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Abstract

In this note, we review our recent results on the mean field equa-
tion for arbitrarily-signed vortices. Our main interest is the blow-up
analysis to the equation, that is, the classification of the asymptotic
behaviour of the non-compact solution sequences. We also mention
some applications of the blow-up analysis including the budinger-
Moser type inequality relating to the equation.

This is ajoint work with Prof. Takashi Suzuki of Osaka University.

1 Introduction
Let $(M, g)$ be a two-dimensional compact orientable Riemannian manifold
without boundary. We are concerned with the mean field equation for
arbitrarily-signed vortices on $(M, g)$ :

$- \Delta_{g}v=\lambda_{1}(\frac{e^{v}}{\int_{\Lambda 4}e^{v}dv_{g}}-\frac{1}{|M|})-\lambda_{2}(\frac{ev}{\int_{M}evdv_{\mathit{9}}}=-\frac{1}{|M|})$ , $\int_{M}vdv_{g}=0$ ,

where $\Delta_{g},$ $dv_{g}$ , and $|M|$ are the Laplace-Beltrami operator, the volume for
$\mathrm{m}(\mathrm{l})$

,
and the volume of $M$ , respectively. $\lambda_{1}$ and $\lambda_{2}$ are non-negative constants.

It describes the mean field of the equilibrium turbulence with arbitrarily
signed vortices [24, 12, 22, 26], and is obtained by Joyce and Montgomery
[15] and Pointin and Lundgren [34] from different statistical arguments. Here,
these vortices are composed of positive and negative intensities with the same
absolute value, and $v$ and $\lambda_{1}$ : $\lambda_{2}$ are associated with the stream function of
the fluid and the ratio of the numbers of the signed vortices, respectively, see
Section 2.

When we assume all the vortices have a definite-signed (constant) inten-
sity, the mean field equation (1) reduces to the case $\lambda_{2}=0$ :

$- \Delta_{\mathit{9}}v=\lambda(\frac{e^{v}}{\underline{\int_{M}}e^{v}dv_{g}}-\frac{1}{|M|})$ , $\int_{M}vdv_{g}=0$ , (2)
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which is studied by several authors [5, 6, 19] in this context. Moreover this
equation and it generalization

$- \triangle_{g}v=\lambda(\frac{K(x)e^{v}}{\int_{M}K(x)e^{v}dv_{g}}-\frac{1}{|M|})$ , $\int_{M}vdv_{g}=0$ , (3)

with the inhomogeneous coefficient $K(x)\geq 0$ widely appears in several fields
such as in the self-dual gauge field theory [45], in the stationary system of
chemotaxis or in the self-interacting particles [43], and in the prescribing
Gaussian curvature problem [2], see also [25, 42, 4, 21, 20, 41, 13, 37, 29, 30,
3, 9, 10]. Among them, here we recall the following fact:

Fact 1.1 ([4, 21, 20]). Suppose a sequence of non-negative constants $\lambda_{n}arrow\lambda$

as $narrow\infty$ . Then the sequence of solutions of (2) for $\{\lambda_{n}\}$ is relatively
compact in $E= \{w\in H^{1}(M);\int_{M}w=0\}$ if

A $\in[0, \infty)\backslash 8\pi \mathrm{N}$ .

In contrast to Fact 1.1, we establish the following result for the indefinite
cases:

Theorem 1.2 (Main Theorem [32]). Suppose a sequence of pairs of non-
negative constants $(\lambda_{1,n}, \lambda_{2,n})arrow(\lambda_{1}, \lambda_{2})$ as $narrow\infty$ . Then the sequence
of solutions of (1) for $\{(\lambda_{1,n}, \lambda_{2,n})\}$ is relatively compact in $E$ if

( $\lambda_{1}$ , A2) $\in([0,4(2+\sqrt{5}\pi))\backslash 8\pi \mathrm{N})\cross([0,4(2+\sqrt{5}\pi))\backslash 8\pi \mathrm{N})$ . (4)

Especially, every sequence of solution of (1) is relatively compact if
( $\lambda_{1}$ , A2) $\in[0,8\pi)\cross[0,8\pi)$ .

Compared to Fact 1.1, our result Theorem 1.2 seems to be a partial result.
Nevertheless it is enough to get the following applications.

The equation (1) is the Euler-Lagrange equation of the functional $J_{\lambda_{1},\lambda_{2}}(u)$

on $E$ :

$J_{\lambda_{1},\lambda_{2}}(u)= \frac{1}{2}\int_{M}|\nabla_{g}u|^{2}dv_{g}-\lambda_{1}\log\int_{M}e^{u}dv_{g}-\lambda_{2}\log\int_{M}e^{-u}dv_{g}$,

When $\lambda_{2}=0$ , the well-known Trudinger-Moser inequality on $(M, g)[14]$
indicates the following inequalities for $J_{\lambda}(u):=J_{\lambda,0}(u)$ :

$\inf_{v\in E}J_{\lambda}(v)>-\infty$ if $\lambda\in[0,8\pi]$

(5)
$\inf_{v\in E}J_{\lambda}(v)=-\infty$ if $\lambda>8\pi$ .
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Here, we have

$J_{\lambda_{1},\lambda_{2}}(v)= \frac{1}{2}(1-\frac{\lambda_{1}}{8\pi}-\frac{\lambda_{2}}{8\pi})||v||_{E}^{2}+\frac{\lambda_{1}}{8\pi}J_{8\pi}(v)+\frac{\lambda_{2}}{8\pi}J_{8\pi}(-v)$ ,

and therefore,

$\inf_{v\in E}J_{\lambda_{1},\lambda_{2}}(v)>-\infty$ if $1- \frac{\lambda_{1}}{8\pi}-\frac{\lambda_{2}}{8\pi}\geq 0$ .

Using Theorem 1.2, however, this trivial inequality is improved as follows :

Corollary 1.3 ([32]). It hold that

$\inf_{v\in E}J_{\lambda_{1},\lambda_{2}}(v)>-\infty$ if $(\lambda_{1}, \lambda_{2})\in[0,8\pi]\cross[0,8\pi]$ , (6)

and in particular, $J_{\lambda_{1},\lambda_{2}}$ has a global minimizer on $E$ if $0\leq\lambda_{1},$ $\lambda_{2}<8\pi$ .

