<table>
<thead>
<tr>
<th>Title</th>
<th>Commutation relation of Hecke operators for Arakawa lifting (Automorphic representations, L-functions, and periods)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Murase, Atsushi; Narita, Hiro-aki</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2006, 1523: 148-157</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2006-10</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58821</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Commutation relation of Hecke operators for Arakawa lifting

Atsushi Murase and Hiro-aki Narita

Abstract

The aim of this note is to make an announcement of our recent results [M-N] on Arakawa lifting, i.e. a theta lifting from elliptic cusp forms to automorphic forms on $Sp(1, q)$ (cf. [Ar-1], [N-1]). More precisely, restricting ourselves to the case of $q = 1$, we reformulate Arakawa's lifting as a theta lifting from automorphic forms (f, f') on $GL_2 \times B^\times$ to forms $\mathcal{L}(f, f')$ on $GSp(1, 1)$, where B^\times denotes the multiplicative group of a definite quaternion algebra over \mathbb{Q}. We show that this modified lifting satisfies a good commutation relation of Hecke operators. As an application we give all non-Archimedean local factors of spinor L-functions attached to the lifting in terms of Hecke eigenvalues for (f, f').

1

1.1 Notation

For an algebraic group G over \mathbb{Q}, G_v stands for the group of \mathbb{Q}_v-points of G, where \mathbb{Q}_v denotes the p-adic field (resp. the field of real numbers) when $v = p$ is a finite prime (resp. $v = \infty$). By $G_{\mathbb{A}}$ (resp. $G_{\mathbb{A}, f}$), we denote the adelization of G (resp. the group of finite adeles in $G_{\mathbb{A}}$). Let ψ be the additive character of $\mathbb{Q}_{\mathbb{A}}/\mathbb{Q}$ such that $\psi(x_{\infty}) = e(x_{\infty})$ for $x_{\infty} \in \mathbb{R}$, where we put $e(z) = \exp(2\pi iz)$ for $z \in \mathbb{C}$. We denote by ψ_v the restriction of ψ to \mathbb{Q}_v for a prime v of \mathbb{Q}.

1.2

Let B be a definite quaternion algebra over \mathbb{Q}. In what follows, we fix an identification between $B_{\infty} := B \otimes_{\mathbb{Q}} \mathbb{R}$ and the Hamilton quaternion algebra \mathbb{H}, and an embedding $\mathbb{H} \hookrightarrow M_2(\mathbb{C})$. Let $B \ni b \mapsto \overline{b} \in B$ be the main involution of B, and put $\text{tr}(b) := b + \overline{b}$ and $n(b) := bb$ for $b \in B$. Let $B^\times := B \setminus \{0\}$ be the multiplicative group of B. The center $Z(B^\times)$ of B^\times is $\mathbb{Q}^\times \cdot 1$. Let d_B be the discriminant of B. By definition, d_B is the product of finite primes p such that $B_p := B \otimes_{\mathbb{Q}} \mathbb{Q}_p$ is a division algebra.
We let $G = GSp(1, 1)$ be an algebraic group over \mathbb{Q} defined by
\[G_{\mathbb{Q}} = \{ g \in M_2(B) \mid {}^t \overline{g} Q g = \nu(g) Q, \nu(g) \in \mathbb{Q}^* \}, \]
where $Q = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Denote by Z_G the center of G.

The Lie group $G_{\infty}^1 := \{ g \in G_{\infty} \mid \nu(g) = 1 \}$ acts on the hyperbolic 4-space $X := \{ z \in \mathbb{H} \mid \text{tr}(z) > 0 \}$ by linear fractional transformations $g \cdot z := (az + b)(cz + d)^{-1}$, $(g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G_{\infty}^1, z \in X)$.

Let $\mu : G_{\infty}^1 \times X \to \mathbb{H}^\times$ be the automorphy factor given by $\mu((a b \begin{pmatrix} c \\ d \end{pmatrix}), z) := cz + d$. The stabilizer subgroup K_{∞} of $z_0 := 1 \in X$ in G_{∞}^1 is a maximal compact subgroup of G_{∞}^1, which is isomorphic to $Sp^{*}(1) \times Sp^{*}(1)$, where $Sp^{*}(1) := \{ z \in \mathbb{H} \mid n(z) = 1 \}$.

