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Abstract

The optimal (Monge-Kantorovich) transportation problem is discussed from several
points of view. The Lagrangian formulation extends the action of the Lagrangian L(v, z,t)
from the set of orbits in R™ to a set of measure-valued orbits. The Fulerian, dual for-
mulation leads an optimization problem on the set of sub-solutions of the corresponding
Hamilton-Jacobi equation. Finally, the Monge problem and its Kantorovich relaxation
are obtained by reducing the optimization problem to the set of measure preserving map-
pings and two point distribution measures subjected to an appropriately defined cost
function.

In this paper we concentrate on mechanical Lagrangians L = |v|?/2 + P(z, t) leading,
in general, to a non-homogeneous cost function. The main results yield existence of a
unique flow of homomorphisms which transport the optimal measure valued orbit of the
extended Lagrangian, as well as the existence of an optimal solution to the dual Euler
problem and its relation to the Monge- and Kantorovich formulations.

1 Introduction

1.1 Historical Background

The classical problem of optimal mass transportation was suggested by Monge in the 18’th
century [M]: given a cost function ¢(z, y) (originally, ¢ = |z—y|) and a pair of Borel probability
measures /g, (1 on (say) a common probability space (2, minimize

[ eta T@)uolde) (M)
along all Borel mappings T : Q@ — © which transport yg into g1 (Tgpo = p1), namely
Lo (T'lA) = pu1(A) V Borel sets AC ). (1.1)

The Monge problem was revived in the last century. In particular, Kantorovich [K] introduced
in 1942 a relaxation, reducing the Monge problem to a linear programming in a cone of two-
point distributions over {2 whose marginals are g, u1 respectively:

mAin//C(w,y)/\(dw,dy) ; W@L”A = fio Wg)k = (K)
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Here 7?4 = 0,1 are the natural projections of Q x Q on its factors. A particular attention
is given to the Wasserstein metrics

1/p
Wy (po, p1) = [m}%n//lm—ylp)\(dx,dy) ; 71';(2)/\=M0 , wg))\=,u,1 (1.2)

where p > 1.

1.2 Objectives and main results

In general, if yo contains an atom, then there is, in general, no deterministic mapping T of
any type which maps pg into y1, so there is no sense to compare the deterministic Monge
problem (M) with the probabilistic Kantorovich problem (K). However, we may still consider
the following alternative formulation in terms of an optimal flow with respect to some family
of cost functions ct, ¢, = J(@,y, t1,t2):

(F) : Find a relazed orbit p = pydt and a flow of diffcomorphysms T:f Q= Q for
t1,t2 € (0,T) such that

i) T is the optimal Monge mapping with respect to ¢, +, transporting pg,) to pi,) for
t 1,t2 (t1) (t2)
any t1,t2 € (0,7).

(i) limgop() = po and lime7 p(gy = prin the weak sense of measures.

(i) The limits lime_,7 T% =: TT erists uniformly and TLis a continuous mappings for any
T€(0,T).

It is feasible that, once a solution to the flow problem F is provided, a co,r optimal
solution to the Monge problem M with respect to po, 41 exists by T = lim._o TY provided
the later limit exists as a Borel map. ,

Our starting point is the definition of a norm ||y||, of a measure-valued orbit as the min-
imal Lf-norm of the velocity fields v which satisfy the weak form of the continuity equation

T
{ =v(z,1) ; /0 L[¢t+v‘vz¢]ﬂ(t)(dm)dt=0 ; V¢€C&(Q><[0-T])} - (13)
and

1/p
Il = [igf (ol (dx)dt} (14)
Qx[0,T]
where the infimum is taken over all u—measurable vectorfield v satisfying (1.3). Denote
the set for which ||u||, < oo as Hp. This is a normed cone. In section 2 we shall indicate
some of its properties and prove a compactness embedding of H, (for p > 1) in a set of
orbits which satisfies Holder continuity in an appropriate topology. In particular, the end
conditions uo := p(g), 41 = p(T) are uniquely defined for 4 € Hy, where p > 1.
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In the rest of the paper we concentrate on the case p = 2. The connection between the
cost. function ¢, ¢, = J posted in formulation (F) above and the pressure P is as follows:
The function J = Jp is the action associated with the Lagrangian

Jp(z,y,t1,t2) = ixilf {/tltz P—E%)ﬁ + P(f(t),t)} dt ; T:[t1,t] = Q, ZT(h) =z ,T(t2) = -y} .

The main result of this paper, formulated in section 3, reveals a connection betmeen the
following approaches:

L: The Lagrangian approach: Minimize a Lagrangian Lp on the space of orbits 1 € Hj:
. 1 [T
L:=infLp(u) 3 Lp(p) = §Hu||§+/0 /QPu(t)(dx)dt » wE€Hy , p) = po,T) =
E: The Eulerian approach: Maximize on the set of velocity potentials ¢
€= sup | [ o(o Thuatas) - [ ofe,Ohuo(e) ©(19)
¢ Q Q
where the supremum is taken in the set of all functions ¢ = ¢(z,t) which are sub-

solutions of the Hamilton-Jacobi (HJ) equation (1.7) in a sense to be defined.

M: The Monge approach: Minimize on the set of mappings verifying (1.1)
M= inf { [ Ip(z,T(@),0,Duoldz) 5 Typso = m}
Q

K: The Kantorovich approach: Minimize on the set of 2-point probability measures with
prescribed marginal

K:= mAin {//Jp(x,y,O,T)A(da:,dy) ; 77;0))‘ = Ho 77;(;)’\ = ou‘l}

Our first result reveals the relation between the above formulation: If P € C1(2 x [0,T))
then
L=E=K

holds for arbitrary (probability, Borel) end measures p, u1. As discussed above, the Monge
problem may not have a solution at all (e.g., if yo contains an atomic measure and the set of
transporting mappings Txuo = p1 is empty).

The second part of our main result shows the relation between the flow problem (F)
and the Lagrangian formulation L. This is the relation between the optimal velocity field »
realizing (1.4) and the induced flow

d
ST (2) = v (T4, 1) . (1.6)

To elaborate, we shall prove
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1) There exists a minimizer 4 € Hy of L which satisfies the end conditions. This minimizer
may be non-unique.

2) There exists a maximizer 9 of E which is a Lipschitz function on Q x [0, 7] and satisfies
the equation

1
Y+ 5|Vayl* = P (1.7)
almost everywhere. Again, such a maximizer may be non-unique.

3) The vector field v = V1 is defined everywhere on some relatively closed set ‘Ko -
Q x (0,T) which contains the support of any minimal path u of L given by (1).

Under some additional assumption on P (see Main Theorem in section 3) we also get
4) The vector field v = V9 is locally Lipschitz continuous on Kjp.
5) The restriction of v to the support of eny minimal orbit of L is uniquely determined.
6) The flow T induced by v (1.6) leaves Ky invariant.

7) The flow TZ transports pi;,) t0 pt,) for any minimizer y of L and any ty,t2 € (0,T).
Moreover, it is an optimal Monge transport with respect to the action Jp(:, -, t1,t2).

8) The maps lim, 7T} := T{ : @ — Q and lim, o T% := T} : @ — Q exist and are
continuous for any t € (0,T). Moreover, [T7 | 4 (1es. [T%] 4) is an optimal Monge map
with respect to the action Jp(,,t,T) (res. Jp(:,-,0,t)) transporting ) to uy (res. po
to pt))-

9) If limyr T} := T exists as a Borel map, then T transports pg to u; and is an optimal
solution of the Monge problem M. In this case

M=L=E=K

A particular case is the pressureless flow P = 0. Here the optimal potential satisfies

et Vel = 0 (18)

and the associated action is

a2
J0(13 Y, tlstQ) = El(iz—;yzl'a s

reducing the Monge-Kantorovich problem to the Wasserstein metric Wy for quadratic costs
(1.2). The associated flow, claimed in (6), is given in this case by

T(z) =z + (t2 — t1) Vao(z, 1)

where V% is defined and Lipschitz everywhere. In particular it follows that, for a quadratic
cost, an optimal Monge map Txupo = p1 exists and is unique provided Vg 4(z,0) is po

154



measurable.? In this case, Brenier representation T = T = V,® of the optimal map [B] is
recovered via
®(z) = 2%/2 + Ty (z,0) .