Figure 1: The region of the parameters for the Trudinger-Moser inequality.

Similar inequalities for a bounded domain $\Omega\subset \mathrm{R}^{2}$ with the Dirichlet or
the Neumann boundary conditions are easily derived from Corollary 1.3, see
Section 4.

As we see in Corollary 1.3, the functional $J_{\lambda_{1},\lambda_{2}}(v)$ has a global minimizer
if $(\lambda_{1}, \lambda_{2})\in[0,8\pi)\cross[0,8\pi)$ and this indicates the solution of the equation
(1). But this functional is not bounded from below if $\lambda_{1}>8\pi$ or $\lambda_{2}>8\pi$ ,
that is, the inequality (6) is optimal

$\inf_{v\in E}J_{\lambda_{1},\lambda_{2}}(v)=-\infty$ if $\lambda_{1}>8\pi$ or $\lambda_{2}>8\pi$ . (7)
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In fact, we have

$J_{\lambda_{1},\lambda_{2}}(v)=J_{\lambda_{1}}(v)- \lambda_{2}\log\int_{M}e^{-v}dv_{g}$ (8)

and $\mathrm{h}\mathrm{o}\mathrm{m}$ Jensen’s $\mathrm{i}\mathrm{n}e$quality

$\log\int_{M}e^{-v}dv_{g}\geq\log|M|$ . (9)

Combining (5), (8), and (9) (and similar argument if $\lambda_{2}>8\pi$), we obtain
(7). Therefore we need another device to get solutions if $\lambda_{1}>8\pi$ or $\lambda_{2}>8\pi$ .
As another application of Theorem 1.2, we are able to prove the existence of
solutions of (1) for some of these cases by variational methods.

For $\lambda_{2}=0$ cases (2), we have already two variational methods by Struwe-
Tarantello [41] and Ding-Jost-Li-Wang [13]. The former one construct a non-
trivial solution by the mountain pass method when $M$ is a flat torus with the
fundamental cell domain $[- \frac{1}{2}, \frac{1}{2}]\cross[-\frac{1}{2}, \frac{1}{2}]$ and $\lambda\in(8\pi, 4\pi^{2})$ . Discussing the
general setting of the Riemannian surface, (2) has a non-trivial mountain pass
solution (Struwe-Tarantello solution) if A $\in(8\pi, \mu_{1}|M|)$ , where $\mu_{1}$ denotes
the principal eigenvalue $\mathrm{o}\mathrm{f}-\Delta_{g}$ . On the other hand, Ding-Jost-Li-Wang [13]
showed the existence of solution by a higher dimensional min-max method
if $M$ has genus $g\geq 1$ and $8\pi<$ A $<16\pi$ . This solution may be a trivial
solution $v=0$ to (2), though we consider that it may be non-trivial if $\lambda\in$

$(8 \pi, \min\{\mu_{1}|M|, 16\pi\})$ and may be different even from the Struwe-Tarantello
mountain pass solution $\mathrm{h}\mathrm{o}\mathrm{m}$ the structure of each variational scheme and the
Chen-Lin’s formula [10] to (2) concerning the total degree. See [7] for further
discussion on this point.

The important fact in both variational methods is that it is not known
whether the Palais-Smale condition for $J_{\lambda}$ holds or not if $\lambda>8\pi$ . Therefore
it is not obvious that the min-max values determined by each variational
schemes are indeed critical values. To overcome this difficulty, they used
the so-called Struwe’s Monotonicity $\mathfrak{R}ck$, that is, they showed the min-
max values are indeed the critical values for almost every parameter values
in each range by using the monotonicity of $J_{\lambda}$ in A. Then, using Fact 1.1,
they prove the existence of the solutions for parameters in residual set by the
approximating argument. For $\lambda_{2}\neq 0$ cases, the similar variational structures
and the monotonicity in the parameters $\lambda_{1}$ and $\lambda_{2}$ of $J_{\lambda_{1},\lambda_{2}}$ also exist and
Theorem 1.2 is sufficient to prove the existence of solutions for parameters
in residual set. The results are summarized as follows:

Theorem 1.4. Suppose $\lambda_{1}>8\pi$ or $\lambda_{2}>8\pi$ . Then the followings hold:
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1. (Struwe-Tarantello type solution) The functional $J_{\lambda_{1},\lambda_{2}}$ has a mountain-
pass non-trivial critical point if

$\lambda_{1}+\lambda_{2}<\mu_{1}|M|$ .

(When $M$ is the flat torus $[- \frac{1}{2},$ $\frac{1}{2}]\cross[-\frac{1}{2},$ $\frac{1}{2}]$ , the value $\mu_{1}|M|=4\pi^{2}.$)

$\mathit{2}$ . (Ding-Jost-Li-Wang type solution) If $M$ has genus $\geq 1$ , the functional
$J_{\lambda_{1},\lambda p}$ has a min-max critical point if

$\lambda_{1}+\lambda_{2}<16\pi$ .

Figure 2: The parameter regions for variational solutions.

See Section 5 for the precise definitions of the min-max schemes. The
important question of the non-triviality of Ding-Jost-Li-Wang type solution
will be studied in a forthcoming paper.

