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Singular limit problem for some elliptic systems
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1 Introduction

We consider the following singularly perturbed elliptic systems:

EAu+ fu)—v =0, Av +g(u,v) = 0, ¢))

where u = u(y) and v = v(y) are real-valued functions on y € R?; € > 0 is a positive
constant; f € C'(R) is a negative derivative of a double-equal-well potential W € C2(R)
satisfying W(1) = W(-1) = 0 < W(s)"s € R\{1, -1}, W’(1)W”(=1) > 0; and g € C'(R?) is
a smooth function such that g(1,0) = 1 —m > 0, g(-1,0) = —m < 0. Note that there hold
f(s) = =W'(s), f_ll f(8)ds =0, and f(i) = 0, f'()) < 0 (i = =1). A typical example of (f, g)
is FitzHugh-Nagumo type, i.e., f(s) = s — §°, g(u,v) = -lz-u - v. The general case is referred
to as the stationary activator-inhibitor system.

When the parameter € is extremely small, very interesting patterns, such as stripés or spots,
often appear. As a mathematical approach to understand this pattern formation, we consider
the limit € — 0. Then usually the domain is divided into two regions and the remaining part
becomes a thin layer. In some cases, the width of the internal transition layer approaches 0
in the limit, and the discontinuity surface inside the domain, which is called sharp interface,
appears. Recently very fine layered patterns of (1) have attracted a great deal of attention.
See [5, 14, 15]. We consider this fine pattern which has the space scale of €'/> order. This
is the unique scale that the driving force of v has the same order as that of the curvature of

the sharp interface. See [12]. This scale also appeared in [5]. After rescaling x = ;1%3 and
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e = e“/°, we obtain

1
Au+ —=(f(u)-v) =0,
& ©)
Av + eg(u,v) = 0.
We consider the solutions of (2) subject to the homogeneous Neumann boundary condition:

-&*Au=fw)-v, inQ,

-Av = eg(u,v), in Q, 3)
ou oOv
(—9-,; = 5;1' = 0, on aQ,

where Q c R? is a bounded domain with the sxﬁooth bounday d<2; 9/0n is the outward normal
derivative on 0S2. |

We shall formally deduce the reduced problem. If we assume u — u and v — vp in the
limit £ — 0, we have f(ug) = vg, Avg = 0in Q, %Xnﬂ = 0 on 4Q. Hence vy is a constant. Now
assume that vy is close to 0 and ug = f7'(vo)la- + f7] (Wo)1a-, where Q*, Q" are mutually

disjoint open sets in 2 such thatI' = Q\(Q* U Q™) is a curve embedded in Q; 1o+ denote the

characteristic functions of Q*; u = ;11 (v) are the inverse functions of v = f(u) nearu = +1 .

respectively. Here we call I sharp interface. We shall identify the profile of u near I,

It is known that there exists a constant 7 > 0, depending on f, such that for any v € (-7, 1),
the equation for u, u; = uy, + f(u) — v, has a traveling wave solution u(x,?) = Q(x — ct;v)
with the speed ¢ = c(v) and the profile @ = Q(¢;v). More precisely, c(v) and Q(¢;v) for

v € (~1,7),£ € R satisfy |
Q+c(m@+ f(@-v=0, iR,

Jim QEv) = £70),
Am Q@) = £ L),
[ c0)=0.

Here dot means d/dé. See, for example, [4]. Near the sharp interface I', consider the function

u(x) = Q(‘i(;‘-—);v),
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where d = d(x) is the signed distance function from I such that d(x) > 0 if x € Q™ and
d(x) < 0if x € Q*. If the above function satisfy the first equation of (3) for each prescribed
v, noting that |Vd| = 1, there holds @ + £(Ad)Q + f(Q) — v = 0. Since Ad is equal to the
curvature « of I' on the interface I' (here we choose the sign such that x > 0 when Q* is a
disk), it follows that c(v) = ex on I'. Since ¢(0) = 0 by the assumption, we may assume that
vo=0and yy = 1o+ — 1-.

Next we consider the higher order term. Assume v = &v; + O(e?). Then we obtain the

reduced problem
-Av) = g(up,0) =1+ —m, inQ,

(9v1 ‘
T 0, on dQ2,
'Oy =, onT.

It is easily seen that there holds ¢’(0) = -2 < 0 with

1
o= f V2W(s)ds.
-1

Therefore, letting 8 = 2/0-, we finally obtain
-Av = 1Q+ -m, in Q,
v _
on

0, on 4Q, 4)
Bv+k=0, onT. |

Recall that Q ¢ R? is a bounded domain with the smooth boundary 4Q; d/dn is the normal
derivative on dQ; Q* is an open set in Q; T’ = 6Q* c Q is a C?-curve embedded in Q; « is
the curvature of I'; m € (0, 1) is a constant; and 1o+ denotes the characteristic function of Q*.

The essentially same equation as (4) was obtained in [13] by using the matched expansion
method. Once you have a "non-degenerate” solution of (4) in some sense, you can find a
layered solution for the singularly perturbed elliptic problem (3). See [13]. For the reduction
from the parabolic system to the sharp interface model, see [19].