The connection between the Monge-Kantorovich problem in the quadratic case and the flow
problem L (P = 0), as well as the dual relation E together with the Hamilton-Jacobi equation
(1.8) was indicated by several authors (see [BB], [BBG])? as well as in the excellent monograph
of Villani [V]. However, to the best of my knowledge, the existence and uniqueness result for
the flow Tif without any regularity assumptions on the end measures pg, (1 is new even in
the case P = 0. In fact, the existence and uniqueness of the flow holds even if there is no
optimal Monge map.

In section 4 we shall start to develop the tools needed for the proof of our main results.
Section 4.1 deals with a dual formulation for the norm ||u|l2 for an orbit of measure p =
u,(t)dt € Hj. It follows that

_ ([ J dep(dzdt))?
Hell2 = \/SUP [ff IVx¢|2M(dmdt)]

where the supremum is taken on the set of test functions ¢(z,t) = ¢ € C}(Q x [0,T}). An
equivalent definition turns out to be

i =sp{~ [ Plotutdndt) - [ oc.Oolds) + [ 8@ Thn@n)} (19

where the infimum above is on the pairs of ”velocity potentials” ¢ € C1(Q x [0,T]) and
"pressures” P = P(z.t) which are related via the Bernulli-type (or Hamilton-Jacobi) equation
(1.7). In case of a prescribed pressure P (as in this paper), this identity reveals the relation
between the Lagrangian formulation L and the Eulerian one E. In section 4.2 we imply a dual
formulation to a strict convex perturbation of the Lagrangian L, leading to an approximation
of the Euler formulation E, to be used in the proof of the main result.

For the proof of the main result we shall also need a series of auxiliary Lemmas and
definitions related to the Hamilton-Jacobi equation. In subsection 5.1 we list these definitions
and Lemmas, concerning forward (maximal), backward (minimal) and reversible solutions of
the Hamilton-Jacobi equation, which are essential to the proof of the main results. The proofs
of the Lemmas are given in [W1]. In 5.2 we utilize these results for the proofs of our main
Theorem.

In the rest of the paper we shall restrict ourselves to the flat torus Q = R”/Zn. The
reason is that we wish to avoid compactness problems originated from measures on R", on
the one hand, and the boundary conditions for the Hamilton-Jacobi equation required in
case of a bounded domain  C R™. The flat torus is the simplest example in the sense that
it is compact manifold with no boundary, on the one hand, and it inherits the Euclidean
geometry from R" on the other. Any function (or probability measure) on € is understood

2Qince 9(,0) is a Lipschitz function, V% (z,0) is a measurable function defined a.e, so we recover the
existence of an optimal map if uo is a continuous w.r to Lebesgue measure.
31 wish to thank Prof. D. Kinderlehrer for turning my attention to these publications.
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as a periodic function (or periodic, normalized per-period measure) on R”, unless otherwise
is explicitly specified. In particular, a mapping T :  — € is understood as a mapping on the
covering R™ which satisfies T(z + 2) = T(z) + z for any € R" and any z € Z".

List of symbols and definitions
Q:=R"/Z"
=007} ; I=(07T)
Qr=0xI, Q=0xI.
LIP, is the set of all locally Lipschitz functions in Q)Ip.
M is the set of all probability Borel measures supported in Q.

M is the set of all Borel probability measures supported on £; which are decomposable
as i € My <= p = p)dt where pp) € Mae tel.

if  is Lebesgue continuous measure, then p, € L!(€) is the density of u.
7(© (res. 7(1)) is the natural projection of £ x Q on its first (res. second) factor €.

For any pair pg, 41 € M, the Wasserstein-p metric is defined by
Wyluio, ) =t [ [ |z = PN (dady)
A JaJa

where the infimum is on all probability measures on £ x Q such that w;f))\ = uo,

W;;')A=[.L1.

E,(¢) := fOT Jo ¥(@, t) ey (dz)dt. Likewise, By, (¥) = Jo ¥(z, t)u (dz).
A lifting v of u € M is a Borel measure on Qy x R™ such that

T .
E.(¢) := /0 /Q,/Rn Y(z, t)v(dedtdv) = Eu(w) s Ey(¢e +v-Vgp) =0

for all ¥ € C3 ().



2 A metric space for measure’s orbits

We start with the following

Definition 2.1. Let p € M;. Then u € Hy(I, M) if there ezists a lifting v of u such that
E,(|v[P) < 0o. We shall also define the Hy, norm of u € H, by:

|l = ir,}f [IE,,(IU|P)]1/?

where the infimum is taken over all liftings of u.

Lemma 2.1. H, is complete and locally compact under the weak C* topology if p > 1.
That is, for any bounded sequence i, in Hy, we can extract a subsequence which converges in
C* (1) to some p € Hy. In addition:

Jm fiun|lp 2 {lull -

Proof. By definition there exists a set of liftings v, corresponding to u,. Moreover, this
sequence can be chosen so that E,, (|v|?) < C, so v, and vu, are tight on Qr x R™ (since
p>1and Qr is compact). Hence the weak limit v of v, is a lifting of the weak limit p of pn,,
and E,(|v|P) < C, hence u € Hy,. The same argument also yields the lower-semi-continuity
of Hy. ]

Lemma 2.2. If p = ppdt € Hy, p > 1 then the map t — py) is a Holder (p — 1)/p
continuous function from I into M with respect to the weak (C*) topology equipped with the
Wasserstein-1 norm Wh:

Wi (o, 1) = sup / & (dz) — pio(dz)) - @
IVo|<1JQ

Proof. We know that an optimal lifting v exists for 4 € Hy. The measure v can be decom-
posed, by the Theorem of measure’s decomposition [AFP], into v = py)(dz)vs ¢ (dv)dt, for p
a.a. (z,t). We may define now the velocity field

'u(x, t) = ]EV:c,t (U)

for p a.a. (z,t). It follows that v € ]Lﬁ and, moreover,

lellp = [ /Q , \vlpu(dzdt)} 1/,,‘ .

By assumption:

/ %‘téu(t) (dz)dt = / / v - Vedu (dr)dt (2.2)
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where ¢ = ¢(z,t) is in C}(Q). Let ¢(z,t) = h(t)®(z) with ® € C}(Q2) and h € C}(I). Then

fo(t) = fo ®(x)ue (dz) satisfies

T T :
[ soon @at == [ a0 [ 90 v(aosar.

By Holder inequality

/oT h(t) /Q V& - vpgy(dz)dt < [VO|oo [/OT hq(t)dt]l/q vl

with ¢ = p/(p — 1). It follows that fo € WYP(I) and, moreover, ||fs|l1, < C||®||1,00. This
implies the result by Sobolev imbedding together with the dual formulation of the W; norm
(2.1). O

Given pg and p; € M, define the set

Ap(uo, i) == {p=pwdt €Hy ; poy=to , Wr)=4H1;} -
Corollary 2.1. The set Ap(po, p1) where p > 1 is closed and locally compact in C(I; C*(Q)).

Similar versions of the Lemma and Proposition below can be found in [Am]. We also note
that Proposition 2.1 in the case p = 2 is a special case of our main Theorem (see section 3).

Lemma 2.3. ( Regularization Lemma): If u € Hy, then there ezists a sequence puf € H,
of smooth density so that p = Yim._,o u° holds in C*(Qr) and, moreover,

lim {[¥]lp = [lullp -
In addition, for any to,t1 € I,
;i_l’f(!) Wp(l‘ft:o,#il) = Wp(ﬂ(to)’u(tl)) .

We next consider the relation between H, and the optimal solution of the Kantorovich
problem.