Let κ be a positive integer. Denote by $(\sigma_\kappa, V_\kappa)$ the representation of \mathbb{H} given as $\mathbb{H}^\epsilon \to M_2(\mathbb{C}) \to \text{End}(V_\kappa)$, where the second arrow indicates the κ-th symmetric power representation of $M_2(\mathbb{C})$.

Then $\tau_{\kappa}(k_{\infty}) := \sigma_\kappa(\mu(k_{\infty}, z_0))$, $(k_{\infty} \in K_{\infty})$ gives rise to an irreducible representation of K_{∞} of dimension $\kappa + 1$.

Define $\omega_\kappa : G_{\infty}^1 \to \text{End}(V_\kappa)$ by
\[\omega_\kappa(g) := \sigma_\kappa(D(g))^{-1} n(D(g))^{-1}, \quad (g \in G_{\infty}^1), \]
where $D(g) := \frac{1}{2} (g \cdot z_0 + 1) \mu(g, z_0)$. It is known that ω_κ is a matrix coefficient of the discrete series representation with minimal K_{∞}-type $(\tau_{\kappa}, V_\kappa)$ (cf. [Ar-2, §2.6]). This discrete series is a quaternionic discrete series in the sense of B. Gross and N. Wallach [G-W]. We note that ω_κ is integrable if $\kappa > 4$.

Throughout the paper, we fix a maximal order \mathcal{O} of B. We also fix a two-sided ideal \frak{A} of \mathcal{O} satisfying the following conditions:

(i) If $p \not\parallel d_B$, then $\frak{A}_p = \mathcal{O}_p$.

(ii) If $p|d_B$, then $\frak{A}_p = \mathfrak{P}_p^{e_p}$ with $e_p \in \{0, 1\}$, where \mathfrak{P}_p is the maximal ideal of \mathcal{O}_p.

We set
\[D = \prod_{p|d_B, e_p=0} p. \]

Note that $D = 1$ if and only if $e_p = 1$ for any $p|d_B$. Let $L := (\mathcal{O} \oplus \mathfrak{A}^{-1})$, which is a maximal lattice of $B^{\oplus 2}$. For a finite prime p, $K_p = \{ k \in G_p \mid kL_p = L_p \}$ is a maximal compact subgroup of G_p, where $L_p := L \otimes \mathbb{Z}_p$. We set $K_f := \prod_{p<\infty} K_p$.

Definition 1.1. For an even integer $\kappa > 4$, let S_κ be the space of smooth functions $F : \mathbb{G} \to V_\kappa$ satisfying the following conditions:

1. $F(z \gamma g k_\infty) = \tau_\kappa(k_\infty)^{-1} F(g)$ \(\forall (z, \gamma, g, k_f, k_\infty) \in \mathbb{Z}_{\mathbb{G,Q}} \times \mathbb{G}_\mathbb{Q} \times \mathbb{G}_\mathbb{A} \times K_f \times K_\infty\),
2. F is bounded,
3. $c_\kappa \int_{H_{\infty}} \omega_\kappa(h_{\infty}^{-1} g_{\infty}) F(g_{f} h_{\infty}) dh_{\infty} = F(g_{f} g_{\infty})$ for any fixed $(g_f, g_\infty) \in \mathbb{G}_{\mathbb{Q},f} \times \mathbb{G}_{\mathbb{Q}}$,

where $c_\kappa := 2^{-4 \pi^{-2}} \kappa(\kappa-1)$.

Here we remark that this automorphic form has been verified to be cuspidal (cf. [Arakawa, Proposition 3.1]) and to generate a quaternionic discrete series at the infinite place (cf. [Narasimhan, Theorem 8.7]).

Next let H and H' be algebraic groups over \mathbb{Q} defined by $H_\mathbb{Q} = GL_2(\mathbb{Q})$ and $H'_\mathbb{Q} = B^x$ respectively, and denote by Z_H and $Z_{H'}$ the center of H and H' respectively. We define an action of $SL_2(\mathbb{R})$ on the complex upper half plane $\mathfrak{h} := \{\tau \in \mathbb{C} | \text{Im}(\tau) > 0\}$ as usual. Let $U_\infty := \{h \in SL_2(\mathbb{R}) | h \cdot i = i\} = SO(2)$ and $U'_\infty := \{h' \in \mathbb{H} | n(h') = 1\} = Sp^*(1)$. Moreover, we put $U_f = \prod_{p<\infty} U_p$ and $U'_f = \prod_{p<\infty} U'_p$, where $U_p := \{u = (a_{cd}) \in GL_2(\mathbb{Z}_p) \}$.\[c \in D\mathbb{Z}_p\}$ and $U'_p := O_p^x$.

