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The following is a survey on the main results that I discussed in my talk in the annual
number theory meeting at RIMS, Kyoto (2005). The proof of these results will be published
elsewhere ([9]).

We study the semi-stable reduction of Galois covers of degree $p$ above curves over a
complete discrete valuation ring of mixed characteristics $(0,p)$ .

Let $p>0$ be a prime integer. Let $R$ be a complete discrete valuation ring, $\mathrm{w}\mathrm{i}\dot{\mathrm{t}}\mathrm{h}$

fraction field $K$ of characteristic $0$ , and residue field $k$ of characteristic $p$ , which we assume
to be algebraically closed. Let $\mathcal{X}$ be a proper and smooth $R$-curve, with generic fibre
$\mathcal{X}_{K}:=\mathcal{X}\cross_{R}K$, and special fibre $\mathcal{X}_{k}:=\mathcal{X}\cross_{R}k$ . Let $f$ : $\mathcal{Y}arrow \mathcal{X}$ be a finite Galois cover
with Galois group $G$, and with $\mathcal{Y}$ normal. Let $y_{K}:=\mathcal{Y}\cross_{R}K$ be the generic fibre of $\mathcal{Y}$ ,
and let $y_{k}:=\mathcal{Y}\mathrm{x}_{R}k$ be its special fibre, which we assume to be reduced (this condition is
always satisfied after a finite extension of $R$). If the cardinality of $G$ is prime to $p$, and if the
cover $f_{K}$ : $y_{K}arrow \mathcal{X}_{K}$ between generic fibres is \’etale, then it follows from the purity theorem
that $\mathcal{Y}$ is smooth (cf. [10]). If the cardinality of $G$ is divisible by $p$ then $\mathcal{Y}$ is not smooth in
general (even if the cover $f_{K}$ between generic fibres is \’etale). However, it follows from the
theorem of semi-stable reduction of curves (cf. [2]) that $\mathcal{Y}$ admits potentially semi-stable
reduction, i.e. there exists (possibly after extending $R$) a proper and birational morphism
$\overline{\mathcal{Y}}arrow \mathcal{Y}$ , where $\tilde{\mathcal{Y}}$ is a semi-stable $R$-curve. Moreover, there exists such a semi-stable model
$\tilde{\mathcal{Y}}$ which is minimal. We are interested in the study of the geometry (of the special fibre)
of a minimal semi-stable model $\tilde{\mathcal{Y}}$ , under the assumption that $p$ divides the cardinality of
$G$ . The first result in this direction is the following, which is due to Raynaud (cf. [6]):

Theorem: (Raynaud) Assume that $G$ is a $p$-group, and that the cover $f$ is \’etale

above the generic fibre $\mathcal{X}_{K}$ of $\mathcal{X}$ . Then the configuration of the special fibre $\tilde{y}_{k}:=\tilde{\mathcal{Y}}\mathrm{x}_{R}k$,
of a minimal semi-stable model $\tilde{\mathcal{Y}}$ of $\mathcal{Y}$ , is tree-like.

Though this result is important, it is still rather “qualitative” and doesn’t provide
much information, say on the type of the “new components” that appear in $\tilde{y}_{k}$ . Also the
assumption that the cover $f$ is \’etale above the generic fibre $\mathcal{X}_{K}$ of $\mathcal{X}$ plays a crucial role
in the proof. In fact the above result is not true if this condition is not satisfied. Of course
one expects the geometry (of the special fibre) of a minimal semi-stable model $\tilde{\mathcal{Y}}$ of $\mathcal{Y}$ to
depend on the structure of the group $G$ . We are interested in the case where $G\simeq \mathbb{Z}/p\mathbb{Z}$,
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and with no restriction on the ramification in the morphism $f$ ,