Proposition 2.1. Assume p > 1. Let po, p1 € M. Then Ap(uo,n1) # 0. and

inf ' =W, .
ealnt il = W, )

The proof is similar to the proof of Theorem 4.2 of Ambrosio [Am]| for the metric case
p=1).
We note that Corollary 2.1 is not valid in the case p = 1. To see it, consider the measure:

w= Z Q; (t)é(z—:cj(t)dt
J

where z; = z;(t) € C1(I;Q) and o; € C1(I,R) such that " a;(t) = 1 Vt € I. We can
approximate u by a sequence of measures pm € A1(po, 1) as follows: For each m € N consider
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the division t,(cm) =k/m, 0 < k < mof I. Let Ay be the optimal solution of Kantorovich

problem due to Wl(u(t(m), () )), and T(t) =1Id + (t - t;cm)) [Ty x — 1d] /(tgx)l - t(m)).

Define um, as follows:

: _ plt . m) m)
Pom,(te) = B(ti) 3 Mm,m—Tfn),k,##m,(tk) sty <t<t§c+l-

Then, by Proposition 2.1, y,, are bounded in H; and pym, — p. However, u & Hy unless o;
are constants in t. To see it, note that the continuity equation takes the form

0= 3 [(@s06e(es (01,40, T=o(as(01t)dt = 3 [ ~50(as(6), 0401051 Vaoas(e), O

where v;(t) are the velocities attributed to z;. It is evident that, unless &; = 0, for any
possible choice of v; one can find ¢ = ¢(z,t) for which the integral on the right does not
vanish.

3 Main results

Let the pressure P = P(z,t) € C1(Q) and the associated action:

1
Le(u) = ol + /Q Pu(dzdt) ; peH,. (3.1)
I

Let us recall the definition of the action Jp:

Jp(e,y,t,t) = inf {/ttz [M + P(T(t),t)] dt ;5 T:tt] = Q, T(t) =z ,%(t2) = y}

X 2

(3.2)
- Remark: Note that Jp is not a function on @ = R"/Z" in each of the variables z,y,
separately. However, for each g € Z™ and each xz,y € R?, t1,t3 € I, Jp(z‘+ q,y+q,t,t2) =
Jp(z,y,t1,t2).

Definition 3.1. (L) (the relaxed Lagrangian):

L(uo, 1) := inf  Lp(u) .
u€A2(po,p1)

Definition 3.2. (M). (the Monge problem):

Mb(/“Oa/*"l) = T#ipI:)f:—-pl/s;JP(x’T(z),O, T)/J'O(dm) .

Definition 3.3. (K). (the Kantorovich problem):

’C(PO,MI) = lng JP("L‘,y, 0, T))\(d.’l?dy)

among all probability measures on Q x Q with the same Q marginals po, p1.



We now introduce the Hamilton-Jacobi (HJ) equation

09 1 _
5t + §|Vz¢i2 =P. (33)

Let us denote the set of classical sub-solutions of the H-J equation as
1
Ap = {q& eCHQy) ; é¢+ §|Vz¢|2 < PV(z,t) in QI} .

For our purpose we need a generalization of the concept of a classical sub-solution. The
concept of wiscosity sub-solution (see, e.g. [E]) is too restrictive for us. So, we define a
generalized sub-solution of the H-J equation as follows:

The set of generalized sub solution of the H-J equation is given by

Kp:={p € LIP(Q); VI e CY(;Q),

%qﬁ(f(t),t) < % l?ir;'(t)|2 + P(Z(t),t) holds for Lebesgue a.et€ I} (3.4)

Remark (i): Note that ¢(Z(t),t) is a Lipschitz function on I if ¢ is Lipschitz and Z € C(I).
Hence it is a.e. differentiable (as a function of t) on I by Rademacher’s Theorem (see, e.g.,
[E]). - |

Remark (ii): It is not difficult to see that any classical sub-solution is also generalized sub

solution, so A% C Ap. The concept of generalized sub-solution is more general than that of

a viscosity sub-solution. The relation between generalized sub-solutions and viscosity (and
anti-viscosity) sub-solutions is discussed in section 5.1.

Definition 3.4. (E): (The Euler formulation):
)= s { [ s Thn(a0) - [ @, 0molao)}
¢eh™(P) VO Q

We now state our main result:
Main Theorem:
Assume P € CY(Qy). For any wg, p1 € M:

K(po, u1) = L(pos p1) = E(po, p1) - (3.5)
There exists minimizers p € Aa(uo, p1) of L (Definition 8.1) and a mazimizer 1 € Ap of E
(Definition 3.4) such that
1
P+ §|Vz¢|2 =P ;ae onfy. o (3.6)

Assume, in addition, there exists C(t) > 0 on Iy so that P(z,t) — C(t)|z|? is a concave

function on R™ for any t € Iy. Then, for mazimizer ¢ of E(po, 1), there exists a closed set
K c Qj such that
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i) The restriction of ¥ to Ko := K NQy, is continuously differentiable, the equality (3.6)
holds for any (z.t) € Ko and V% is Locally Lipschitz continuous on Kj.

il) Let v be a Lipschitz extension of V1 to ,. Let T = Tﬁf be the flow generated by v.
Then K is invariant under this flow.

ili) A minimizer p € Ag(uo, #1) of L is not necessarily unique. However, any such minimizer
is supported in K and the vectorfield v = V9 is uniquely defined on the support of
any such minimizer.

iv) Any such minimizer is transported by the flow T, that is

(T3] 4 1) = Hisa)

holds for any t1,t2 € (0,T). Moreover, if t; = 0 (res. to = T) then T} := lim,_o T%
(res. TT = lim,_,1 T]) are continuous maps transporting po to p() (res. pg) to pr).

v) The map T’éf are optimal with respect to the cost function c(z,y) = Jp(z,y, t1,t2) and
the measures ), K(,), Where either ¢t; € I, tp € [y or ¢y € Iy, 12 € 1.

vi) If P =0 then the optimal solution ¢ of E (Definition 3.4) is in Cllj.i (Qr,). In particular,
the flow T can be defined anywhere in terms of ¥ as

T:f(m) =T+ (tz - t]_)vz'l[)(:l:,tl) WVty <ta€ly Vzxe.

4 Dual representation

The key duality argument for minimizing convex functionals under affine constraints is sum-
marized in the following proposition whose proof is given in the appendix:

Proposition 4.1. Let C a real Banach space and C* the its dual. Denote the duality C = C* '

relation by < c*,c >€ R. Let Z a subspace of C and h € C*. Let Z* C C* given by the
condition z* € Z* iff < z2* —h,z >=0 for any z € Z. Let F : C* - RU {00} a convex
function and
I:'= inf F(c").
c*€Z*

Assume further that Ay := {c* € C* ; F(c*) < I} is compact (in the x— topology of C*).
Then

sup inf [F(c¢*)—<c2>+<h,z>]=1.

zGZ c!ec# .

In particular, both sides equal oo if Z* = 0.
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4.1 Dual representation of H,

We shall apply Proposition 4.1 were the space C is all the continuous functions ¢ = q(z,t,v)
on Q7 x R™ subjected to:

gl == sup {M}<oo. (4.1)

(z,t,v)EQ xR" 1+ MQ

The dual space C* contains all finite Borel measures v on 7 x R™ of finite second moments:

/ v|(dedtdv) < o ; / (0]2 || (ddtdv) < oo .
QxR» QrxR"

Define the subspaces Z, Zg of C as

162

Zo:={z=¢:+v Voo ; $€ Cln }cZ:={z=¢+v-Vod ; ¢€C(Q)NLIP(Q)} .

Given po, p1 € M, define hy, ,, as a linear functional on Z as follows:

< hyopi 2 >= /Qqﬁ(:r,T)m(dw) - /Qqﬁ(m,O)uo(dz) forz€Z, (4.2)

(in particular, < hygpu,,2 >=0if z € Zo).

Lemma 4.1. The functional hy, p,, so defined, is continuous (bounded) on C.

