \(f_p \) is the degree of residue field. Since \(k \) is polyquadratic, we have \(f_p = 1, 2 \). Thus we have \((1 + p^{f_p/2})^2 \geq 16 \). Since \(N \) is prime, \(N \geq 17 \) follows from the assumption \(N > 13 \). Hence this is impossible, and \(E \) has multiplicative reduction at \(p \).

Suppose that \(Q_1 \) specialize to \((E/\mathfrak{p})^0 \). Over a quadratic extension \(k \) of \(\mathcal{O}/\mathfrak{p} \) we have an isomorphism \(E_{/k} \cong \mathbb{G}_{m/k} \), so that \(N \) divides the cardinality of \(k^* \). Since it follows from \(f_p = 1, 2 \) that the cardinality of \(k^* \) is one of 3,8,15,80, this is impossible by the assumption \(N > 13 \).

\[\square \]

The pair \((E, (Q_1))\) defines a \(k \)-rational point on the modular curve \(X_0(N)_{/\mathbb{Q}} \). If \(p \neq N \), we denote by \(x/\mathfrak{p} \) the image of \(x \) on the reduced curve \(X_0(N)_{/(\mathcal{O}_p/\mathfrak{p})} \). When \(p \) is a potentially multiplicative prime of \(E \), we know that \(x/\mathfrak{p} = \infty/\mathfrak{p} \) if the point \(Q_1 \) does not specialize to the connected component \((E/\mathfrak{p})^0 \) of the identity (cf. [8], p.547).

We denote \(J_0(N)_{/\mathbb{Q}} \) the jacobian of \(X_0(N)_{/\mathbb{Q}} \). The abelian variety \(J_0(N) \) is semi-stable and has good reduction at all primes \(p \neq N \) ([11]). We denote by \(\tilde{J} \) the Eisenstein quotient of \(J_0(N)_{/\mathbb{Q}} \). Then Mazur [13] shows that \(\tilde{J}(\mathbb{Q}) \) is finite of order the numerator of \((N - 1)/12 \), which is generated by the image of the class \(0 - \infty \) by the projection from \(J_0(N) \) to \(\tilde{J} \).

Proposition 5.3. Assume that \(N \) is not of the form \(2^{m+2} + 1, 3 \cdot 2^{m+2} + 1 \). If \(p \) is any bad prime of \(E \), then \(Q_1 \) does not specialize to \((E/\mathfrak{p})^0 \).
Proof. Define a map g from $X_0(N)(k)$ to $J_0(N)(Q)$ by $g(x) = \sum_{\sigma \in G} \sigma \cdot x - d \cdot \infty$, where $d := [k : Q]$. Let f be the composition of g with the projection h from $J_0(N)$ to \tilde{J}. Then $f(x)$ is a torsion point, since $\tilde{J}(Q)$ is a finite group and $f(x)$ is Q-rational. By Proposition 5.2 we have $\sigma x / p = \infty / p$ for each σ and p dividing 2, so we have

$$f(x) / p = h(\sum_{\sigma \in G} \sigma x / p - d \cdot \infty / p) = 0,$$

so $f(x)$ has order a power of 2. However, $f(x)_p = 0$ for p dividing 3 by the same reasoning. Thus, $f(x)$ has order a power of 3, and so $f(x) = 0$.

If p is a bad prime of E which Q_1 does not specialize to $(E/p)_0$, then $x / p = 0 / p$. By Proposition 5.2 we may assume that the residue characteristic p is not 2, 3 or N. Since E is a Q-curve completely defined over k, we have $\sigma x / p = 0 / p$ for each σ. Thus,

$$f(x) / p = h(\sum_{\sigma \in G} \sigma x / p - d \cdot \infty / p) = h(d(0 - \infty))/p.$$

Since $h(0 - \infty)$ is Q-rational point, the order of $h(0 - \infty)$ divides d. Since the order of $h(0 - \infty)$ is equal to the numerator of $(N - 1)/12$, N is of the form $2^{m+2} + 1$, $3 \cdot 2^{m+2} + 1$, which is impossible by the assumption.

Proposition 5.4. $k(E[N])/k(\zeta_N)$ is everywhere unramified.

Proof. If E has good reduction at p and $p \neq N$, then $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above p (cf. Serre-Tate[18]).

If E has good reduction at p and $p = N$, then $E[N]$ is a finite flat group scheme over O_p. Then there is a short exact sequence of finite flat group schemes over O_p:

$$0 \rightarrow \mathbb{Z}/N\mathbb{Z} \rightarrow E[N] \rightarrow \mu_N \rightarrow 0.$$

However, $E[N]$ also fits into a short exact sequence

$$0 \rightarrow E[N]^0 \rightarrow E[N] \rightarrow E[N]^{\acute{e}t} \rightarrow 0,$$

where $E[N]^0$ is the largest connected subgroup of $E[N]$ and $E[N]^{\acute{e}t}$ is the largest étale quotient (cf. [14], p.134-138). Clearly we have $E[N]^0 = \mu_N$, and this gives us splitting of the above exact sequences. Since $[k(E[N]) : k(\zeta_N)]$ divides N, the action of the inertia subgroup for p in $G_{k(\zeta_N)}$ on $E[N]$ is trivial. Namely, $k(E[N])/k(\zeta_N)$ is unramified at the primes lying above p.