Our approach to study this case is based on (known) results on the degeneration
of $\mu_{p}$-torsors from $0$ to positive characteristic (cf. e.g. [7]) (resp, the computation of
vanishing cycles in a Galois cover of degree $p$ between formal germs of $R$-curves, which
was established by the author in [8] $)$ . As a consequence of these results we can determine
the singular points of $y_{k}$ , and we can compute the arithmetic genus of these singularities.
More precisely, suppose that some branched points in the morphism $f_{K}$ : $y_{K}arrow \mathcal{X}_{K}$

specialize in the set $B_{k}\subset \mathcal{X}_{k}$ , and let $U_{k}’:=\mathcal{X}_{k}-B_{k}$ . Then $f$ induces (by restriction to
$U_{k}’)$ a finite cover $f_{k}’$ : $V_{k}’arrow U_{k}’$ , which has the structure of a torsor under a finite and
flat $k$-group scheme of rank $p$ . Suppose for example that this torsor is radicial (this is the
most difficult case to treat), and let $\omega$ be the associated differential form (cf. [7], 1). Let
$Z_{k}$ be the set of zeros of $\omega$ , and let Crit $(f):=Z_{k}\cup B_{k}$ . If $y$ is a singular point of $\mathcal{Y}_{k}$ ,
then $f(y)\in \mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f)$ . Further, let $m_{y}:=\mathrm{o}\mathrm{r}\mathrm{d}_{f(y)}(\omega)$ . Then the arithmetic genus of $y$ (cf.
[18], 3.1) equals $(r_{\mathrm{y}}+m_{y})(p-1)/2$ , where $r_{y}$ is the number of branched points of $f$ in the
generic fibre ,$\mathcal{X}_{K}$ which specialize in $f(y)$ ($.r_{y}=0$ , if $f(y)\in \mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f)-B_{k}$).

In order to understand the geometry of $\tilde{\mathcal{Y}}$ one needs to understand the fibre of a
singular point $y$ of $y_{k}$ in the minimal semi-stable model $\tilde{\mathcal{Y}}$ . This indeed is alocal problem.
We consider a finite Galois $p$-cover $f_{x}$ : $y_{y}arrow \mathcal{X}_{x}$ between formal germs of $R$-curves at a
closed point $y$ (resp. $x$ ), where $x$ is a smooth point (i.e. $\mathcal{X}_{x}\simeq \mathrm{S}\mathrm{p}\mathrm{f}R[[T]]$ ) and we study
the geometry of a minimal semi-stable model $\tilde{y}_{y}$ of $y_{y}$ . We exhibit what we call “simple
degeneration data of rank $p$”, comprising a tree $\Gamma$ of $k$-projective lines which is endowed
with some data of geometric and combinatorial nature, and which completely describe the
geometry of $\tilde{\mathcal{Y}}_{y}$ . These degeneration data are defined as follows:

Definition 1. $K$‘-simple degeneration data Deg(x) of type $(r, (n, m))$ , and rank $p$ ,
where $K’$ is a finite extension of $K$ , consist of the following:

Deg.1. $r\geq 0$ is an integer, $m$ is an integer prime to $p$ such that $r-m-1\geq 0$ , and
$0\leq n\leq v_{K’}(\lambda)$ is an integer. Further, $G\iota$. is a commutative finite and flat $k$-group scheme
of rank $p$ which is either \’etale if $n=v_{K}(\lambda)$ , radicial of type $\alpha_{p}$ if $0<n<v_{K}(\lambda)$ , or
radicial of type $\mu_{p}$ if $n=0$ .

Deg.2. $\Gamma:=X_{k}$ is an oriented tree of $k$-projective lines, with set of vertices Vert $(\Gamma)$ $:=$

$\{X_{1}\}_{1\in I}$ , which is endowed with an origin vertex $X_{i_{0}}$ , and a marked point $x:=x_{i_{0},j_{0}}$ on
$X_{i_{0}}$ . We denote by $\{z_{i,j}\}_{j\in D_{i}}$ the set of double points, or (non oriented) edges of $\Gamma$ , which
are supported by $X_{1}$ . Further, we assume that the orientation of $\Gamma$ is in the direction going
from $X_{1}\prime 0$ towards its ends.

Deg.3. For each vertex $X_{i}$ of $\Gamma$ there is a set (which may be empty) of smooth marked
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points $\{x_{i,j}\}_{j\in S_{i}}$ .