Proof. Let X be a probability distribution on 2 x €2 so that W;E))\ = U, wg)x\ = p3. Then

/Q (e, T (dz) - [Q #(z, 0o (dz) = / /Q 6 T) - om0 Ndedy) . (49)

Now, for {(s) := Q—_—"’TM we obtain

T T -
¢(y,T)—¢(m,0)=/o Ed;«b(C(S),s)dF/o [¢t+mi'V’¢]¢() *

= [ (constr2) as (a4

: 2
lp(y, T) — ¢(,0)| < max max_|z(=z,t,v)| < 2|l [1 n (Dzam(ﬂ)> } ,

In particular,

(x,t)€Q |v|<Diam(Q/T) T

where we used the definition on the norm || - || on C given by (4.1). The proof follows from
(4.2,4.3) and since X is a probability distribution on Q x Q. O
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The corresponding dual spaces are given by

Zy = {u e C* / z(z,t,v)v(dzdtdv) =0 ,Vz € Zo} (4.5)
QrxRn

0Z , = {1/ € C*;/ 2(z, t, v)v(dedtdv) =< hyg uy,2 > ,Vz € Z} .
QrxRn
For any u € Hj, a convex subset of C* is given by
= {1/ cc / S(z, t)v(da, dt, dv) = / (z, t)u(dzdt) ¥ 6 € C(Q) } .
Qr xRn Qr
Finally, F,, : C* - R U {c0} is defined by
Fu(v) = %fsz;xw [v]?v(dzdtdv) ifv e C;
g o0 if v ¢ C},
We obtain

Lemma 4.2. The function F), is conver on C* for any p € Hy. In addition, if F,(v) < oo
and v € Zg then v is a lifting of p. Similarly, if F(v) < oo and v € Zy_ , then u €
Az (po, p1)-

Proof. The proof of Lemma 4.2 is almost evident from the definitions. Let us just prove the
last part. Since Z7, , C Z§ it follows that v is a lifting of . € Hz. We only have to show
that u € Az(po, p1). Let ¢ € CY(Q,) N LIP(Qr), n = n(t) € CA(I) satisfies 0 <np < 1on T
and, for some e >0, n(t) = 1fore <t < T —e,and n: > 0on [0,¢], » <0on [T —¢,T). Set
¢©) =g on QO x [e,T -] and ¢ (z,t) = ¢(z,€) on t € [0,¢] (res. ¢©)(x,t) = ¢(z,T —¢) on
t € [T — ¢, T]). Then 7)€ C}(Qy), so

T—e
0= [(ncﬁ‘e))t +nu- vzqs(f)] v(dzdtdv) = / / [6¢ + v - Vo] vs) (dzdv)dt
QrxRn € QxRn

€ : T
+ [ no@ oo+ [ [ moteT - ey (dojat

€ T
+/ / nv - Vaod(z, €)vy) (dzdv)dt +/ / v - Vid(x, T — €)vy (dedv)dt . (4.6)
0 JOxRn T—¢ JOxXR"

Since v is a lifting of some y € Hp it follows that v(;(dzdv) is a probability measure
on {2 x R™. By the Cauchy-Schwartz inequality we estimate the last two integrals by
2[|V20llcov/Eu([v[?)el/2. By Lemma 2.2, u() is Holder continuous of exponent 1/2 in ¢,
with respect to the W topology, so

/0 ) /n (&, €) gy (dz)dt = fo j fn (2, ) (o) (dz)dt + O(/2) [ Vablleo /0 " meldt

= / 8(3, )10y (dz) + O(EY?)]|V 3]s / "t = / 6(2, €0y (d) + O(Y2) |V lloo
Q 0 Q @7
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using 7; > 0 on [0,¢], hence [; [n:| = [3 7 = 1. Similarly

/ / 76 ety (de)t = / 6(e,T = )isry(dz) + OV |[Vablloo . (48)
Letting € — 0 we obtain from (4.6, 4.7,4.8):
[ e v- Vasiutasatan) - [ [0 Thpcry(dz) = o0, Oy ()] = 0.
QrxRnr Q

The above is valid for any ¢ € C*(Q,) N LIP(Qy). Since v € Z},, ., by assumption, it follows

that pg) = po and yry = p1, hence p € Ag(po, p1).- O
Corollary 4.1. If u € Hy then

(Jo But( dxdt))z
q&ecl Jo, IVzél2pu(dzdt) -

(4.9)

0

1 2 . 9 1
sl == ot { [ 0+ 190t i)} = 5
“as well as

I { [ (61419207 Du(dnat) + | 6@, Opalaa) - [ ¢(w,T>m(dz>}

$€C (9, )NLIP(Q)

_ [ 3B if ue Ax(po,m)
_{ Yoo if u QAz(uo,ui) ' (4.10)

Proof. Certainly, F, satisfies all the conditions of Proposition 4.1. Using Lemma 4.2 and
Proposition 4.1 in the definition of |||z (Definition 2.1 for p = 2) we obtain that

1o . .
Sllullz = inf Fu(v) = jggyleng* (Fu(v)— <wv,z>)

1
= sup inf [—|v|2 —¢t—v- quﬁ] v(dzdtdv)
$eCi(Qr) veCy, Ja,;xRn 2

310 = Vol = 60 = 31920 uidsatar)

= sup inf [
peCi(y) VECL Jar xR

1 1

= sup {—/ {qﬁt + —]Vzd)lz] pu(dzdt) + = 1nf lv — V,pd:!zu(dwdtdv)} .
¢€C(%(QI) Q 2 2 veC QI xR"

So, we set v = ud,_v,¢ to annihilate the second integral and obtain the first equality in (4.9).

For the second equality in (4.9) we observe

inf { . @19l /2)u(dwdt)}—¢mcf it { |, e 7190 J2)uldatt)

$€C}

= 1 (fg, ¢t#(dxdt))
~sech | 27T, [VaolPu(dzd?)

Finally, we obtain (4.10) using the constraint Z, for Z* in Proposition 4.1. O

10,41



Example: Let y = Zle Brd(z—z,(t)) Where zx 1 I — ( satisfies fOT |Z|2dt = |Ej]2 < 00
and 3; 2 0, 32, 8; =1. Then

oy [ %,
/91 dru(dzdt) —;53/0 Bt( (1), t)dt

and

T
/ Veo2u(dadt) = 3 5, / V2 0[2(z;(t), )t
QI ] 0
On the other hand,

T T
[D %xj(t),t)dt: /0 [%%(xj(w,t)~¢,-<t)-vz¢(wj(t>,t>] dt

T
= —/0 ;(t) - Vaod(x;(t), t)dt
so, by an application (twice) of the Cauchy-Schwartz inequality,

2 .
Un, putizdd) _ (200l 92009 ) o NS
fQ, V9|2 p(dzdt) ;B Jo |Vao(z;(2),t)|2dt j 0

2

In fact, it can be shown that ||u||3 coincides with the above sum, and that there exists a
maximizing sequence ¢, (z,t) such that V¢, (z;(t),t) — &;(t) for all j and a.e t € I (even if
some of the orbits z; intersect (!)-see [W]).

4.2 Dual representation of the Lagrangian

We shall now define a strong convex perturbation of the Lagrangian Lp (Definition 3.1). Let
also F : R — R* U {c0} such that

F(@)=o00 if q<0 ; F(0)=0 ; ¢g*<F(q)<Cqg”ifg>0 (4.11)
where 1 <w < 1+ 1/(n+1) and ¢,C > 0. The functional ZF : C* — RU {oo} is defined by:

IPW) :=/ eF (f,) da:dtdv+l/
QxR 2

|v|2v(dzdtdv) +/ P(z,t)v(drdtdv), (4.12)
QrxRn

QrxRn
if v = f,(z,t,v)dzdtdv is absolutely continuous with respect to Lebesgue measure and the
density f, satisfies F(f,) € L}(€; x R®). Otherwise X' (v) = co. Note that, since F(q) = oo
for ¢ < 0, it follows that ZF(v) = oo if v € C* is not a non-negative measure. However, I
can attain a finite value also for a measure v which is not normalized (i.e not a probability
measure on 2y x R").

Given pg, 1 € M, define

IP(po,m) = _inf ZI7(v). (4.13)

HOH1

Next, we claim
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Lemma 4.3. For any e > 0,
1P (4o, w1) > L{po, 1)

where L(po, p1) as in Definition 3.1.