Definition 1.2. (1) Let $S_\kappa(D)$ be the space of smooth functions f on $H_\mathbb{A}$ satisfying the following conditions:

1. $f(z \gamma h u_f u_\infty) = j(u_\infty, i)^{-\kappa} f(h)$ \(\forall (z, \gamma, h, u_f, u_\infty) \in \mathbb{Z}_{H,\mathbb{Q}} \times H_\mathbb{Q} \times H_\mathbb{A} \times U_f \times U_\infty\),
2. For any fixed $h_f \in H_{\mathbb{Q},f}$, $h \in H_\mathbb{Q}$, $\delta \cdot h_\infty \cdot i \mapsto j(h_\infty, i)^{\kappa} f(h_f h_\infty)$ is holomorphic for $h_\infty \in \mathbb{H}$,
3. f is bounded,

where $j(\begin{pmatrix} a & b \\ c & d \end{pmatrix}, \tau) := ct + d$ denotes the standard \mathbb{C}-valued automorphy factor of $SL_2(\mathbb{R}) \times \mathfrak{h}$.

(2) Furthermore, A_κ stands for the space of smooth V_κ-valued functions f' on $H'_\mathbb{A}$ such that $f'(z' \gamma' h' u'_f u'_\infty) = \sigma_\kappa(u'_\infty)^{-1} f(h')$ \(\forall (z', \gamma', h', u'_f, u'_\infty) \in \mathbb{Z}_{H',\mathbb{Q}} \times H'_\mathbb{Q} \times H'_\mathbb{A} \times U'_f \times U'_\infty\).

2 Arakawa lift

2.1 Metaplectic representation

We fix a prime v of \mathbb{Q}. When $v = p$ is a finite prime (resp. $v = \infty$), $| \cdot |_v$ denotes the p-adic valuation (resp. the usual absolute value for \mathbb{R}). For $X = \begin{pmatrix} x \\ y \end{pmatrix} \in B^{\mathbb{Q}}_v$, we put $X^*(\bar{x}, \bar{y})$. For a finite prime p, let \mathbb{V}_p be the space of functions on $B^{\mathbb{Q}}_p \times Q^*_p$ generated by $\varphi_1(x)\varphi_2(t)$, \[\varphi_2(t) = \prod_{v \neq \infty} \varphi_2(t_v)\]
where φ_1 (resp. φ_2) is a locally constant and compactly supported function on $B_p^{\oplus 2}$ (resp. \mathbb{Q}_p^\times). We also let V_∞ be the space of smooth functions φ on $B_\infty^{\oplus 2} \times \mathbb{Q}_\infty^\times = \mathbb{H}_\infty^{\oplus 2} \times \mathbb{R}^\times$ such that, for any fixed $t \in \mathbb{R}^\times$, $X \mapsto \varphi(X, t)$ is rapidly decreasing on $\mathbb{H}_\infty^{\oplus 2}$.

Lemma 2.1. There exists a smooth representation $r = r_v$ of $G_v \times H_v \times H_v'$ on V_v given as follows:

For $\varphi \in V_v$, $X \in B_v^{\oplus 2}$ and $t \in \mathbb{Q}_v^\times$,

\[
\begin{align*}
 r(1, (\frac{b}{1}), 1)\varphi(X, t) &= \psi_v(\frac{bt}{2} \text{tr}(X^*QX))\varphi(X, t), \\
 r(1, (\frac{a}{a'}), 1)\varphi(X, t) &= |a|^{\frac{7}{v^2}} |a'|^{-\frac{1}{2}} \varphi(aX, (aa')^{-1}t), \\
 r(1, (1), 1)\varphi(X, t) &= \int_{B_v^{\oplus 2}} \psi_v(t \text{tr}((Y^*QX)))\varphi(Y, t)d_QY, \\
 r(1, 1, z)\varphi(X, t) &= |n(z)|^\frac{\theta}{v^2} \varphi(Xz, n(z)^{-1}t).
\end{align*}
\]

Here d_QY is the Haar measure on $B_v^{\oplus 2}$ self-dual with respect to the pairing

$B_v^{\oplus 2} \times B_v^{\oplus 2} \ni (Y, Y') \mapsto \psi_v(\text{tr}(Y^*QY'))$.