The key to prove Theorem 1.2 is to assume a solution of (1) to be a
solution of a Liouville system. Indeed, suppose $u_{1}$ and $u_{2}$ are solutions of the
equations

$- \Delta_{\mathit{9}}u_{1}=\lambda_{1}(\frac{e^{v}}{\int_{M}e^{v}dv_{\mathit{9}}}-\frac{1}{|M|})$ , $\int_{M}u_{1}dv_{g}=0$ ,

$- \Delta_{g}u_{2}=\lambda_{2}(\frac{ev}{\int_{M}evdv_{g}}=-\frac{1}{|M|})$ , $\int_{M}u_{2}dv_{g}=0$ .
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Then it holds that $v=u_{1}-u_{2}$ and $u_{1}$ and $u_{2}$ are the solutions of the Liouville
system

$- \triangle_{g}u_{1}=\lambda_{1}(\frac{e^{a_{11}u_{1}+a_{12}u_{2}}}{\int_{M}e^{a_{11}u_{1}+a_{12}u_{2}}dv_{g}}-\frac{1}{|M|})$ $\int_{M}u_{1}dv_{g}=0$

$- \triangle_{g}u_{2}=\lambda_{2}(\frac{e^{a_{21}u_{1}+a_{22}u_{2}}}{\int_{M}e^{a_{21}u_{1}+a_{22}u_{2}}dv_{g}}-\frac{1}{|\mathrm{J}I|})$ $\int_{M}u_{2}dv_{g}=0$ (10)

for $A=(a_{ij})=$ . When$A=$ , the Liouville system

is called the $SU(3)$ Toda system that arises in non-abelian relativistic self-
dual gauge theory studied by several authors mathematically [17, 18, 23, 7,
31, 16]. Using the similar argument to [17] for similar results for $SU(3)$ Toda
system, we establish Theorem 1.2 and Corollary 1.3. Moreover Theorem 1.4
1 and 2 are similar to the results of $[23, 7]$ , respectively. Furthermore, similar
to [31] for $SU(3)$ Toda system, we are able to improve Theorem 1.2 as follows
by using the rescaling argument \‘a la Li-Shafrir [21]:

Theorem 1.5 ([33]). The conclusion of Theorem 1.2 also holds if we rePlace
(4) with

$(\lambda_{1}, \lambda_{2})\in([0,24\pi)\backslash 8\pi \mathrm{N})\cross([0,24\pi)\backslash 8\pi \mathrm{N})$

As we remarked here, the resemblances between our equation (1) and
$SU(3)$ Toda system widely exist. Generally speaking, (1) is simpler to handle
than $SU(3)$ Toda system. For example, it is not necessary to show Theorem
1.5 to get the Ding-Jost-Li-Wang type solution (Theorem 1.4, 2). On the
other hand, it is necessary for $SU(3)$ Toda system to show the fact like
Theorem 1.5, which was done in [31], before we get the Ding-Jost-Li-Wang
type solution obtained in [7].

We also note here that another result indicates Corollary 1.3 exists [39]
but the proof is completely different.

The plan of this note is as follows: in Section 2, we review the derivation
of the mean field equation and see the physical meaning of the parameters $\lambda_{1}$

and $\lambda_{2}$ . In Section 3, we sketch the proof of our main theorem (Theorem 1.2).
We also mention some conjecture relating to Theorem 1.5. In Section 4, we
sketch the proof of the Trudinger-Moser type inequality (Corollary 1.3) and
discuss other versions of it for $\Omega\subset \mathrm{R}^{2}$ . In Section 5, we see the variational
schemes to prove Theorem 1.4.
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2The derivation of the mean field equation
Here we briefly review the derivation of the equation (1) by Pointin and
Lundgren [34] and see the physical meaning of the parameters $\lambda_{1}$ and $\lambda_{2}$ .
To simplify the presentation, we assume the domain is a simply connected
$\Omega\subset \mathrm{R}^{2}$ .

Suppose $\Omega$ is filled with incompressible non-viscous fluid and the vorticity
field has the form $\omega(x, t)=\sum_{i=1}^{N}\alpha_{i}\delta_{x_{i}(t)}$ , where $\delta_{x}$ is the Dirac measure
supported on $x$ and the intensities $\alpha_{1},$ $\ldots$ , $\alpha_{N}$ satisfy

$\alpha_{i}=\{$

$\alpha(>0)$ , $(i=1, \cdots, n^{+}N)$

$-\alpha$ , $(i=n^{+}N+1, \cdots, N)$ ,

where $0\leq n^{\pm}\leq 1$ and $n^{+}+n^{-}=1$ . Under the appropriate physical
assumptions, the probability density functions of each vortex found in $\Omega$

consist of two types :

$\rho_{1,N}^{+}=\int_{\Omega^{N-1}}\mu_{N}dx_{2}\cdots dx_{N}$ , $\rho_{1,N}^{-}=\int_{\Omega^{N-1}}\mu_{N}dx_{1}\cdots dx_{N-1}$

where $\mu_{N}$ is the microcanonical measure at the energy $E=E(x_{1}, \ldots , x_{N})$ ,
that is,

$\mu_{N}=\frac{\delta(H-E)}{Q(E)}$ , $Q(E)= \int_{\Omega^{N}}\delta(H-E)dx_{1}\cdots dx_{N}$ .

Pointin-Lundgren considered here the mean field limit called the high
energy scaling limit as $narrow\infty$ subject to

$\frac{E}{\alpha^{2}N^{2}}=O(1)$ , $(\tilde{\beta}:=)\alpha^{2}N\beta=O(1)$ ,

where $E$ is the total energy of the vortices and

$\beta=\frac{1}{k_{B}}\frac{\partial}{\partial E}S(E)$

is the inverse temperature of the system. Here $k_{B}$ is the Boltzmann constant
and $S(E)$ is the entropy.

Suppose $\rho_{1,N}^{\pm}arrow\rho_{1}^{\pm}$ in this limit in an appropriate sense, where $\rho_{1}^{+}$ and
$\rho_{1}^{-}$ represent the mean field of the positive and negative vortices, respectively.
Then they derived that the function

$v=- \sqrt{}^{\sim}\Phi(x)=-\sqrt{}^{\sim}\int_{\Omega}G_{\Omega}(x, y)[n^{+}\rho_{1}^{+}(y)-n^{-}\rho_{1}^{-}(y)]dy$
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proportional to the stream function $\Phi$ determined by the mean field of the
vortices $\rho_{1}^{\pm}$ must satisfy

$- \triangle v=\lambda_{1}\frac{e^{v}}{\int_{M}\mathrm{e}^{v}dv_{g}}-\lambda_{2}\frac{ev}{\int_{M}evdv_{g}}=$ in $\Omega,$ $v=0$ on $\partial\Omega$ ,

where $\lambda_{1}=-\sqrt{}^{\sim}n^{+},$ $\lambda_{2}=-\tilde{\beta}n^{-}$ , and $G_{\Omega}(x, y)$ is the Green function $\mathrm{o}\mathrm{f}-\triangle$

with the Dirichlet boundary condition. Therefore $\lambda_{1}$ and $\lambda_{2}$ are affected by
$n^{+}$ and $n^{-}\cdot$ , respectively.