Proof. First, we can restrict ourselves to non-negative measures v € Zj, , , since otherwise
J F(f,) = oo by (4.11). We only have to show that if v > 0 and v € Z}, , then v is a lifting
of some p € Aga(uo, p1)-

Using Lemma 4.2 it is, therefore, enough to prove that v;(dzdv) is a probability measure
on © x R for a.e (Borel) t € I. Setting ¢(x,t) = n(t) € C3(I) we obtain from (4.5) that

dn
v(dzdv) | —dt =0
./I(/S;xlkﬂ t( )) dt

for any such 7. This implies that [, pn :(dzdv) is constant for a.e. ¢t € I. Since v > 0 it
implies that »; is a constant multiple of some probability measure on {2 x R™ for a.e. t € I.
This constant equals one since the (2 marginal of 4 is C* continuous on I by Lemma 2.2 and
is a probability measure at t =0 (uo) and t =T (p1). O

We now proceed to a dual formulation of the constraint minimization of ZZ. Certainly
T? satisfies the assumption on F introduced in Proposition 4.1. In fact, it follows that the
set {v € C*; IP(v) < C} is bounded (and hence *—compact) for any real C. Then
Proposition 4.1 and (4.13) yield

IP (o, 1) = sup inf [IEP(V)— <Y, 2>+ < hygpy, 2 >
zeZ vEC*
1
= sup inf [aF(f) -f (¢t +v-Vep— =|v)? - P)] drdtdv+
peci(qy) f JarxRe 2

/Q o(z, T)a(de) — &(z, 0)poldz) ,

where infy stands for the infimum on all measurable functions on 2y x R". Let

H(f,¢) = / [EF(f) - (¢t +v-Vgd— %|vl2 - P) f] drdtdv .

QrxR™

1 1
= / dzdtdv [SF(f) — (¢t + §|Vx¢lz - ‘2-|’U — Va:¢|2 - P) f:|
QrxR™
Let F* be the Legendre transform of F:

F*(\) = sup [sA—=F(s)] .

By our assumption we know that F™ is also convex and non-negative on R. It satisfies
F*(A) =0 for A £0. Now,

e (cbt +1Vz6?/2 — jv—Vi4[?/2 - P
1 XR" 3

ir}f H(f,¢) = —ef ) dzdtdv

Q
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275 _ 2
— __El+n/2/ F* (d)t + |VI¢! /2 P _ M) drdtdv
QrxR" 2

)
Let
G(s) = /R F(s = o/2)d (4.14)
and |
Wy(@) 1= et [ G (¢‘ +[Vedl'/3 - P ) dads + [ 9o, T)un(dz) - 9(z, Oo(d)

(4.15)
‘We have proved:

Lemma 4.4. Fore >0 and pg, 1 € M,

IF (po, 1) = sup Te(9) .
¢eCl (Q[o)ﬂLIP(QI)

We shall also need the following result, whose proof is direct and omitted:

Lemma 4.5. If F satisfies (4.11) then, for some constant c > 0, the function G defined in
(4.14) satisfies cg/“™* < G(q) < ¢~ 1q¥/“~1. Thus, the first integral of (4.15) is estimated
by

8

2
¢t+-|—v-§il—P dxdt

2
—51+"/2/ G (¢t + lvxf' /2- P) dzdt = —O(s_")/
QI Q]

wherea=1/(w=1)-n/2>0and s=w/(w—-1)>1+n (cf (411))

We also need:

Lemma 4.6. Let po,p1 € M. Then there ezists a connecting orbit u € Ao(ug, p1) of finite
Hj norm and a lifting v such that both yu and v has densities in LP(Q) (res. LP(Qr x R™)),
where 1 <p<1+1/n.

In particular. it follows that for such v as guaranteed in Lemma, 4.6, each of the integrals
in (4.12) is finite. Hence, there exists C > 0 (independent of ¢) and v € Z;,, ., such that
ZP(v) < C for any e > 0. In particular, IP (1o, u1) < C for any such € by (4.13). It follows

from this, Lemma 4.3 and Lemma 4.4 that

Corollary 4.2. For any o, u1 € M there ezists C > 0 independent of € where

c> sup Ue (@) = L{po, p1) -
$€CY (24,)NLIP(Q)

Lemma 4.6 is a direct result from Lemma 4.7 below. For its presentation we define the
space Hy([to, t1]) by restricting H, = Hy(I) to orbits defined for a time interval [to,t1]. The
norm of u € Hp([to,t1]) is denoted by ||ully 4,4, Lemma 4.7 is also used in the proof of
Lemma 5.8.
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Lemma 4.7. For any t1 > tg € I, any path T = Z(t) : [to, t1] — Q and any o > 0 there exists
an orbit pdt € Hp,([to, t1]) with pg) = 0zq5 M(ty) = 0z, where T, =T(t;), i = 0,1, such that

131

=12 _

6B e < [ 18 de+ Ot = tofa™
0

and s (dz) = p(z,t)dz where p € LP(Q x [to, t1]) for any p € [1,1+ 1/n). Moreover

n(p-1)
ol < C(p) [(h — to) (t1 f to) ]

supp(p) C {(m,t) €N X [to,t1] ; |E) — 2| < Cf—l——;——tﬂ Vte [to,tl]} .

1/p

and

In particular, the choice T(t) = zo + ttl—__%(a:l — xp) yields

(2 |21 — @o|? -2
||l"1]2,[t0,t1] < 1 — 1o + Clt; —tola™ .

The proof of Lemma 4.7 is given in Vthe Appendix.

5 Proof of main results

5.1 On the Hamilton-Jacobi Equation

In this section we introduce some fundamental results for the HJ equation
1
¢ + E'lvz(blz =P (z,t)eW (5.1)

where P € C'(£21). The book of L.Evans [E] contains a detailed exposition on the Hamilton-
Jacobi equation. However, the discussion in [E] is restricted to generalized solutions of viscos-
ity type and for time independent Hamiltonians, which excludes the application of backward
solutions and time dependent pressure P = P(z,t) . The results in this section are all needed
for the proof of the Main Theorem in section 3

We list below some properties of the action Jp (3.2):

Lemma 5.1. For P € C}(Q;), the action Jp is satisfies the following:

(a) For 1y < 2 € [0,T] and z1,z2 € R, the value of the action Jp(x1,22,T1,T2) is realized
along a (possibly not unique) orbit T which satisfies the equation

T =V P(Z(t),t) ; te[n,mn]. (5.2)

(b) Assume further that there exists C(t) > 0 so that P(z,t) — C(t)|z|? is a concave function
on R™ for any t € Iy. Let T be an optimizer orbit connecting x1, 71 to T2, Ts. For any
yeR" andt € (0,T)

JP($1,$2,7’1,T2) - ']P(mlay’ Tlat) >
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#(m) - (22— 9) + | Plaa,m) — 3[3(72)| (ra = ) = Oz —uf) —oft =), (5.3
Jp(y, zo,t,79) — Jp(x1, 12,71, T2) <

#(m) (51~ 9) + | Plar,m) — S[El(m)| (n = 1)+ Oes ~yP) +olt=m) . (5.4

L

(c) For any z1,y,22 €ER™, t1 <7 <ty
Jp(x1,y,t1,7) + Jp(y, 2, 7, t2) > Jp(zx1, T2, t1,t2) (5.5)
holds .

(d) For any pair x1,72 € R™ and a triple t; < T < ty there erists y* € R™ (possibly
non-unique) for which the equality holds in (5.5):

Jp(z1,y*,t1,7) + Jp(y*, 22, 7, t2) = Jp(x1, %2, b1, b2) (5.6)

There ezists a (possibly non-unique) optimal orbit T connecting (x1,t1) to (z2,t2) such
that Z(t) = y. However, for any such optimal orbit, T(7) is determined uniquely.

(e) For anyt>t; z € R" and a.c y € R"

7] 1
aJP(za Y, tl’t) + § IVU-]P(Z', Y, tl)t)lz = P(y5 t) . (57)

Definition 5.1. ¢(z,t) is a forward solution of (5.1) iff, for anyz € Q and t; > tp € I
¢(‘T’ tl) = yiergn [‘]P(yzm, t0>t1) + ¢(ya tO)] : ‘ (F)
Likewise, ¢ is a backward solution iff

¢(z,to) = sup [—Jp(z,y,to, t1) + (v, t1)] - (B)
yER™

Remark: It follows, by the remark proceeding (3.2), that the Tight sides of (F) (res. (B))
defines a function which is Z™ periodic on R™, namely defined on Q, if ¢(-,to) (res. ¢(:,t1))
is a function on Q.