2.2

When $v = p < \infty$, we put

$\varphi_{0,p}(X, t) := \text{char}_{L_p}(X) \text{char}_{\mathbb{Z}_p^\times}(t)$,

where char_{L_p} (resp. $\text{char}_{\mathbb{Z}_p^\times}$) is the characteristic function of $L_p = t(O_p \oplus \mathfrak{U}_p^{-1})$ (resp. \mathbb{Z}_p^\times). When $v = \infty$, we put

$\varphi_{0,\infty}(X, t) := \begin{cases}
 t^{\frac{3+\kappa}{2}} \sigma_\kappa((1, 1)X)e(\frac{it}{2} \text{tr}(X^*X)) & (t > 0) \\
 0 & (t < 0)
\end{cases}$.

Let V_Λ be the restricted tensor product of V_v with respect to $\{\varphi_{0,p}\}_{p < \infty}$. By r_Λ we denote a smooth representation of $G_\Lambda \times H_\Lambda \times H_\Lambda'$ on V_Λ given as

$r_\Lambda(g, h, h')\varphi := \otimes_{v} r_v(g_v, h_v, h'_v)\varphi_v$

for $\varphi = \otimes \varphi_v \in V_\Lambda$ and $(g = (g_v), h = (h_v), h' = (h'_v)) \in G_\Lambda \times H_{\Lambda} \times H_{\Lambda}'$.

We define a function $\varphi_0^\kappa \in V_\Lambda$ by

$\varphi_0^\kappa(X, t) := \varphi_{0,\infty}(X_\infty, t_\infty) \prod_{p < \infty} \varphi_{0,p}(X_p, t_p)$.
for $X = (X_v) \in B_{\mathbb{A}}^\oplus 2$ and $t = (t_v) \in \mathbb{Q}_\mathbb{A}^x$, and set
\[
\theta^\kappa(g, h, h') := \sum_{(X,t) \in B_{\mathbb{Q}^\times}^2} r_{\mathbb{A}}(g, h, h') \varphi_0^\kappa(X, t), \quad ((g, h, h') \in G_{\mathbb{A}} \times H_{\mathbb{A}} \times H'_{\mathbb{A}}). \tag{2.6}
\]
This series is uniformly convergent on any compact subset of $G_{\mathbb{A}} \times H_{\mathbb{A}} \times H'_{\mathbb{A}}$, and satisfies
\[
\theta^\kappa(\gamma g k_f, \gamma_1 h u_f u_\infty, \gamma_2 h' u'_f u'_\infty) = \tau_\kappa(k_\infty)^{-1} j(u_\infty, i)^{-\kappa} \theta(g, h, h') \sigma_\kappa(u'_\infty)
\]
for $(\gamma, g, k_f, k_\infty) \in G_{\mathbb{Q}} \times G_{\mathbb{A}} \times K_f \times K_\infty$, $(\gamma_1, h, u_f, u_\infty) \in H_{\mathbb{Q}} \times H_{\mathbb{A}} \times U_f \times U_\infty$ and $(\gamma_2, h', u'_f, u'_\infty) \in H'_{\mathbb{Q}} \times H'_{\mathbb{A}} \times U'_f \times U'_\infty$. It is also verify that θ^κ is $Z_{G,\mathbb{A}} \times Z_{H,\mathbb{A}} \times Z_{H',\mathbb{A}^{-}}$-invariant.

For $f \in S_\kappa(D)$ and $f' \in A_\kappa$, we set
\[
\mathcal{L}(f, f')(g) := \int_{Z_{H,\mathbb{A}}H_{\mathbb{Q}} \backslash H_{\mathbb{A}}} dh \int_{Z_{H',\mathbb{A}}H'_{\mathbb{Q}} \backslash H'_{\mathbb{A}}} dh' \theta^\kappa(g, h, h') \overline{f(h)} f'(h') \quad (g \in G_{\mathbb{A}}). \tag{2.7}
\]

Theorem 2.2 (Arakawa, Narita). Suppose $\kappa > 6$.

(i) The integral (2.7) is absolutely convergent.

(ii) $\mathcal{L}(f, f')(g) \in S_{\kappa}$.