3 On the proof of Theorems 1.2 and 1.5
The procedure of the proof of Theorems 1.2 is as follows:

Step 1 Reduction to the Liouville system.

Step 2 Reduction to the definite signed case with variable coefficient.

Step 3 The analysis of the collision of the concentration points.

We have already seen Step 1 in Section 1, see (10).
Here we recall the results for $\lambda_{2}=0$ cases. Brezis-Merle [4] and subse-

quent Li-Shafrir [21] and Li [20] established Fact 1.1 by the blow-up analysis,
that is, the classification of the limit of the non-compact solution sequences
for (2). Below we explain this along [20].

Suppose $\{\lambda_{n}\}$ be a sequence of non-negative numbers satisfying $\lambda_{n}arrow\lambda$

and $\{v_{n}\}$ be a corresponding non-compact sequence of solutions for (2) in $E$ .
Then they proved that

$\lambda_{n^{\frac{e^{v_{n}}}{\int_{M}e^{v_{n}}dv_{g}}}}arrow\sum_{x\mathrm{o}\in S}8\pi\delta_{x_{0}}$

$\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}\mathrm{l}\mathrm{y}*$

up to subsequence by the combination of some elliptic $L^{1}$ type estimate and
the rescaling argument. Therefore

$\lambda_{n}(=\int_{M}\lambda_{n}\frac{e^{v_{n}}}{\int_{M}e^{v_{n}}dv_{g}}dv_{g})arrow 8\pi\neq S\in 8\pi \mathrm{N}$

if the solution sequence is non-compact and we get Fact 1.1. There re-
sults also holds to some extent to the equation (3) with varying coefficients
$\{K_{n}(x)\}$ . Now we discuss $\lambda_{2}\neq 0$ cases.

135



Step 2 Putting $K_{i,n}(x)=e^{-u_{j,n}}(i\neq j)$ , we are able to reduce the each

component of (10) for $A=(a_{ij})=$ to

$- \triangle_{g}u_{i}=\lambda_{i,n}(\frac{K_{i,n}(x)e^{u_{l,n}}\prime}{\int_{M}K_{i,n}(x)e^{u_{n}}\cdot dv_{g}},-\frac{1}{|M|})$ .

Similar to the constant coefficient case, we have

$\lambda_{i,n^{\frac{K_{i,n}(x)e^{u_{i,n}}}{\int_{M}K_{i,n}(x)e^{\mathrm{u}_{l,n}}dv_{\mathit{9}}}}}arrow\sum_{x\mathrm{o}\in S_{i}}8\pi\delta_{x_{0}}$
$\mathrm{w}\mathrm{e}\mathrm{a}\mathrm{k}\mathrm{l}\mathrm{y}*$

up to subsequence when $\{u_{i,n}\}$ is not relatively compact in $E$ provided

$\{K_{i,n}(x)\}$ is bounded in $W^{1,\infty}(M)$ , $K_{i,n}(x)\geq\exists C>0$ ,

where $C$ is independent of $n[20]$ . But these are heavy for our problem
because we have only

$\{K_{i,n}(x)\}$ is bounded in $W^{1,q}(M)\forall q\in[1,2)$ , $K_{i,n}(x)\geq 0$ .

Indeed, V$K_{i,n}(x)=-e^{-u_{j,n}}\nabla u_{j)n}$ and $\{e^{-u_{j,n}}\}$ is uniformly bounded in $L^{\infty}(M)$

because there exists $C>0$ independent of $n$ such that $u_{j,n}\geq-C$ from the
existence of the lower bound of the Green function $\mathrm{o}\mathrm{f}-\Delta_{g}$ in $E$ , see, e.g.,
[2].

On the other hand, we know $\{u_{j,n}\}$ is bounded only in $W^{1,q}(M)\forall q\in[1,2)$

from the elliptic $L^{1}$ theory. Furthermore, though it is possible indeed to
assume

$u_{j,n}arrow u_{j}$
.
weakly in $W^{1,q}(M)\forall q\in[1,2)$

up to subsequence and

$K_{i,n}(x)=e^{-u_{j,n}(x)}arrow e^{-u_{j}(x)}$ in $L^{p}(M)\forall p\in[1, \infty)$ , (11)

the limit function $e^{-u_{j}(x)}$ take $0$ if there exists $x_{0}$ satisfying $u_{j}(x_{0})=\infty$ .
Therefore we are not able to assume the existence of the uniform lower bound
$C$ satisfying $K_{i,n}(x)\geq C>0$ .

Although these are difficulties, however, our previous work [30] on the
equation (3), the weaker version of [20] in weaker assumptions, is applicable.
Under our situation (11), we get the following facts by [30]:

$\lambda_{i,n^{\frac{K_{i,n}(x)e^{u_{n}}}{\int_{M}K_{i,n}(x)e^{\mathrm{u}_{i’ n}}dv_{g}}}},arrow r_{i}(x)+\sum_{x_{0}\in S_{i}}m_{i}(x_{0})\delta_{x\mathrm{o}}$ weakly *
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for each $i$ , where $S_{i}$ is a finite subset of $M$ satisfying $S_{1}\cup S_{2}\neq\emptyset_{)}$ the function
$r_{i}\geq 0$ belongs to $L^{1}(M)\cap L_{1\mathrm{o}\mathrm{c}}^{\infty}(M\backslash S_{i})$ , and

$m_{i}(x_{0})\geq 4\pi$ (12)

for every $x_{0}\in S_{i}$ . Therefore we have

$\lambda_{i,n}arrow\lambda_{i}=\int_{M}r_{i}dv_{g}+\sum_{x\mathrm{o}\in S_{i}}m_{i}(x_{0})\geq 4\pi\neq S_{i}$ .

Here we note that the set $S_{i}$ is exactly the blow-up set of $\{u_{i,n}\}$ , that is,

$S_{i}=\{x\in M|\exists x_{n}arrow x\mathrm{s}.\mathrm{t}. u_{i,n}(x_{n})arrow+\infty\}$ .