Assume that E has bad reduction at p. Since $J_0(N)$ is semistable, $E[N]/p$ is a quasi-finite flat group scheme over O_p (cf. [4]), and fits into a short exact sequence

$$0 \rightarrow \mathbb{Z}/N\mathbb{Z} \rightarrow E[N] \rightarrow \overline{\mu}_N \rightarrow 0,$$
where μ_N is a quasi-finite flat group with generic fibre isomorphic to μ_N. Since Q_1 does not specialize to $(E/p)^0$, we see that the kernel of multiplication by N on $(E/p)^0$ maps injectively to μ_N. Thus, μ_N is actually a finite flat group scheme. If $p \neq N$, then $E[N]$ is etale, and so $k(E[N])/k(\zeta_N)$ is unramified at the primes above p. If $p = N$, then $\mu_N = \mu_N$ by Raynaud [17, Cor. 3.3.6] and $e_N \leq 2 < N - 1$. We see that $E[N]/\mathfrak{p} = \mathbb{Z}/N \oplus \mu_N$, so $k(E[N])/k(\zeta_N)$ is unramified at the primes above p.

By Propositions 4.7 and 5.4, we see that $k(E[N]) = k(\zeta_N)$. Thus $\langle Q_2 \rangle$ is k-rational.

Proposition 5.5. The quotient curve $E/\langle Q_2 \rangle$ is again a central \mathbb{Q}-curve over k with N-rational torsion point. Furthermore the image of Q_1 is N-rational point of $E/\langle Q_2 \rangle$ and

$$
\begin{array}{ccc}
\sigma E & \xrightarrow{\phi_\sigma} & E \\
\downarrow & & \downarrow \\
\sigma \left(E/\langle Q_2 \rangle \right) & \xrightarrow{\phi_\sigma} & E/\langle Q_2 \rangle
\end{array}
$$

Proof. Since $\langle Q_2 \rangle$ is k-rational, the quotient curve $E/\langle Q_2 \rangle$ is a \mathbb{Q}-curve over k. We show that $\phi_\sigma(\sigma Q_2) \subset \langle Q_2 \rangle$. We may put $\phi_\sigma(\sigma Q_2) = aQ_1 + bQ_2$. Since Q_1 is k-rational, $\phi_\sigma(\tau \sigma Q_2) = aQ_1 + b^\tau Q_2$ for each $\tau \in G_k$. Since $\langle Q_2 \rangle$ is k-rational, $a \neq 0$ implies $\tau Q_2 = Q_2$ and thus $k(E[N]) = k$. Since k is polyquadratic and $N > 3$, this leads to contradiction.

Since $\phi_\sigma(\sigma Q_2) \subset \langle Q_2 \rangle$, we have the above diagram. Specially $E/\langle Q_2 \rangle$ is again central \mathbb{Q}-curve.

Proof of Theorem 3.3. By Proposition 5.5 we get a sequence central \mathbb{Q}-curves over k

$$E \rightarrow E^{(1)} \rightarrow E^{(2)} \rightarrow E^{(3)} \rightarrow \cdots$$

each obtained from the next by an N-isogeny, and such that the original group $\mathbb{Z}/N\mathbb{Z}$ maps isomorphically into every $E^{(j)}$.

It follows from Shafarevich theorem that among the set of $E^{(j)}$ there can be only a finite number of k-isomorphism class of elliptic curve represented. Consequently, for some indecies $j > j'$ we must have $E^{(j)} \equiv E^{(j')}$. But $E^{(j)}$ maps to $E^{(j')}$ by nonscalar isogeny. Therefore $E^{(j)}$ is a CM elliptic curve and so is E. This contradicts to the assumption that E is non-CM.

□
6 Proof of Theorem 3.4

We recall that each element in the list of Theorem 3.4 corresponds to existence of a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^*(M)(\mathbb{Q})$. By Proposition 4.1 we have $M = 2, 3$. By using Theorem 3.3 and Proposition 4.5 we see that each divisor of N less than or equal to 13. Thus there are only finite couples (N, M) such that $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^*(M)(\mathbb{Q})$ has a non-cuspidal non-CM point. For such (N, M), by computing defining equations, we check whether there is a non-cuspidal non-CM point of $X_1(N)(k) \times_{X_0(1)(\overline{\mathbb{Q}})} \pi^{-1}X_0^*(M)(\mathbb{Q})$ or not.

References

Fumio SAIRAIJI,
Hiroshima International University,
Hiro, Hiroshima 737-0112, Japan.
e-mail address: sairaiji@it.hirokoku-u.ac.jp

Takuya YAMAUCHI,
Hiroshima University,
Higashi-hiroshima, Hiroshima 739-8526, Japan.
e-mail address: yamauchi@math.sci.hiroshima-u.ac.jp