Deg.4. For each $i\in I$ , there is a torsor $f_{i}$ : $V_{i}arrow U_{i}:=X_{i}-\{\{x_{i,j}\}_{j\in s.\cup}\{z_{i,j}\}_{j\in D_{i}}\}$

under a finite commutative and flat $k$-group scheme $G_{i,k}$ of rank $p$ , which is either \’etale

or radicial of type $\alpha_{p}$ or $\mu_{p}$ , with $V_{i}$ smooth. Moreover, for $e$ach $i\in I$ there is an integer
$0\leq n_{i}\leq v_{K’}(\lambda)$ which equals $v_{K’}(\lambda)$ if and only if $f_{i}$ is \’etale, and equals $0$ if and only if
$G_{i,k}\simeq\mu_{\mathrm{p}}$ . If $S_{i}$ is non empty we assume that $G_{i,k}\simeq\mu_{p}$ .

Deg.5. For each $i\in I$ , and $j\in S_{i}$ , there is a pair of integers $(m_{i,j}, h_{i,j})$ , where $m_{i,j}$

(resp. $h_{i,j}$ ) is the conductor (resp. the residue) of the torsor $f_{i}$ at the point $x_{1\dot{o}}$ (cf. [7] I).

Further, we assume that $m_{i_{0},j_{0}}=-m$ , and $m_{1,j}=0$ otherwise, and $\sum_{\mathrm{j}\in s_{:}}h_{i_{\dot{\mathrm{d}}}}=0$ .

Deg.6. For each double point $z_{\mathfrak{i},j}=z_{i’,j’}\in X_{i}\cap X_{i’}$ , there is an integer $m_{i,j}$ (resp.
$m_{i’,j’})$ prime to $p$ , where $m_{i,j}$ (resp. $m_{i’,j’}$ ) is the conductor of the torsor $f_{i}$ (resp. $f_{i’}$ ) at
the point $z_{i,j}$ (resp. $z_{i’,j’}$ ) (cf. [9] 1.3 and 1.5). These data must satisfy $m_{i,j}+m_{i_{)}’j’}=0$ .

Deg.7. For each double point $z_{i,j}=z_{i’,j’}\in X_{i}\cap X_{i’}$ of $\Gamma$ , with origin vertex $x_{:}$ , there is

an integer $e_{i,j}=pt_{i,j}$ divisible by $p$ such that, with the same notation as above, we have
$n_{i}-n_{1’}=m_{i,j}t_{1,j}$ . Moreover, associated with $x$ is an integer $e=pt$ such that $n-n_{i_{0}}=mt$ .

Deg.8. Let $I_{\mathrm{e}\mathrm{t}}$ be the subset of $I$ consisting of those $i$ for which $G_{i,k}$ is \’etale. Then the

following equality should hold: $(r-m-1)(p-1)/2= \sum_{i\in I_{\mathrm{t}}}.(-2+\sum_{j\in s_{i}}(m_{i,j}+1)+$

$\sum_{j\in D_{t}}(m_{1j},+1))(p-1)/2$ . The integer $g:=(r+m-1)(p-1)/2$ is called the genus of

the degeneration data Deg(x).

Note that if $K”$ is a finite extension of $K’$ , then $K$‘-simple degeneration data $\mathrm{D}\mathrm{e}\mathrm{g}(x)$

can be naturally considered as $K”$-degeneration data, by multiplying all integers $n,$ $n_{i}$ ,

and $e_{1,j}$ , by the ramification index of $K”$ over $K$‘.

Let $\mathrm{D}\mathrm{e}\mathrm{g}_{\mathrm{p}}$ be the set of “isomorphism classes” of such data. Then we construct a
canonical specialization map Sp : $H_{\mathrm{e}\mathrm{t}}^{1}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}L,\mathbb{Z}/p\mathbb{Z})arrow \mathrm{D}\mathrm{e}\mathrm{g}_{\mathrm{p}}$, where $L$ is the function
field of the geometric fibre $\overline{\mathcal{X}}_{x}:=\mathcal{X}_{x}\cross_{R}\overline{R}$ of $\mathcal{X}_{x}$ , and $\overline{R}$ is the integral closure of $R$ in

an algebraic closure of $K$ . This map is constructed in such a way that given a Galois
cover of degree $pf_{x}$ : $y_{\mathrm{y}}arrow \mathcal{X}_{x}$ between formal germs of $R$-curves, as above, the image of
(the isomorphism class of) this cover via Sp describes completely the geometry of semi-
stable reduction of $y_{y}$ . Our first main result is the following realization result for simple

degeneration data.