For the special case of zero-pressure Hamilton-Jacobi equation, the action is reduced to

2
o — 1
Jo(z1, 29,81, t2) = |2—(t';jt—1|5‘

and definition 5.1 reduces to the (original) Hopf-Lax formula:
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Definition 5.2. A forward solution of the pressureless Hamilton-Jacobi equation
1
¢t + '2‘1Vw¢|2 =0

satisfies, for any t1 > to and x €

e [tz =y
¢(.’B,t1) - ylerilf" ['2’ t — to + ¢(yat0) ) (FO)
while a backward solution satisfies
1|z —yl?
ole ) = sup -3 22U 4 o)  (Bo)
yeRr | 2 ti—to

A forward (backward) solution can be constructed from an initial (end) data at ¢t = 0
(t =T) as follows.

Lemma 5.2. For any continuous initial data ¢(,0) on Q and P € LIP(Qy),
8(2,0) = L, Up(32,0,t) + $(4,0)] 58)

is a forward solution and satisfies (5.1) a.e. Moreover, ¢ € LIP(Q x (0,T]) and

‘¢(zst) — ¢(y’t)| g
lz -yl t

IA

(5.9)

where C is a constant independent on ¢(,0). Likewise, for any continuous end data ¢(,T')

¢($,t) = 8sup [—JP(mayaO’t) + ¢(y’ 1)]
yERR

is a backward solution and satisfies (5.1) a.e., ¢ € LIP(Q x[0,T)) and

‘¢(I,t) - ¢(yat)[ < c
|z -yl “T-t

(5.10)

Iﬂ in either cases, the end data ¢(,0) (res. ¢(,T)) is Lipschitz on Q, then the corresponding
forward (backward) solution is in LIP(r).

Next, we establish the connection between generalized sub-solutions, as defined in (3.4),
and forward/backward solutions:

Lemma 5.3. Both forward and backward solutions are generalized sub-solutions in the sense
of (3.4). A forward (backward) solution is a mazimal (minimal) generalized sub-solution
in the following sense: If ¢ is a generalized sub-solution and ¢ is a forward (backward)
solution so that ¢¥(z,7) = ¢(z,7) for all z € Q and some 7 € I, then ¢(z,t) > ¥(x,t)
(0(z,t) <Y(z,t)) forallz € Qandt>7 (t<7)inl.

An immediate corollary from Lemma 5.3 is:
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Corollary 5.1. Let ¢ be a forward solution and ¥ is a backward solution on Q.
i) If p(z,T) = ¢(x,T) holds Yz € Q then ¥(z,t) < ¢(z,t) V(z,t) € Q.
i) Similarly, if ¢(x,0) = ¥(z,0) holds Vz € Q then ¢¥(z,t) < ¢(z,t) V(z,t) € Q.
Next, we wish to address the notion of a reversible solution:

Definition 5.3. A reversible pair {$, ¢} where ¢ (¢) is a forward (backward) solution on Q

such that ¢(z,0) = ¢(z,0) and §(z,T) = ¢(x,T) for any z € Q. By Corollary 5.1, ¢>¢ on
Q7. For any such reversible pair we denote the reversibility set of the pair as the relatively
closed set Ko(@, ) C Qy, given by

Ko(9, 9) := {(z,t) € Qs ; b(,1) = ¢(z,t)} C O
Likewise,

K@, 9) = Ko($,9) N[Q x {t}]  for any t€ (0,T) .
Ifé= ¢ then ¢ := ¢ = ¢ is called a reversible solution.

From Corollary 5.1 we obtain a way to create reversible pairs. It turns out that, in the
case P = 0, this way yields reversible solutions:

Lemma 5.4. Given ¢g € LIP(R), let ¢ be the forward solution subjected to ¢(z,0) = ¢o(x).
Let 1) be the backward solution subjected to (z,T) = ¢(z,T), and ¥ the forward solution
subjected to

¥(z,0) = ib_(z,O) .

Then {4, Y} is a reversible pair. Moreover, if P =0 then Y= Y is a reversible solution.

The next Lemmas indicate that reversible pairs (in particular, reversible solutions) are
closely related to classical solutions of the Hamilton-Jacobi equation.

Lemma 5.5. If ¢ € C1(Q) is a classical solution of (5.1) then ¢ is a reversible solution.
Using Lemma 5.1 we show that the converse of Lemma 5.5 also holds, in some sense:

Lemma 5.6. If {9, ¢} is a reversible pair then both ¢ and ¢ are differentiable on Ko =
Ko(¢,9) (cf., Definition 5.8). Moreover, Vo := {V:0,6;} = V¢ := {V.9,8,} and the H.J
equation is satisfied on this set. If, in addition, P satisfies the condition of Lemma 5.1-(b)
then V¢ is locally Lipschitz continuous on Ko and ¢ satisfies (5.1) pointwise on this set.

Lemma 5.7. Assume P satisfies the condition of Lemma 5.1-(b). Let v(z,t) be a Lipschitz
extension of Vz¢ from Ko to Q. Then the set Ky is invariant with respect to the (unique)
flow generated by the vectorfield v.

Finally, we introduce the two following results, to be needed in Section 5.2:
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Lemma 5.8. If ¢ € C1(Q x [to, t1]) satisfying
1 v
et 5IVadl’ =P 1€ 5 (1) €Qxto, 1]
where P,§ € Lip(Qx [to, t1]), s > n+1 and ||€||s stands for the L#(Q2 x [to,t1]) norm of € then,

for any o, z1 in Q, any t1 > to and any orbit T = T(t) : [to,t1] — Q satisfying T(to) = xo,
T(tl) =]

&(1,t1)~(z0,t0) < / &+ / ), £)dt-+Ca1€]128 (41~ t)+Cal | P sp (1 —t0) "IELIE
(]
. 8— 24n—n, 4p+{n-1)(p—1
where § = ooy, , P = % 1= &A= 2p+'n,p—€1’ n= pzé-tn(;zipl) L,

From Lemma 5.8 and Definition 5.1 we also obtain

Corollary 5.2. Let ¢ € C1(Q) be a solution and v a forward solution of the respective
equations on Sy:

$e+1/2Va8" =P+€& 5 ¢+1/2/Vaypf =P
such that ¥(z,0) = ¢(z,0) on Q. Then

(@, T) > 6(z,T) = [C1ll€]2 + Cal Plugl€]17]

where 8,03 as defined in Lemma 5.8.

5.2 Proof of the main Theorem

For the proofs of the results in Section 5.1 see [W1].

First, the existence of a minimizer for £(ug, #1) in Ag(po, p1) follows immediately by the
lower-semi-continuity of ||u|l2 and the local compactness of Hz. Next, we shall prove the
chain of inequalities:

E(po, p1) = Lpo, p1) = Ko, p1) > E(pos 1)
from left to right, together with the existence of a maximizer for £(uo, y1) in Ap.
hd 8(/“05 Nl) 2 E(/J'O’ ﬂ'l)

From Lemma 4.5 and Corollary 4.2 there exists a sequence ¢, — 0 and ¢, € C*(€)
such that

£ < e, (9n) < -0 (e5°) l&ells + /Q Ok, T)pur (dz) — /n or(z, 0)po(dz) < C (5.11)
where a > 0, s >n+1 and

& = ¢k,t + 'Vm¢k‘2/2 —P .

Let now = : Qf —  be a flow such that
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) supeq Jo P—“” ”} dt == E < oo,
ii) E(z,0) =z, Ex(, T)po = ma

By Lemma 5.8 and (i) we obtain

S1(2@T),T) = 94(2,0) < 3B +|Ploo + Culéel 2 + Cal Pllspléellf -

Integrate the above against o on 2 and use (ii) to obtain

./ ok (x, T)p1(dx) — / o (@, 0)po(dz) < 1E+ |Ploo + C1l1k||22 + Cal| Plluip €112

(5.12)
Using s > n+1 and 8 < 1/2 (c.f. Lemma 5.8) we obtain from (5.11) and (5.12) that
[l€klls — 0 as e — 0. In addition

liminf [ /Q b (2, T () — /Q ¢>k(m,0)uo(d:c)] >C . (5.13)

Now, we may replace the sequence @5 by a sequence of forward solutions 1y, of the
equation

Boat 3 VB =P 5 Tul@0) = (2,0 .