Proof. Since $G_{\mathbb{A}} = Z_{G,\mathbb{A}} G_{\mathbb{Q}} G_{\infty}^1 K_f$ (cf. [Shim-2, Theorem 6.14]), it is sufficient to consider the restriction of $\mathcal{L}(f, f')$ to G_{∞}^1. By a standard argument, we see that $\mathcal{L}(f, f')_{| G_{\infty}^1}$ is a finite linear combination of original Arakawa lift (cf. [Ar-1], [N-1, §4] and [N-3, Theorem 4.1]), from which the theorem follows.

Remark 2.3. At the Archimedean place our lifting reads a correspondence between the quaternionic discrete series of G_{∞}^1 with minimal K_∞-type τ_κ and the discrete series representation of $O^*(4) \simeq SL_2(\mathbb{R}) \times SU(2)$ given by the direct product of the holomorphic discrete series of $SL_2(\mathbb{R})$ with Blattner parameter κ and the representation σ_κ of $Sp^*(1) \simeq SU(2)$. This is compatible with the result [J] of J. S. Li on theta correspondences for unitary representations with non-zero cohomology (cf. [J, §6, (I_1)]).

For the case of $GSp(1, q)$ we would be able to give an adelic reformulation of the lifting similarly. In view of [N-3, Theorem 4.1] and [J, §6, (I_1)], the weight of elliptic cusp forms or the Blatter parameter of the holomorphic discrete series of $SL_2(\mathbb{R})$ should be $\kappa - 2q + 2$ for this general case.

3 Main results

3.1

To state our results, we need to review several facts on Hecke operators.
3.2

First we consider the case where $p \nmid d_B$. We fix an isomorphism of B_p onto $M_2(\mathbb{Q}_p)$ such that \mathcal{O}_p maps onto $M_2(\mathbb{Z}_p)$ and that the main involution of B_p corresponds to an involution of $M_2(\mathbb{Q}_p)$ given by

$$M_2(\mathbb{Q}_p) \ni X \mapsto w^{-1}Xw, \quad (w = (\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix})).$$

The reduced trace tr corresponds to the trace Tr of $M_2(\mathbb{Q}_p)$. We henceforth identify B_p with $M_2(\mathbb{Q}_p)$ using the above isomorphism. Then G_p, K_p, H_p' and U_p' are identified with $GSp(J, \mathbb{Q}_p), GSp(J, \mathbb{Z}_p), GL_2(\mathbb{Q}_p)$ and $GL_2(\mathbb{Z}_p)$ respectively, where $GSp(J)$ is the group of similitudes of $J = (\begin{smallmatrix} 0 & \nu \\ \nu & 0 \end{smallmatrix})$. Note that we can identify U_p with U_p' by the isomorphism $B_p \simeq M_2(\mathbb{Q}_p)$ fixed above.

Define Hecke operators T_p^i ($i = 0, 1, 2$) on S_κ by

$$T_p^i F(g) = \int_{G_p} F(gx) \Phi_p^i(x) dx,$$

where Φ_p^0, Φ_p^1 and Φ_p^2 are the characteristic function of $K_p \cdot \text{diag}(p, p, p) K_p$, $K_p \cdot \text{diag}(p, p, 1, 1) K_p$ and $K_p \cdot \text{diag}(\Pi, \Pi) K_p$ respectively. Note that $(T_p^0)^2 F = F$ for any $F \in S_\kappa$.

We also define Hecke operators T_p and T_p' on $S_\kappa(D)$ and A_κ by

$$T_p f(h) = \int_{H_p} f(hx) \phi_p(x) dx,$$

$$T_p' f'(h') = \int_{H_p'} f'(h'x') \phi'_p(x') dx',$$

where $\phi_p = \phi'_p$ is the characteristic function of $GL_2(\mathbb{Z}_p) \cdot \text{diag}(p, 1) GL_2(\mathbb{Z}_p)$.

3.3

We next consider the case where $p|d_B$, i.e., B_p is a division algebra. In this case, we fix a prime element Π of B_p and put $\pi := n(\Pi)$. Then π is a prime element of \mathbb{Q}_p.