Therefore, if $x_{0}\in S_{i}\backslash S_{j}$ , the limit coefficient function $e^{-u_{j}}$ is positive near
$x_{0}$ and this enable one to get

if $x_{0}\in S_{i}\backslash S_{j}$ (not collide) $\Rightarrow$ $m_{i}(x_{0})=8\pi$ ,
if $\exists x_{0}\in S_{i}\backslash S_{j}$ $\Rightarrow$ $r_{i}\equiv 0$

from the careful application of the argument like [20]. Consequently we have

$S_{1}\cap S_{2}=\emptyset$ $\Rightarrow$

$\lambda_{i,n}arrow\lambda_{i}=\sum_{x\mathrm{o}\in S_{i}}m_{i}(x_{0})=8\pi\neq S_{i}\in 8\pi \mathrm{N}$
. (13)

The rest of the problem is to determine the $\mathrm{m}\mathrm{a}s\mathrm{s}$ at

$x_{0}\in S_{1}\cap S_{2}$ (collision).

Step 3 For this problem, we obtain the following answer:

Proposition 3.1 ([32]). For every $x_{0}\in S_{1}\cap S_{2}$ , we have

$(m_{1}(x_{0})-m_{2}(x_{0}))^{2}=8\pi(m_{1}(x_{0})+m_{2}(x_{0}))$ ( $\cdots$ a parabola).

Here we recall (12) for every $x_{0}\in S_{i}$ . Therefore the collision $S_{1}\cap S_{2}$ never
occur if

$((m_{1}(x_{0}), m_{2}(x_{0}))\leqq)(\lambda_{1}, \lambda_{2})\in[0,4(2+\sqrt{5}\pi))\cross[0,4(2+\sqrt{5}\pi))$

and we get Theorem 1.2 from (13).
We note that the improvement of Theorem 1.2 to Theorem 1.5 is nothing

but the improvement of (12) for $x_{0}\in S_{1}\cap S_{2}$ , see Figure 3.
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Figure 3: The parabola

Here we remark that the possible values of $(m_{1}(x_{0}), m_{2}(x_{0}))$ for $x_{0}\in$

$S_{1}\cap S_{2}$ will be more restrictive and we expect that

$(m_{1}(x_{0}), m_{2}(x_{0}))=8 \pi(\frac{(\ell-1)l}{2},$ $\frac{\ell(l+1)}{2})$ , $8 \pi(\frac{\ell(l+1)}{2},$ $\frac{(\ell-1)\ell}{2})$

for $\ell=1,2,3,$ $\cdots$ .

The idea of the proof of Proposition 3.1 is the $symmet7\dot{?}$zation of the
Green function established in [38, 29, 30, 43]. Similar methods are also used
in the analysis of the two dimensional incompressible Euler equation, see
[44, 36, 27] for example. To see the idea of the symmetrization, we consider
the following toy model.

$-\Delta u_{n}=\lambda_{n^{\frac{e^{u_{n}}}{\int_{\Omega}e^{u_{n}}dx}}}$ in $\Omega$ , $u_{n}=0$ in $\partial\Omega$ ,

where $\Omega\subset \mathrm{R}^{2}$ is the bounded domain with smooth boundary $\partial\Omega$ .
Set $\mu_{n}=\lambda_{n}\frac{e^{u_{n}}}{\int_{\Omega}e^{u_{n}}dx}$ . Then we have

$\nabla\mu_{n}=\nabla e^{u_{n}+\log\lambda_{n}-\log\int_{\Omega}e^{un}dx}=\mu_{n}\nabla u_{n}$

$\Rightarrow$ $0=\nabla\cdot(\nabla\mu_{n}-\mu_{n}\nabla u_{n})$ .
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Figure 4: The improvement of Proposition 3.1 in [33].

Here we notice that the last equation is nothing but the stationary equation
of chemotaxis. The most interesting feature of this method is to reduce the
mean field equation to this chemotaxis equation. In the weak form, we have

$0= \int_{\Omega}\mu_{n}\triangle\phi+\int_{\Omega}(\nabla u_{n}\cdot\nabla\phi)\mu_{n}$

for every test function $\phi\in C_{0}^{\infty}(\Omega)$ .
Let $G(x, y)$ be the Green function $\mathrm{o}\mathrm{f}-\triangle$ with the Dirichlet boundary

condition. Then

$0= \int_{\Omega}\mu_{n}\Delta\phi+\int_{\Omega}(\nabla u_{n}\cdot\nabla\phi)\mu_{n}$

$= \int_{\Omega}\mu_{n}\Delta\phi+\int_{\Omega}\int_{\Omega}(\nabla_{x}G(x, y)\mu_{n}(y)\cdot\nabla\phi(x))\mu_{n}(x)dxdy$

$= \int_{\Omega}\mu_{n}\triangle\phi+\int_{\Omega}\int_{\Omega}\rho_{\phi}(x, y)\mu_{n}(x)\mu_{n}(y)dxdy$

where

$\rho_{\phi}(x, y)=\frac{1}{2}(\nabla_{x}G(x, y)\cdot\nabla\phi(x)+\nabla_{y}G(x,y)\cdot\nabla\phi(y))$ ,

the symmetrization of the Green function.
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Indeed we are able to consider $G(x, y) \sim\frac{1}{2\pi}\log|x-y|^{-1}$ without loss of
strictness. Then, when $\mu_{n}arrow m\delta_{0}$ , we assume $\phi$ that behaves like $|x|^{2}$ near
the origin and we have

$\rho_{\phi}(x, y)=\frac{1}{2}(\nabla_{x}G(x, y)\cdot\nabla\phi(x)+\nabla_{y}G(x, y)\cdot\nabla\phi(y))$

$\sim-\frac{1}{4\pi}\frac{(x-y)\cdot 2x-(x-y)\cdot 2y}{|x-y|^{2}}\sim-\frac{1}{2\pi}$ .

On tbe other hand, $\Delta\phi\sim 4$ if $\phi\sim|x|^{2}$ . Therefore we have

$0= \int_{\Omega}\mu_{n}\triangle\phi+\int_{\Omega}\int_{\Omega}\rho_{\phi}(x, y)\mu_{n}(x)\mu_{n}(y)dxdy$

$arrow 4m-\frac{1}{2\pi}m^{2}$ .