This is also a maximizing sequence which, by Corollary 5.2 together with ||€||s — O,
yields

limint [ [ o@D - [ wk(z,omoux)] >C . (5.14)

From Lemma 5.2 we also obtain a uniform estimate on %, in LIP(Q x (0,T]). In
particular, the sequence 9, (;T) is uniformly Lipschitz on Q.
Now, define 9, to be the backward solutions of (3.6) subjected to ¥, (z,T) = ¥i(z,T).

From the ﬁrst part of Lemma 5.2, ¥, (z,0) < i (z,0) on Q so (5.14) is satisfied for
Y, as well. Moreover, by the last part of Lemma 5.2 ¢, are uniformly bounded in
the Lipschitz norm on Q;. So, we can extract a subsequence of ¥, which converges
uniformly on LIP(2 x [0,T]) to a backward solution ¢.In particular, both ¥(,T) and

¥(,0) are Lipschitz. Let % be the forward solution satisfying ¥(,0) = %(,0).
Corollary 5.1 and definition 5.3, the pair (¥, 1) is a reversible pair and both functions

are in Ap (see the first part of Lemma 5.3). Moreover, the inequality (5.14) is preserved
in the limit process, so

[ #te D) - [ wizatds) > £
Q Q

holds for both 4 = v and 9 = 9 (recall ¥ = ¢ on Q x {0} and Q x {T}).



o L(po,p1) = K(uo, p1)
Recall that there exists a minimizer of £(uo, 11) by the first part of the Theorem. Let
u be such a minimizer. We now use the regularization Lemma 2.3 to approximate y by
smooth densities p, = pn(,t)dzdt. Let v, be the regularized velocity field. Then

tim [ oo, )pn(as )z = [l (519
I
as well as
lim / pn(@, ) P(z, t)dadt = / Pu(dzdt)
n=0 JO, Qr
Define
mn(z,t) = pn(z,t)vn(z,t) . (5.16)
Then my, € C1(£). Define now
c _ ma(z,t)
vn(x’t) - pn(x,t)+s

By assumption, v¢, is Lipschitz on £, t € I. Define psf) (z,t) as the solution of

(&
ag;' +V, [v;pgp] =0 ; p¥(z,0) = pn(z,0) . (5.17)

Since v, is Lipschitz, we may define the flow associated with it as I‘fs) : Q0 — Q for
t € I, namely I"fe)(x) = Y(z)(t) Where gy = v}, (y(r)(t),?) and y()(0) = z. It follows
that I‘EE)'#pn(-,O)da: = psf)(-,t)dx for all t € I. In particular:

K (pn(:c, 0)dz, pgs)(z,T)dx) < /Q pn(z,0)Jp (:c r{;)(x)o,cr) dz
= / pn(z,o)in (z,T%(z),0,t) dtde
o dt

0
= L Pn(l', 0) [a.]p(l‘,rte) (.’D),t) + Vy:l"g(z)JP(wa Y, 07 t) ' vrs'l, (Fg(m)’t)] dzdt (518)
I

From (5.7)
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1 1
atJP(337 Y, Oa t)+VyJP(ma ya0$t)'vi(yat) = P(yat)+§ ‘v%|2 (y’t)_'é ]Vpr(a':,y,O, t) - vfz(ys t)|2 :

Substitute the above in (5.18) at y = I':(z) to obtain

K (pn(z, 0)dz, o9 (2, T)dz) < /Q on(z,0) [P (T(2),t) + % o2 (rg(x),t)] dodt

_ /Q , 0 (2, 1) B— 72 (a:,t)+P(a:,t)} dodt < /Q , 9 (2, 1) [% o2 (m,t)-i—P(a:,t)] ddt
' (5.19)
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where the last inequality follows from (5.16). We next show that

lim
e—0 Q

(&) (z,t) = pu(z,t)| dz =0 (5.20)

for any t € I. In fact, we note that p,+e solves equation (5.17), hence w') := p,—p'& +e

solves this equation as well. Since w,(f)(m, 0) = € > 0 we obtain that wﬁf) > 0 over Qy

and, moreover,

/Q pn(2,t) = p)(z,1)| dz — Qe < /Q [wte.) =/n

for all t € I. Now we take first the limit ¢ — 0 then the limit n — co in (5.19). The r.h.s
of (5.19) converges to L(uo, u1). Now, pn(z,0)dz and pé(x, T)dx converges, as n — 0o
and ¢ — 0, weak—x* to uo and 1, respectively. Since K is lower-semi-continuous in
both o and p; we obtain the desired result from (5.19) . '

wlf)(2,0)| = Qe

o E(po, p1) £ K(po, p1)-
Let A € C*(Q x ) be an optimizer of K. Since wg) A = p; then

[ ex(@u(da) = [ [orwazay) and [ enteuotaz) = [ [ o@x(aads)

for any continuous ¢1, 2. Set ¢1(z) = ¥(z,T) and ¢o(z) = ¥(z,0) with ¢ an optimal
backward solution of problem £. Then

£= [ @ Tyntae) - [ wio0uo(a) = [ [ 160, 7) ~ (e, 0] o)

Since 9 is a backward solution then

/Q /Q [¥(3, T) - (z,0)] Mdady) < /Q /Q Jp(2,,0, T)Ndady) = K .

. We have proved

| 5 Tao) - [ B, 0po(ae) = | 4@ Do) - [ iz 0o(da) = Liso, )

(5.21)
We now turn to the proof of parts (i)-(vi) of the Theorem.

i) Let u(® be a minimizer of £. Given t € I, let u; /2= ,ugf)) € M. Let us consider u(V
to be the restriction of 4 to Q x [0,¢] and u® the restriction of u© to Q x [t,T).
Evidently, z!) is a minimizer of Lp on the set of orbits A2 (40, 1/2) confined to [0, 1]

while (? is a minimizer on Az(p1/2, u1) with respect to the same set, confined to [t, T.
In particular, '

Lp(u) + Lp(u®) = Lp(u®) = L(uo, p1) - (5.:22)
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By what we know so far,

/ B(x,t)p1 2 (dz) — / ¥(x,0)po(dz) < Lp(u®) (5.23)

Q Q

/ ¥(z, T)p1(dz) — / B(z, )i j2(de) < Lp(u®) . (5.24)
Q Q

However, if we sum (5.23) and (5.24) and use (5.22) and (5.21), we conclude that there
is, in fact, an equality in both (5.23) and (5.24). Same argument holds for ¢ as well.
Thus

‘/QE(-’L', t)#1/2(dw)"/na(1‘a 0)po(dz) = Lp(uV)) = /(;Q(x,t)ﬂ1/2(dx)“A£(wa0)uo(dw)-
Since 9¥(z, 0) = ¥(x,0),
[ Bt - (@8] mpatae) =0.

But, ¥ > ¢ by Lemma 5.3. Hence P(z,t) = P(z,t) on supp (,ug)))) = supp (p1/2)-
This, together with Lemma 5.6, proves that Supp (u(o)) NQ, € Ko = {(z,t) ; t €

I ,¢(z,t) = ¥(z,t)} and, in particular, that ¢ is differentiable at any point on the
support of u(© in Q.

ii) This part follows from Lemma 5.7. In addition, the limits lim,_7 T7 and lim,_o T%
exists since V% is uniformly bounded on Kj. In particular, the Lipschitz extension v
can be chosen to be a uniformly bounded function on 27 as well.

iii) Suppose there are two optimal solutions 1, %2 of £(uo, u1). To prove the uniqueness for
the vector field v we claim that

/ﬂ Va1 — Vaba|? u(dzdt) = 0
I

for any minimizer & € Ag(uo, p1) of L(po, p1). Let ¥ = aghy +(1—a)ih; where a € (0,1).
Then
(Va2 = | Vot 2 + (1 — )|Vt — a(1 — )| Vaths — Vot

so Py + |Vg9|2/2 < P and
/ [ + [V ?/2] u(dadt) < / Pu(dedt) (5.25)
Qr Qr

if Vz1p1 # Vge at some point in the support of a minimizer u (recall that both Vi,
i = 1,2 are continuous on the support of ¢ by Lemma 5.6).