Define Hecke operators T_p^i ($i = 0, 1$) on S_κ by

$$T_p^i F(g) = \int_{G_p} F(gx) \Phi_p^i(x) dx,$$

where Φ_p^0 and Φ_p^1 are the characteristic functions of $K_p \cdot \text{diag}(\Pi, \Pi) \cdot K_p$ and $K_p \cdot \text{diag}(1, \pi) K_p$ respectively. Note that $(T_p^0)^2 F = F$ for any $F \in S_\kappa$. We also define Hecke operators T_p and T_p' on $S_\kappa(D)$ and A_κ by

$$T_p f(h) = \int_{H_p} f(hx) \phi_p(x) dx,$$

$$T_p' f'(h') = \int_{H_p'} f'(h'x') \phi'_p(x') dx'.$$
Here ϕ_p' is the characteristic function of $U_p'\Pi U' = \Pi U_p'$ and ϕ_p is defined as follows: If $p|D$, ϕ_p is the sum of the characteristic functions of $U_p(0\ 0\ 1)U_p$ and $U_p(0\ 0\ p)U_p$. If $p \nmid D$, ϕ_p is the characteristic function of $U_p(0\ 0\ 1)U_p$.

3.4

We say that $F \in S_\kappa$ is a Hecke eigenform if F is a common eigenfunction of the Hecke operators T_p^i for any $p < \infty$. Let $F \in S_\kappa$ be a Hecke eigenform with $T_p^i F = \Lambda_p^i F$ ($\Lambda_p^i \in \mathbb{C}$). We define the spinor L-function of F by

$$L(F, \text{spin}, s) = \prod_{p<\infty} L_p(F, \text{spin}, s),$$

where $L_p(F, \text{spin}, s) = Q_p(F, p^{-s})^{-1}$,

$$Q_p(F, t) = \begin{cases} 1 - p^{\kappa-3}\Lambda_p^1 t + p^{2\kappa-5}(\Lambda_p^2 + p^2 + 1)t^2 - p^{3\kappa-6}\Lambda_p^1 t^3 + p^{4\kappa-6}t^4 & \text{if } p \nmid D_B, \\ 1 - (p^{\kappa-3}\Lambda_p^1 - p^{\kappa-3}(p^A - 1)\Lambda_p^0)t + p^{2\kappa-3}(\Lambda_p^0)^2t^2 & \text{if } p|D_B, \\ \end{cases}$$

and

$$A_p = \begin{cases} 1 & \text{if } p \nmid D, \\ 2 & \text{if } p|D. \\ \end{cases}$$

The Euler factor for $p \nmid D_B$ (resp. $p|D_B$) is given by the formula for the denominator of the Hecke series in [Shim-1, Theorem 2] (resp. [H-S, §4] and [Su, (1-34)]), under the normalization of the Hecke eigenvalues

$$\left\{(\Lambda_p^0, \Lambda_p^1, \Lambda_p^2) \to (p^{2(\kappa-3)}\Lambda_p^0, p^{\kappa-3}\Lambda_p^1, p^{2(\kappa-3)}\Lambda_p^2) \ (p \nmid D_B) \right\}$$

$$\left\{(\Lambda_p^0, \Lambda_p^1) \to (p^{\kappa-3}\Lambda_p^0, p^{\kappa-3}\Lambda_p^1) \ (p|D_B) \right\}.$$

We say that $f \in S_\kappa(D)$ (resp. $f' \in A_\kappa$) is a Hecke eigenform if f (resp. f') is a common eigenfunction of T_p (resp. T_p') for any $p < \infty$. For Hecke eigenforms $f \in S_\kappa(D)$ and $f' \in A_\kappa$ with $T_p f = \lambda_p f$ and $T_p f' = \lambda'_p f'$ ($\lambda_p, \lambda'_p \in \mathbb{C}$), we define L-functions

$$L^D(f, s) = \prod_{p \nmid D} \left(1 - \lambda_p p^{\kappa-2-s} + p^{2\kappa-3-2s}\right)^{-1},$$

$$L^{D_B}(f', s) = \prod_{p \mid D_B} \left(1 - \lambda'_p p^{\kappa-2-s} + p^{2\kappa-3-2s}\right)^{-1}.$$

When $D = 1$, we write $L(f, s)$ for $L^D(f, s)$, which is the usual Hecke L-function of f.
We are now able to state the main result.