In this résumé, we consider the problem to find a non-degenerate solution of (4) which

does not necessarily correspond to the global minimizers. The radially symmetric case for
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the related problems is studied in [6, 7, 13, 17, 18, 20]. We do not assume any symmetry of
the domain.
This résumé is organized as follows. In Section 2, we consider the existence of solutions.

In Section 3, we consider the linearized non-degeneracy of the problem.

2 Existence
In order to state the result, we define the Green’s function and its hafmonic part.

Definition 2.1 For each y € Q, let G(x, y) be the solution to

1
-AG(x,y) = 6(x - y) - a €Q,

) ég(x,y):(), | x€dQ,
on,

f G(x,y)dx = 0.
Q

Set )
lx =yl
4|Q|

1 .
G(x,y) = ~§log|x—y|+ + H(x,y), x,y€Q.

Then it is known that H(x, y) is symmetric and harmonic in both x and y. Let H(x) = H(x, x).

We define the following two conditions.

(A1) 0 € Q is a strict local minimum point of . More precisely, there exists a neighbor-
hood U of 0 in Q such that H(0) < H(x) for all x € U\{0}.
(A2) 0 € Q is a non-degenerate critical point of 7.

Remark. When Q = {x € R?; |x| < 1}, x = 0 is a unique minimum point of  and both
(Ai) and (A2) are satisfied. Indeed, we have H(x) = ~ ﬁ log(1 x>+ %”E +7H(0), and hence
PH — '
3.:131_,' (0) - %6’..).'
The regular part of Green’s function subject to the homogeneous Dirichlet boundary con-

dition has a unique non-degenerate minimum point when Q ¢ R? is convex (see [2]). On
the other hand, the regular part of Green’s function subject to the homogeneous Neumann

boundary condition is studied in [8].
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We denote by dy the Hausdorff metric

du(K1, K>) = max[sup{dist(x, K) ; x € K1}, sup{dist(y, K1) ; y € K>}],
S,0)={xeR;|xl=r},and B,0) = {x € R; |x| < r}.

Theorem 2.1 Assume that (A1) or (A2). If ry := ,/ 21”9_! < dist(0, 6Q), then there exists a
constant By > 0 such that (4) has a solution (T, v, Q") = (I's, v, Q;) for all 8 < By satisfying
du(Tp, S (0)) — 0 as B — 0.

2.1 Notations

We identify 2x-periodic functions on R with the functions on S! = {x € R?; |x] = 1} =

R/2nZ. For q € C%(S1!), we use the following notations:
g(w) = g%(w) = dieq(cos 6,sinf), w = (cosh,sinf) e S!

and
2 2

G(w) = %(w) = Bd—g;q(cos 6,5in6), w = (cosé,sing)eS".

We set X = C3(S1),

ligllx = max |g(w)| + max |g(w)| + max |§(w)],
weS! weS! weS'!

Y = C(S!), and ‘
liglly = max |g(w)l.
weS'!

For g, 4, € L*(S1), denote

2
q1,q2) = f q1{(w)g(w)dw = f q1(cos 8, sin )g,(cos 6, sin 8) d6,
st 0

and |lq1/? = <Ql,.ql). Let IL,> : L*(S') — L*(S") denote the projections with respect to (-, -)
onto span{cos i, sinif; i = 0,1,--- ,n}forn=0,1,---. Let H,fz =1d - I1,..

Define ®o(w) = 1/ V27, ®1(w) = wi/ V7, and ®2(w) = wp/ V7 for w = (wi,wp) €
S'. Then IT},II} are the projections onto the orthogonal complements of span{®o} and

span{®; ; i = 0, 1, 2} respectively.
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2.2 Outline of Proof of Theorem 2.1

For brevity’s sake, we assume that rp = 1 < dist(0,0Q). For £ > 0, define X, = {q €
X; llgllx < €}. We can choose a constant § € (0, 1/2) such that By,(0) C Q by the assumption.
For g € X;/3, define ‘

I(g) = {VI+qww; weS!}, Qg ={rw;0sr< 1+qw),wes')
Note that there hold I'(g) € Q and |Q*(g)| = « for any ¢ € X5, N II;X. Let

3P _ 1
1+I+R1£+—5—§S

3/2
[1 +t+ 4—(%7)]
fort > ~1, p € R, s € R. Then K(q) = L(q, 4, §) is the curvature of I'(g) for any g € X;/>. Let

L@, p,s) =

Mg be the map from X/, to Y defined by
Ms(g)w) = K(@Yw) +5 | ( )G( Vi+gww,y)dy, weS'
(g

for g € X;/2. In order to prove Theorem 2.1, we need only show the folloWing:

Proposition 2.1 Suppose either (A1) or (A2). If 1 = Vm|Q[/x < dist(0,Q), then there
exists a constant By > 0 such that IT; Mg(q) = O has a solution g = g € X5, N I3 X for all
B € (0, Bo) satisfying gz — 0in X as 8 — 0. In addition, I'(gg) = P +I'(gp) for some P € Q,
dp € X such that Pg — 0, ||gsllx = O(B) as 8 — 0.