On the other hand,

o) = [ (@ Thn(de) = (o, Opols)] = Lo ) (520
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follows from the assumptions that both 1)1, 12 are maximizers of £. From (4.10), (5.25)
and (5.26) it follows that

Lo(u) = gl | Putdodt) > Fllul+ [ (oot Va6l 2 u(dadt) > (o, ) = £(to,m)

in contradiction to the assumption that y is a minimizer of Lp.

Let, again, p € Ag(uo, #1) a minimizer of £ and ¢ a maximizer of £. Since 1 satisfies
the HJ equation on a closed set Ky containing the support of x4 in Qj, and is a C!
function there, we can extend it as a C' function on Qy, so ¢ € C*(Qy,) N LIP(Qy)
and, by (5.26),

= [ [ 31929 - P | oty [ 196a, () - (a0l = Ll ) = L)
Qr Q

(5.27)
We now use Corollary 4.1 (4.10) to observe that 1 is a maximizer of the left of (5.27),
so by taking the variation ¢ = ¥ + en with n € C1(£;) we obtain

/ (e + Vb - Vam)u(dadt) + / (2, 0)po(dz) — / n(e, T)ua(dz) > 0
Qr Q Q

for any such 7. Replacing n by —n we obtain the equality above. Moreover, by the
same argument following (5.22) to (5.24) we also obtain that

i
/to /Q (e + Vo - Vompue(da) + /Q (s t0) sy () — /Q n(e, u(dz) =0, (5.28)

hold for any 0 < tg < ¢t < T. In particular, u solves the weak form of the continuity
equation with v = V9.

Now, we know that, by the additional assumption on P, that K, is invariant with
respect to the flow T}, induced by the Lipschitz vectorfield v extending V1. We shall
now prove that y is transported by this flow. That is, for any choice of to,t € (0,T),
we need to show that u() = v where

1= [Th) 4 bto -

Since T is the flow generated by v and K| is invariant with respect to v it follows that
~ = 7.dt is supported on K and solves the weak form of the continuity equation as well.
Setting (¢ = p() — ¥, ¢ :="(¢dt we obtain from (5.28)

/ t / (e +v - Van)Co (da)dr = / n(z, £)C,(dz) (5.29)
to JQ Q

for any n € C*([to, t]; R) where we used (;, = 0.
Let now h = h(z) € C*(Q). Let n = n(z,7) be a solution of

Nr+v-Ven=0 ; n(z,t)=h(z), to <7<t (5.30)



Since, by Lemma 5.6 and Lemma 5.7, the vector field V,¢ = v is locally Lipschitz
continuous on K which is invariant with respect to the induced flow, we can find a
solution of (5.30) on K N (2 x [tg, t]) via

n(z,7) = h (TH(z)) . (5.31)

The function 7 so defined can be extended into a C! function on € x [to,t]. It satisfies
(5.30) on Kj, so, recalling that ¢ is supported on Kj, we substitute now (5.30) in (5.29)
to obtain ¢; = 0 and the proof of part (iv).

v) The optimality of T is evident from the proof of (iii) and (iv).

vi) From the last part of Lemma 5.4 it follows that ) is a reversible solution so Lemma 5.6

implies that ¥; + |V,1|?/2 = 0 is satisfied everywhere on Qy,. The flow induced by such
a solution is given by Tt (z) = z + (t — 7)V¥(z, 7) and, by (iv) and (v), it transports

H(r) tO p(y) optimally.

6 Appendix

Proof. of Proposition 4.1:
Define

B(c*z):=F(c")-<cz>+<hz> .
First, note that

I= c*lél(f:. sup ®(c*,2) .

Indeed, if ¢* ¢ Z* then sup,cz ®(c*,z) = oo while, if ¢* € Z* then ¢(c*,2) =

definition. We have, therefore, to show
inf sup ®(c*, z) =sup mf L2(c%2)
c*€C* zez z€Z ¢*€C

It is trivial that
inf supq) c*z) 2> sup 1nf L8(c%2) =1,
c*eC* ,
so we only have to show that
inf sup ®(c*,2)<I.

c*e *
Define, for any 2 € Z -
A, ={c"eC"; ®(c",2)<I} .

Note that (6.1) follows provided
A #0.

z€Z

F(c*) by

(6.1)

(6.2)

The next step is to show that, for any finite set 21,...2, € Z, the set [, A;, # 0. The proof

of this part can be taken from the proof of Theorem 2.8.1 in [Ba).

Finally, note that Ay C Ap as defined in the Proposition, since I < I. It follows that A

is compact, and that the non-empty intersection of finite sets implies (6.2).

O

178



179

Proof. of Lemma, 4.7:
Let p1(r) be a smooth, positive function with compact support such that

|Sn_1‘/0 rlo(rydr =1 ; /0 *p1(r)dr == My, ; /0 r=1pPdr .= L(p) .

Set also
pa(r) = a"pr(ar) .
Define .
v(m t)— t—:ttot +E(t) iftOStS(to+t1)/2
t_f(tt) +x(t) if(to+t1)/2<t<t

(z,1) iy Po (Ji—mg)') if to <t < (to+t)/2
p\Z, ) = _ .
(tlit)ﬂpa (J@tlﬂ;‘(tt)l) if (to + t1)/2 <t<ty

A direct calculation shows that p satisfies the weak form of the continuity equation:
pt+ Vg (vp) =

Let us now consider the interval [to, (to + ¢1)/2]. The second interval [(to + £1)/2, %] can be
treated analogously. Define the lifting of p as

lv—v?

flz,t,v) =" /M exp ( ) plz,t) .

It follows immediately that

f v’ f(z,t,v)dv = %n-p(:c, t) +v2p(z,t) ; / |f[Pdv = p~™/ 2 21=P)/ngn(1=P) pp (5 ¢) |
n RTL

Moreover:
/ et =15 [ (a0 = (1=t 0-P )™ / PR(r)dr = "D (t—to)n(-P|§™1| L (p)
o0
/Q v(z, ) p(e, t)de = [2(t)]" + |s" | /0 " pa(r)dr = [3(¢)|” + 8" o Mp
In particular:
(to+t1)/2 (to+t)/2 .
// / |Z|” dt + Ci|t1 — tola™2 + O(0)
to to
and

(to+t1)/2
/ / pp = C'3|t1 _ to|n(1-—p)+lan(p—1)
to



Proof. of Lemma 5.8
We use Corollary 4.1 with u supported on Q x [t1,t0] and ugy = g4, ¢, = 0z, to obtain

1 2
Blan,t1) — $(zo,t0) < < llg + l | [ @ ol putan) . 63)
0
By Lemma 4.7 we can find such a u for which:
2 “o s 2 | 2
B < [ fa + Cilts —tola™ (6.4
to
and, for the density p = py:
t1
/ PP < Calty — to[P1-P)F1gn(P—D) (6.5)
Q Jto

where p < 1+ 1/n and « any positive constant. Since p is supported, for any ¢, in a domain
of diameter (¢; — to)a~! it follows

t )2 t! 1
/ (¢ + IV$¢12/2)pdmdt =0 (L—(tla—to)> + P(Z(t),t)dt +/ t Epdzxdt ,
y)

Q Jtg to to

where L is the Lipschitz norm of P. By (6.5) we obtain

t1
. / / Epdzdt
Q Jtg

Collecting (6.3) to (6.6)

< lpllpllélls < C3/2lt1 = to|1-PIF U/ =1/)jg], (6.6)

180

1 t1 , L — 2
é(z1,t1)—9(z0,t0) < 3 / ]5]2dt+C’||§||5}t1—t0’[n(l—p)+1]/pan(p—1)/p+cl|t1_to*a—2 ) ( __(_tzz_fgl, ) )
to

The choice o = ||§||s B(ty —to)” where y = %—i{% and g = 2p_+rﬁm is the optimal choice
and yields the desired result. . a
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