Theorem 1. The specialization map Sp: $H_{\mathrm{e}\mathrm{t}}^{1}$ (Spec $L,$ $\mathbb{Z}/p\mathbb{Z}$) $arrow \mathrm{D}\mathrm{e}\mathrm{g}_{\mathrm{p}}$ is $su\dot{\eta}ective$

In other words we are able to reconstruct Galois covers of degree $\mathrm{p}$ above open p-adic

discs, st\"arting from (the) degeneration data which describe the semi-stable reduction of

such a cover. The proof of this result relies on the technique of formal patching initiated
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by Harbater and Raynaud (cf. [8], 1). The above theorem was proved in [3] under the
assumption that $\mathcal{Y}_{y}$ is smooth, and where $\tilde{\mathcal{Y}}_{y}$ is the minimal semi-stable model in which
the ramified points (on the generic fibre) specialize in smooth distinct points.

Let’s return to the above global situation of a Galois p–cover $f$ : $\mathcal{Y}arrow \mathcal{X}$ . The above
local results allow us to associate with each critical point $x_{i}=f(y_{i})\in \mathrm{C}\mathrm{r}\mathrm{i}\mathrm{t}(f)$ , simple
degeneration data $\mathrm{D}\mathrm{e}\mathrm{g}(x_{i})$ of rank $p$ which describe the preimage of the singular point $y_{i}$

in $\tilde{\mathcal{Y}}_{k}$ . These simple degeneration data, plus the data given by the torsor $f_{k}’$ : $V_{k}’arrow U_{k}’$ , lead
to the definition of “smooth degeneration data” $\mathrm{D}\mathrm{e}\mathrm{g}(\mathcal{X}_{k})$ of rank $p$ , which are associated
with the special fibre $\mathcal{X}_{k}$ of $\mathcal{X}$ , and which describe the geometry of the semi-stable model
$\tilde{\mathcal{Y}}$ of $\mathcal{Y}$ . These are defined as follows:

Definition 2. Smooth $K’$-degeneration data $\mathrm{D}e\mathrm{g}(\mathrm{X})$ , of rank $p$ , consist of the fol-
lowing data:

Deg.1. $K’$ is a finite extension of K. $X$ is a proper and smooth $k$-curve, endowed with
a finite set $B_{k}$ of closed (mutually distinct) marked points. Let $U:=X-B_{k}$ .
Deg.2. $\overline{f}:Varrow U$ is a torsor under a finite and flat $k$-group scheme $G_{k}$ of rank $p$ , and
$0\leq n\leq v_{K’}(\lambda)$ is an integer which equals $0$ (resp. equals $v_{K’}(\lambda)$ ) if and only if $G_{k}$ is of
multiplicative type (resp. if and only if $G_{k}$ is \’etale).

Deg.3. Let Crit $(\overline{f})=\{x_{i}\}_{i\in I}$ be the set $B_{k}$ if $\overline{f}$ is \’etalc (resp. the set Crit $(\overline{f})=B_{k}\mathrm{U}Z_{k}$

if $\overline{f}$ is radicial, where $Z_{k}$ is the set of zeros of the corresponding differential form). For
each $i\in I$ , let $m_{1}$ be the conductor of the above torsor $\overline{f}$ at the point $x_{i}$ (cf. [7], I). We
assume that we are given $K’$-simple degeneration data $\mathrm{D}\mathrm{e}\mathrm{g}(x_{i})$ of type $(r_{i}, (n, m_{i}))$ .