Theorem 3.1. Let \(f \in S_\kappa(D) \) and \(f' \in A_\kappa \), and suppose that
\[
T_p f = \lambda_p f, \\
T'_p f' = \lambda'_p f',
\]
for each \(p < \infty \). Then \(F(g) := \mathcal{L}(f, f')(g) \) is a Hecke eigenform and the Hecke eigenvalues are given as follows:

(i) If \(p \nmid d_B \), we have
\[
T^0_p F = F, \\
T^1_p F = (p\lambda_p + p\lambda'_p) F, \\
T^2_p F = (p\lambda_p\lambda'_p + p^2 - 1) F.
\]

(ii) If \(p \mid d_B \), we have
\[
T^0_p F = \lambda'_p F, \\
T^1_p F = (p\lambda_p + (p - 1)\lambda'_p) F.
\]

Remark 3.2. Noting that the elliptic cusp forms are assumed to have the trivial central character, we see that all the Hecke operators above for the cusp forms are self-adjoint with respect to the Petersson inner product. We can thus remove the complex conjugates of their Hecke eigenvalues in the formula above.

Corollary 3.3. Let \(f \) and \(f' \) be as in Theorem 3.1. Then we have
\[
\mathcal{L}(f, f')(\text{spin}, s) = \mathcal{L}^D(f, s) \mathcal{L}^{d_B}(f', s) \prod_{p\mid D} (1 - \{\lambda_p + (1 - p)\lambda'_p\}p^{\kappa-2-s} + p^{2\kappa-3-2\epsilon})^{-1}.
\]

In particular, if \(D = 1 \), we have
\[
\mathcal{L}(f, f')(\text{spin}, s) = \mathcal{L}(f, s) \mathcal{L}^{d_B}(f', s).
\]

The results above are deduced from the commutation relation of Hecke operators for the metaplectic representation \(r \) as follows:

Proposition 3.4. For a function \(\phi \) on \(H_p \), we put \(\hat{\phi}(h) = \phi(h^{-1}) \) \((h \in H_p) \). We define \(\hat{\phi}' \) for \(\phi' : H'_p \to \mathbb{C} \) in a similar manner.

(1) Suppose that \(p \nmid d_B \). Then we have
(i) $r(\Phi^1_p, 1, 1) \varphi_{0,p} = p \cdot r(1, \Phi_p, 1) \varphi_{0,p} + p \cdot r(1, 1, \Phi'_p) \varphi_{0,p}$,
(ii) $r(\Phi^2_p, 1, 1) \varphi_{0,p} + (1 - p^2) r(\Phi^0_p, 1, 1) \varphi_{0,p} = p \cdot r(1, \Phi_p, \Phi'_p) \varphi_{0,p}$

(2) Suppose that $p \mid d_B$. Then we have

$r(\Phi^0_p, 1, 1) \varphi_{0,p} = r(1, 1, \Phi'_p) \varphi_{0,p}$,
$r(\Phi^1_p, 1, 1) \varphi_{0,p} = p \cdot r(1, \Phi_p, 1) \varphi_{0,p} + (p - 1) r(1, 1, \Phi'_p) \varphi_{0,p}$

Remark 3.5. When $p \nmid d_B$ the formula for the Hecke eigenvalues is essentially the same as the corresponding result of Yoshida lifting (cf. [Y, Theorem 6.1]). For such p this leads to the following decomposition

$L_p(\mathcal{L}(f, f'), \text{spin}, s) = (1 - \lambda_p p^{\kappa-2-s} + p^{2\kappa-3-2s})^{-1} (1 - \lambda'_p p^{\kappa-2-s} + p^{2\kappa-3-2s})^{-1}$

Acknowledgement

Our reformulation of Arakawa lifting is due to T. Ikeda's suggestion. After our talk of the conference at RIMS in January 25th, 2006, T. Ibukiyama referred to his joint work [I-I] with Y. Ihara on a correspondence between automorphic forms on a quaternion unitary group $Sp(1) \times Sp(n)$ and suggested to us to deal, as in [I-I], with the case of all possible maximal compact subgroups at ramified finite primes, which has led us to find the interesting property of the L-function such as the case of $D = 1$. We would like to express our sincere gratitude to both of them for their valuable suggestion on our work.

References

H. Narita, Theta lifting from elliptic cusp forms to automorphic forms on $Sp(1, q)$, preprint, (2006).

Atsushi Murase
Department of Mathematical Science, Faculty of Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-ku, Kyoto 603-8555, Japan.
E-mail address: murase@cc.kyoto-su.ac.jp

Hiro-aki Narita
Osaka City University, Advanced Mathematical Institute, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.
E-mail address: narita@sci.osaka-cu.ac.jp