$\Leftrightarrow$ $0=4m- \frac{1}{2\pi}m^{2}$ .

$\Rightarrow$ $m=8\pi$

when $m>0$ . This is nothing but the conclusion obtained by Li [20] for
$\lambda_{2}=0$ cases, though the method is completely different. Now we have
several method to get this value $8\pi$ , however, the symmetrization seems to
be most easy to handle for complicated case like ours.

To apply similar calculations to our equation

$- \Delta_{\mathit{9}}u_{i}=\lambda_{i,n}(\frac{e^{\mathrm{u}_{i,n}u_{j,n}}}{\int_{M}e^{\mathrm{u}_{t,n}u_{j,n}}dv_{\mathit{9}}}=-\frac{1}{|M|})$ ,

we set

$\mu_{i,n}:=\lambda_{i,n}\frac{e^{u_{i,n}u_{j,n}}}{\int_{M}e^{u_{l,n}u_{j,n}}dv_{g}}=$ .

Then

$\nabla\mu_{i,n}=\mu_{i,n}\nabla(u_{i,n}-u_{j,n})$

$\Delta\mu_{i,n}=\nabla\cdot\mu_{i,n}\nabla(u_{i,n}-u_{j,n})$

and we have the weak form

$0= \int_{\Omega}\mu_{i,n}\triangle\phi+\int_{\Omega}(\nabla[u_{i,n}-u_{j,n}]\cdot\nabla\phi)\mu_{i,n}$
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if appropriately localized to flat domain $\Omega$ . The second term of the righthand
side is transformed as follows:

$\int_{\Omega}(\nabla[u_{i,n}-u_{j,n}]\cdot\nabla\phi)\mu_{i,n}$

$= \int_{\Omega}\int_{\Omega}(\nabla_{x}G(x, y)[\mu_{i,n}(y)-\mu_{j,n}(y)]\cdot\nabla\phi(x))\mu_{i,n}(x)dxdy$

$= \int_{\Omega}\int_{\Omega}\rho_{\phi}(x, y)\mu_{i,n}(x)\mu_{i,n}(y)dxdy$

$- \int_{\Omega}\int_{\Omega}(\nabla_{x}G(x, y)\cdot\nabla\phi(x))\mu_{i,n}(x)\mu_{j,n}(y)dxdy$

To control the cross term, add the cases $(i,j)=(1,2),$ $(2,1)$ and we have

when $\mu_{i,n}arrow m_{\mathrm{t}}\delta_{0}$ for each $i=1,2$ , i.e., a collision occurs at $0$ . $r_{1^{}\mathrm{h}\overline{1}\mathrm{S}}$ is tne

parabola and we get Proposition 3.1 from (12).

4 On the Trudinger-Moser type inequality

Suppose $I$ is the set of parameters $(\lambda_{1}, \lambda_{2})$ , where the conclusion holds. We
know that $I\neq\emptyset$ because we have the trivial region, see Figure 1. Then the
proof of Corollary 1.3 is divided into following steps.

Step 1 We are able to assume that there exists $(\lambda_{1}^{0}, \lambda_{2}^{0})\in\partial I\cap[0,8\pi]\cross[0,8\pi]$

such that
$t(\lambda_{1}^{0}, \lambda_{2}^{0})\not\in I$ for every $t>1$
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from the monotonicity of $J_{t\lambda_{1}^{0},t\lambda_{2}^{0}}$ in $t>0$ .

Step 2 Fix
$(\lambda_{1,n}, \lambda_{2,n})=t_{n}(\lambda_{1}^{0}, \lambda_{2}^{0})$ , $t_{n}\uparrow 1$ .

Then we are able to construct a non-compact solution sequence $\{v_{n}\}$

for $\{(\lambda_{1,n}, \lambda_{2,n})\}\subset I$ by the so-called Ding’s Trick (see, e.g., Jost-Wang
[17] $)$ , which contradicts to Theorem 1.2 if $(\lambda_{1}^{0-}, \lambda_{2}^{0})\in[0,8\pi)\cross[0,8\pi)$ .
Therefore we get $I\subset[0,8\pi)\cross[0,8\pi)$

Step 3 When $\lambda_{1}^{0}=8\pi$ or $\lambda_{2}^{0}=8\pi$ , the careful observation of the asymptotic
behavior of the sequence of minimizers $\hat{v}_{n}$ for $J_{\lambda_{1,n},\lambda_{2,n}}$ enables one to
prove

$\lim_{narrow}\inf_{\infty}J_{\lambda_{1,n},\lambda_{2,n}}(\hat{v}_{n})>-\infty$

and get $I\subset[0,8\pi]\cross[0,8\pi]$ .

We note that $I\supset[0,8\pi]\cross[0,8\pi]$ , which we mentioned in the context of the
optimality of Corollary 1.3, see Section 1.

Omitting the details of the proof, however, we review other inequalities
we get from Corollary 1.3.

The conclusion of Corollary 1.3 is equivalent to

$\inf_{v\in E}J_{8\pi,8\pi}(v)>-\infty$ . (14)

In fact, this inequality guarantees

$\inf_{v\in E^{1}}J_{\lambda_{1},\lambda_{2}}(v)>-\infty$

for $0\leq\lambda_{2}\leq\lambda_{1}\leq 8\pi,$ $\lambda_{2}<8\pi$ , because the second term of the right-hand
side of

$\frac{1}{2}||\nabla v||_{2}^{2}-\lambda_{1}\log\int_{M}e^{v}-\lambda_{2}\log\int_{M}e^{-v}$

$= \frac{\lambda_{2}}{8\pi}(\frac{1}{2}||\nabla v||_{2}^{2}-8\pi\log\int_{M}e^{v}-8\pi\log\int_{M}e^{-v})$

$+ \frac{1}{2}(1-\frac{\lambda_{2}}{8\pi})||\nabla v||_{2}^{2}-(\lambda_{1}-\lambda_{2})\log\int_{M}e^{v}$ (15)

is bounded by
$0 \leq\frac{\lambda_{1}-\lambda_{2}}{1-_{8\pi}^{\lambda}\simeq}\leq 8\pi$ .
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Noting $J_{\lambda_{1},\lambda_{2}}(v)=J_{\lambda_{2},\lambda_{1}}(-v)$ , we can infer (6) from (14) for $0\leq\lambda_{1},$ $\lambda_{2}\leq 8\pi$

with $\min\lambda_{1},$ $\lambda_{2}<8\pi$ . Inequality (14), thus, guarantees all the cases of the
conclusion of Corollary 1.3.