Let $\mathrm{D}\mathrm{E}\mathrm{G}_{\mathrm{p}}(\mathcal{X}_{\mathrm{k}})$ be the set of isomorphism classes of smooth degeneration data of rank
$p$ associated with $\mathcal{X}_{k}$ . We construct a canonical “specialization” map
$\mathrm{S}\mathrm{p}:H_{\mathrm{e}\mathrm{t}}^{1}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}L, \mathbb{Z}/p\mathbb{Z})arrow \mathrm{D}\mathrm{E}\mathrm{G}_{\mathrm{p}}(\mathcal{X}_{\mathrm{k}})$, where $L$ is the function field of the geometric fibre
$\overline{\mathcal{X}}:=\mathcal{X}\mathrm{x}_{R}\overline{R}$ of , V, and $\overline{R}$ is the integral closure of $R$ in an algebraic closure of $K$ . This
map is constructed in such a way that given a Galois cover of degree $pf$ : $\mathcal{Y}arrow \mathcal{X}$ between
proper $R$-curves, as above, the image of (the class of) this cover via Sp describes completely
the geometry of semi-stable $\mathrm{r}e$duction of $\mathcal{Y}_{y}$ .

Our second main result is the realization of smooth degeneration data associated with
$\mathcal{X}_{k}$ , if necessary after modifying the $R$-curve $\mathcal{X}$ into another $R$-curve $\mathcal{X}’$ with special fibre
X$\prime k$ isomorphic to $\mathcal{X}_{k}$ . More precisely, we have the following.

Theorem 2. Let $\mathrm{D}\mathrm{e}\mathrm{g}(\mathcal{X}_{k})\in \mathrm{D}\mathrm{E}\mathrm{G}_{\mathrm{p}}(\mathcal{X}_{\mathrm{k}})$ be smooth degeneration data of rank $p$ , as-
sociated with $\mathcal{X}_{k}$ . Then there exists a smooth and proper $R$-curve $\mathcal{X}$ ‘, with special fi-
$b\mathrm{r}eisomo\eta hic$ to $\mathcal{X}_{k}$ , such that $\mathrm{D}\mathrm{e}\mathrm{g}(\mathcal{X}_{k})$ is in the image of the specialization map Sp :
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$H_{\mathrm{e}\mathrm{t}}^{1}(\mathrm{S}\mathrm{p}\mathrm{e}\mathrm{c}L, \mathbb{Z}/p\mathbb{Z})arrow \mathrm{D}\mathrm{E}\mathrm{G}_{\mathrm{p}}(\mathcal{X}_{\mathrm{k}})_{f}$ where $L$ is the function field of the geometric fibre
$\mathcal{X}’\cross_{R}\overline{R}$ of X‘, and $\overline{R}$ is the integral closure of $R$ in an algebraic closure of $K$ .

As another application of our $\mathrm{t}e$chniques, we prove the following result of lifting of
torsors under finite and flat group schemes of rank $p$ (this result is also proved in [1] using
different methods).

Theorem 3. Let $X$ be a smooth and proper $k- cun$)$e$, and let $f$ : $Yarrow X$ be a torsor
under a finite and flat $k$ -group scheme $G_{k}$ of rank $p$ . Then there exists a smooth and proper
$R$-curve $\mathcal{X},$ vrith special fibre isomorphic to $X$ , and a torsor $\tilde{f}:\mathcal{Y}arrow \mathcal{X}$ under an R-group
scheme $G_{R}$ , which is commutative finite and flat of rank $p$ , such that the torsor induced
on the level of spec$ial$ fibres $\tilde{f}_{k}$. : $y_{k}arrow \mathcal{X}_{k}$ is isomorphic to the torsor $f$ . In other words
the torsor $\tilde{f}$ lifts $f$ .

In our study we do not adress questions of “effectiveness”. Namely is it possible for
a given Galois p–cover $f$ : $\mathcal{Y}arrow \mathcal{X}$ as above (say given by explicit equations), to determine
explicitly the smooth degeneration data which describes the geometry of a semi-stable
model of $\mathcal{Y}$? This question is studied in [4] and [5], for the case where $\mathcal{X}$ is the R-
projective line, and under some (restrictive) conditions on the branch locus. However, it
is not clear whether the methods used in [4] and [5] can be used to treat this question in
general.

It is important to be able to extend the results of this paper to the more general case
where the Galois group $G\simeq \mathbb{Z}/p^{n}\mathbb{Z}$ is cyclic of order $p^{n}$ . However, what is $\mathrm{r}e$ally missing
is to describe the way $\mu_{\mathrm{p}^{n}}$ -torsors degenerate from characteristic $0$ to characteristic $p$ .
Examples in the case $n=2$ already illustrate the complexity of the situation, by comparison
with the case $n=1$
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