Indeed, if ¢ € X5/2 N I X is a solution of IT; Mg(g) = 0, then there exists a constant C;
such that Mg(q) = C;. Now set

v(x) = G(x,y)dy - lcl, x € Q.
Q*(g) B

Then v satisfies
-Av = lg+(q) -m, in Q,

ov
(—9; =0, on Q.

Hence we see that

1
Ir=I(g), vx= G(x,y)dy-=C;, Q" =Q%(g)
Q*(g) :B
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solves our equation (4) and completes the proof of Theorem 2.1.

3 Non-degeneracy

Throughout this section, we assume that there exists a compact subset N C Q satisfying
dist(N,3Q) > 1. We linearize the equation around P + I'(g) = {P + /1 + qw)w; w € §'}
for Pe N. Set

Mpg(q; P)(w) := K(g)(w) + B8 f G(P + V1 + q(w)w,y) dy, weS!

P+Q*(q)

for g € X52, where P + Q*(q) is the region surrounded by P + I'(g).
Theorem 3.1 Suppose that
(B1) for every small 8 > 0, there exist gp € X and P € N such that

(s = I1))Mp(Gp ; P) = 0,

(B2) liggllx = O(B) as B — 0, and
(B3) the Hessian matrix ( FH (P)) of H is non-degenerate for any P € N.

0xi0x; %" 7)) ¢; i<

Then for sufficiently small 8, £ = HgM,;(q,, ; P) is non-degenerate in the sense that £L{ = 0,
fs, {dw = 0 implies that ¢ = 0.

Let gg be a solution obtained in Proposition 2.1. Then there exist Pg € Q and gz € X such
that I'(gg) = Pg + I'(gp), (B1) with P = P, and (B2) hold. Thus we have the following:

Corollary 3.1 Suppose (A2). Then the solution obtained in Theorem 2.1is non-degenerate

in the sense of Theorem 3.1.



3.1 Outline of Proof of Theorem 3.1

For brevity’s sake, we write g = gg. Set
B(.O) = f (Lo(q, 4, D& + Li(g, 4, ) dw

’B f f L(W)G(P + \/1 + g(w)w, P + \/1 + q(L)W) (®) dwdb

ﬁ )

w - V,G(P + /1 + g(w)w, y)dy,
\/1 + g(w) JP+Q*(g) :

for £ € H'(S'), where

1+t+ 4—’;-(1“) 2s
L(t, p,s) = 373
[1 +t+ 4(1“)]

fort > -1, p € R, s € R. We regard .L as the operator on HéHz(Sl) satisfying B({,{) =
(LL,¢) for all £ € TIZHA(S!). Then we have the following two lemmas:

Lemma 3.1 Suppose (B2). Let 4; < A, < A3 < --- be the eigenvalues of £ : TI; HX(S') —
I3 L%(S!) and ¢; € TI} H2(S!) be the normalized eigenfunctions associated with 2;. Then

W= BED =BG = 0,

A= inf B(({) =B 4) = 0P),

geng H($T)gil=1
[£74]

. 3
k= _inf  B@Y =B =5 +0@).
Sellg H (S )ligli=1
{dspan{¢) o}

Lemma 3.2 1. There hold L,(0,0,0) = L,(0,0,0) = L,,(0,0,0) = % and L,(0,0,0) =
Ly5(0,0,0) = L,,(0,0,0) =0
2. There hold

’ l &*H
dw®j(w)Pr(w)w -V HP + w, P) = = ————(x,y)
St 3 3 Xk x=y=P
and
Qj(wW)H(P + w, P + 0)P(®)dwdd = 1t (x,y)
st Jst axja_)’k x=y=P
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foreach jk=1,2.
3. Suppose (B1) and (B2). Then

| . n *H
_(q(Dk’ (Dj> ==

lim

B0 ﬁ (x, y)

5 ox jaxk x=y=P
foreach j,k=1,2.

Using these lemmas, we can show the following:

Lemma 3.3 Suppose (B1) and (B2). Then there exists an orthogonal matrix (c; i j=1,2 such
that for each i = 1,2, £f = ¢; — (cui®y + cp:®,) satisfies ||¢R|?> = O(B) as B — 0. In addition,
there holds

o
n O°H /1,'
kz; 35r3m, Plou = o) + e

foreach i, j = 1,2.

Completion of the proof of Theorem 3.1. Assume by contrary that there exists a sequence
{p such that L = 0, |Igll = 1, and [, £sdw = 0. This means that {3 is an eigenfunction of
of L associated with the éigenvalue 0. We see that for sufficiently small B, either A, 6r Ay 18
equal to 0. Then by Lemma 3.3, we have s = ¢;®; + c;®; + ¢¥ such that (¢;,¢;) € S! and
IZ¥1? = O(B), and

2
PH

= o(1 | = ,

2, o, 6xk~(P)ck o(l) forj=1,2

as B — 0. Taking a subsequence if necessary, we may assume that (c;,c;) = (&),8) € §!
and ,
32
—(}i(P)ék =0 forj=1,2.
pe) 6x,-c')xk

It follows from (B3) that ¢; = ¢, = 0. This is a contradiction and completes the proof.
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