Since $J_{8\pi,8\pi}(v+c)=J_{8\pi,8\pi}(v)$ for $v\in H^{1}(M)$ and $c\in \mathrm{R}$ , inequality (14)
implies

$\inf_{v\in H^{1}(M)}J_{8\pi,8\pi}(v)>-\infty$ . (16)

If $\Omega\subset \mathrm{R}^{2}$ is a bounded domain, we can take a flat torus $M$ of which cell
domain $\hat{\Omega}$ .contains $\Omega$ . Then, each $v\in H_{0}^{1}(\Omega)$ is regarded as an element
in $H^{1}(M)$ , denoted by $\hat{v}$ , by taking zero extension to $\hat{\Omega}$ and then periodic
extension to $\mathrm{R}^{2}$ . In this cas$e$ , inequality (16) implies

$\inf_{v\in H_{0}^{1}(\Omega)}\tilde{J}_{8\pi}(v)>-\infty$
(17)

for
$\tilde{J}_{\lambda}(v)=\frac{1}{2}||\nabla v||_{L^{2}(\Omega)}^{2}-\lambda(\log\int_{\Omega}e^{v}dx+\log\int_{\Omega}e^{-v}dx)$ ,

because of $J_{8\pi,8\pi}(\hat{v})\leq\tilde{J}_{8\pi}(v)$ . Similarly to (14), this inequality (17) guaran-
tees

$\inf_{v\in H_{0}^{1}(\Omega)}\tilde{J}_{\lambda_{1)}\lambda_{2}}(v)>-\infty$ for $(\lambda_{1}, \lambda_{2})\in[0,8\pi]\cross[0,8\pi]$ ,

where
$\tilde{J}_{\lambda_{1},\lambda_{2}}(v)=\frac{1}{2}||\nabla v||_{L^{2}(\Omega)}^{2}-\lambda_{1}1o\mathrm{g}\int_{\Omega}e^{v}-\lambda_{2}\log\int_{\Omega}e^{-v}$ .

Inequality (17) is optimal, because the optimality of the standard ‘llrudinger-
Moser inequality is improved by

$\inf_{v\in H_{0}^{1}(\Omega),v\geq 0}\tilde{I}_{\lambda}(v)=-\infty$ for $\lambda>8\pi$ ,

where
$\tilde{I}_{\lambda}(v)=\frac{1}{2}||\nabla v||_{L^{2}(\Omega)}^{2}-\lambda\log\int_{\Omega}e^{v}$.

If $\Omega\subset \mathrm{R}^{2}$ is a simply-connected domain with $C^{1}$ boundary, we have a
conformal mapping $\varphi$ : $\Omegaarrow S_{+}^{2}$ , where $S_{+}^{2}\subset \mathrm{R}^{3}$ is a hemi-sphere. In this
case, each $v\in H^{1}(\Omega)$ is regarded as an element in $H^{1}(S^{2})$ by even extension,
and then it holds that

$\inf_{v\in H^{1}(\Omega)}\tilde{J}_{4\pi}(v)>-\infty$ (18)

by (14). This inequality, however, is proven for general domain $\Omega\subset \mathrm{R}^{2}$ with
smooth boundary $\partial\Omega$ , because we can control the behavior of the solution
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sequence to

$- \triangle v=\lambda_{1}(\frac{e^{v}}{\int_{\Omega}e^{v}dx}-\frac{1}{|\Omega|})-\lambda_{2}(\frac{ev}{\int_{\Omega}evdx}=-\frac{1}{|\Omega|})$

$\frac{\partial v}{\partial\nu}|_{\partial\Omega}=0$ , $\int_{\Omega}vdx=0$

similarly to that of (1) by the method of reflection $[29, 43]$ . Inequality (18)
is generalized as

inf $\tilde{J}_{\lambda_{1},\lambda_{2}}(v)>-\infty$ for $(\lambda_{1}, \lambda_{2})\in[0,4\pi]\cross[0,4\pi]$

$v \in H^{1}(\Omega),\int_{\Omega}vdx=0$

similarly, using Chang-Yang’s inequality [8]:

$\inf_{v\in H^{1}(\Omega\int_{\Omega}vdx=0}\tilde{I}_{4\pi}(v)>-\infty$ .

Inequality (18) is also optimal by itself because of the optimality of (14).

5 On the proof of the existence of solutions
1. Struwe-Tarantello type solution. Similar to the arguments of [41,
23], we first demonstrate that the trivial solution $v\equiv 0$ is local minimum of
$J_{\lambda_{1},\lambda_{2}}$ for admissible parameters. Indeed, direct computation enables one to
get

$J_{\lambda_{1},\lambda_{2}}’’(0)[h_{1}, h_{2}]= \int_{M}\nabla h_{1}\cdot\nabla h_{2}-\frac{\lambda_{1}+\lambda_{2}}{|M|}\int_{M}h_{1}h_{2}$

for every $h_{1},$ $h_{2}\in E$ and

$J_{\lambda_{1},\lambda_{2}}’’(0)[h, h]= \int_{M}|\nabla h|^{2}-\frac{\lambda_{1}+\lambda_{2}}{|\mathrm{J}f|},\int_{M}h^{2}$

$\geq\int_{M}|\nabla h|^{2}-\frac{\lambda_{1}+\lambda_{2}}{\mu_{1}|M|}\int_{M}|\nabla h|^{2}>0$

for every $h\in E$ satisfying $h\neq 0$ if $\lambda_{1}+\lambda_{2}<\mu_{1}|M|$ , see also [35].
On the other hand, the optimality (7) enable one to choose $w\in E$ such

that
$J_{\lambda_{1},\lambda_{2}}(w)<J_{\lambda_{1},\lambda_{2}}(0)=-(\lambda_{1}+\lambda_{2})\log|M|$ .

Therefore $J_{\lambda_{1},\lambda_{2}}$ has the mountain pass structure for admissible parameter
$(\lambda_{1}, \lambda_{2})$ .
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Set
$\Gamma=\{\gamma\in C([0,1_{\rfloor_{\text{ノ}}^{}1}.E);\gamma(0)=0, \gamma(1)=w\}$

and
$c( \lambda_{1}, \lambda_{2})=\inf_{\gamma\in\Gamma}\max_{t\in[0,1]}J_{\lambda_{1},\lambda_{2}}(\gamma(t))$.

As we mentioned in Section 1, $J_{\lambda_{1},\lambda_{2}}$ is not known whether the Palais-Smale
condition holds or not. Therefore in is not obvious that this mountain pass
value $c(\lambda_{1}, \lambda_{2})$ is really a critical value of $J_{\lambda_{1},\lambda_{2}}$ . But this obstruction is
overcome by thejoint use of the Struwe’s monotonicity trick and our Theorem
1.2. The details of the argument is almost the same that for $SU(3)$ Toda
system [23] (or [41]) and we omit it.

2. $\mathrm{D}\mathrm{i}\mathrm{n}\mathrm{g}-\mathrm{J}\mathrm{o}\mathrm{s}\mathrm{t}-\mathrm{L}\mathrm{i}$-Wang type solution. We take an isometric embedding
$(M, g)$ into $\mathrm{R}^{N}$ with sufficiently large $N$ by Nash’s theorem (Theorem 4.34
of Aubin [2] $)$ and let

$m(v)= \frac{\int_{M}xe^{v}}{\int_{M}e^{v}}\in \mathrm{R}^{N}$

denote the center of mass of $v\in E$ . The following lemma describes the
concentration of a sequence in $E$ satisfying $J_{\lambda}(=J_{\lambda,0})arrow-\infty$ , see [7] (or
[28] $)$ .

Fact 5.1. Let $\{v_{n}\}\subset E$ satisfy $J_{\lambda}(v_{n})arrow-\infty$ and $x_{n}\equiv m(v_{n})arrow x_{\infty}\in \mathrm{R}^{N}$

for $\lambda\in(8\pi, 16\pi)$ . Then $x_{\infty}\in M$ and

$\frac{e^{v_{n}}}{\int_{M}e^{v_{n}}}arrow\delta_{x_{\infty}}$ $weakly-*in$ $\mathcal{M}(M)=C(M)’$ . (19)

Therefore the topology of the level set $J_{\lambda}=-\infty$ is affected by the topol-
ogy of $M$ if $8\pi<\lambda<16\pi$ . The above fact originates from the improved
Trudinger-Moser inequality of Chen and Li [11] and the further origin of such
an inequality is in Aubin [1].

As we see in (15),

$J_{\lambda_{1},\lambda_{2}}(v)= \frac{\lambda_{2}}{8\pi}J_{8\pi,8\pi}(v)+(1-\frac{\lambda_{2}}{8\pi})J_{\lambda}(v)$

$\geq C+(1-\frac{\lambda_{2}}{8\pi})J_{\lambda}(v)$

for some constant $C$ by Corollary 1.3, where

$\lambda=\frac{\lambda_{1}-\lambda_{2}}{1-_{8}^{\lambda}\simeq_{\pi}}$ .
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Therefore, if $0<\lambda_{2}<8\pi$ and $8\pi<\lambda_{1}<16\pi-\lambda_{2}$ , we have $\lambda\in(8\pi, 16\pi)$

and $J_{\lambda}(v)arrow\infty$ if $J_{\lambda_{1},\lambda_{2}}(v)arrow\infty$ . Consequently the topology of the level
set $J_{\lambda_{1},\lambda_{2}}=-\infty$ is also affected by the topology of $M$ for these parameters.
For the parameter region $0<\lambda_{1}<8\pi$ and $8\pi<\lambda_{2}<16\pi-\lambda_{1}$ left yet, we
are able to do similar argument.

From now on,

$D=\{(r, \theta)|0\leq r<1,0\leq\theta<2\pi\}$

denotes the two-dimensional unit disc. Since $M$ has genus $\geq 1$ , tbere is a
non-contractible Jordan curve $\Gamma_{1}\subset M$ . Then, we can take a closed curve
$\Gamma_{2}\subset \mathrm{R}^{N}\backslash M$ linking $\Gamma_{1}$ (Figure 5). See [40] for the general theory of linking.

Figure 5: Linking

Now we set
$D_{\lambda_{1},\lambda_{2}}=\{h\in C(D;E)|$

$m(h(\cdot))$ can be extended continuously to $\overline{D}$ ,
$m(h(1, \cdot))$ : $S^{1}arrow\Gamma_{1}$ has degree 1,

$\lim_{rarrow 1}\sup_{0\leq\theta<2\pi}J_{\lambda_{1},\lambda_{2}}(h(r, \theta))=-\infty\}$
.

We are able to see that $D_{\lambda_{1},\lambda_{2}}\neq\emptyset$ from the similar argument of [7, Lemma
3] and we set

$\alpha_{\lambda_{1)}\lambda_{2}}=\inf_{h\in D_{\lambda_{1}\lambda_{2}}},\sup_{(r,\theta)\in D}J_{\lambda_{1},\lambda_{2}}(h(r, \theta))$
.

Thanks to Fact 5.1, we get $\alpha_{\lambda_{1},\lambda_{2}}>-\infty$ if the genus $\geq 1$ .
Similar to the construction of Struwe-Tarantello type solutions, the lack

of the Palais-Smale condition makes it difficult to see this min-max value
$\alpha_{\lambda_{1},\lambda_{2}}$ is really a critical value of $J_{\lambda_{1},\lambda_{2}}$ . Using also the Struwe’s monotonicity
trick and our Theorem 1.2, however, we are able to see that $\alpha_{\lambda_{1},\lambda_{2}}$ is a critical
value for admissible parameters. The details of the argument is almost the
same that for $SU(3)$ Toda system [7] (or [13]) and we omit it.
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