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Multi-peak positive solutions for nonlinear Schrédinger equations
with critical frequency
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0. Introduction

In this report, we consider the following nonlinear Schrédinger equations:
~EAu+V(zu=|uP 'y in RV,
u>0 in RV, (%)e
u € HY(RN),

where € > 0 is small parameter and p satisfies 1 < p < 00 (N =1,2), 1 < p < I—ij_:—g-

(N > 3). We are interested in the existence of solutions of (*). for small € > 0 and their
behavior as e — 0. We assume the potential V' (x) satisfies the following assumptions:

(V.1) V(z) € C}(RM,R) and V(z) > 0 for all z € RV.

(V.2) 0 <liminf V(z) < sup V(z) < .
|z} —o00 zERN
Under the above assumptions, the solutions of (). are characterized as critical points of

1 1
W (u) = /R LGNV + V@) - —a2"dr € CUT'(RY), R).

When V(z) satisfies ‘
inf V(z)>0, (0.1)

zeRN
(%) has a family of single-peak solutions u(x) concentrating around a local minimum of
V(z) for small € > 0 in the following sense: let z, be a unique maximum of u¢(z). Then
z. approaches to & local minimum zy of V(z) as ¢ — 0 and

We(y) = ue(ey + ze) (0.2)
converges to a least energy solution wo(z) of the following “limit equation”

—Aw+V(zo)w=wP, w>0 in RY, weHY(RV). (0.3)
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In particular, u.(z) satisfies

B e o v = [0(0)] > 0, 04)
lim e~V W (u) = (% - E%)bv(mo)m > 0. (0.5)

Here by (54),m~ is defined by

il
Jan VUl + V(zo)u? dz\ *~
bV(mo),RN =

in 7
u€H (RN )\{0} ”u+||Lp+1(RN)

and (% - ;TiT)bV(xo),RN is the lowest non-trivial critical value of the functional corre-
sponding to (0.3). See [FW, O1, O2, DF] for related results.
Recently, Byeon and Wang [BW1, BW2] have started to study the case

inf V(z)=0. 0.6

inf, V(@) 06)

They showed that (). also has single-peak solutions concentrating around an isolated

component 4 of {z € RV; V(z) = 0}. The features of their solutions are completely

different from the solutions under the condition (0.1), which depend on the behavior of
V(z) around A. More precisely, their solutions u.(x) satisfy

2%|!UEI|LW(RN) =0,

. N _
lim e U (ue) =0.

These are in contrast with (0.4)-(0.5). We can also see liminf,_,o ¢ 5T ||uel| Lo (mvy €
(0,00] and liminf._,g e P (ue) € (0,00]. (We remark that p < ££2 implies 32—.;’1_4—"1—11 >
N.) Under additional conditions on the behavior of V(z) near A, we can introduce a
rescaled function — which is different from (0.2) — to observe the behavior of uc(z)
around A. More precisely, under one of the conditions (L.2)-(L.4) (see p.5 below), we

define g(€) > 0 as in the table 0.1 below and set

2 _
P

we(y) = (42) 7 uclg(e)y + o)

for a suitable point z. around A, then w,(y) approaches to the least energy solution of

—Aw+Volyw=wP, w>0 inQy, we Hy(Q) (L)vo, 0%
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Here Qg ¢ RY and Vy(z) € C(Q, R) are also given in the table 0.1 below. In particular,
ue(x) satisfies
2(p+1)

lim (9 E)) T 0(e) N, (ue) € (0, 00)

e—0 €

and the decaying rate of ¥ (u.) depends on the behavior of V(z) around A.
In this report, we study the multi-peak solutions of (*). combining various types of
peaks. We assume that Aj, -, Ay C RY satisfy

(V.3) Ay,---,Ax C RY are bounded open sets satisfying A; N A; =0 (i # 5) and

mi = inf V(z) < inf V(@) <oo (i=1,,k)

Here we remark that m; may be 0. In what follows, we write
Ai = {CE € Ai; V(ZL‘) = m,-} (’L = 1,'-',k).

Under the assumption (V.3), we will show that (%), has k-peak solutions which have 1-peak
in each A; and it concentrates around a local minimum of V(z) in A;. We remark that
the behavior of the desired solution u(z) in A; depends on the behavior of V(z) around
A; and just single scaling (0.2) is not enough to describe the behavior of u.(x). Moreover
the localized critical level ¥, 5, (u.) — which is defined as (1.1) below — approaches to 0
with different rate with respect to €. This makes our problems difficult.

It seems that the existence of multi-peak solutions joining solutions which have differ-
ent scales is not well studied. In our knowledge, there is only one work by Byeon and Oshita
[BOJ in which they constructed multi-peak solutions by a Lyapunov-Schmidt reduction
method under the assumptions of non-degeneracy of solutions of limit problems.

Recently, in [S], we constructed the multi-peak solutions under the assumptions (V.1)—
(V.3). We used a variational approach and it does not need the assumptions of non-
degeneracy of solutions of limit problems. In the following sections, we will introduce main
results and an outline of the proof in [S]. We also study about the asymptotic behavior of
solutions and consider other examples than [S].

1. Main Results
Firstly, we introduce main theorems in (S].
(a) Existence of multi-peak solutions

In this section, we consider the existence of multi-peak solutions of (). To state theorems,
we set

_ [ 1 a0 2 2y 1 p1
Vor () = [ SV V)~ el (L.1)
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and define .

fAi e2|Vul? + V(z)u? dz) p-1

= in 2
weHY (A)\{0} s llzora,)

[

(1.2)

CE,Ai

Under the assumptions (V.1)-(V.3), we can observe

lim eV lim inf e~ 557 ¢, 4, € (0, 00)]
lim €™ ce,a, < o0, imint e Ce,A; » O]

e—0

We remark that (1 — 5%) Ce,A; i the lowest non-trivial critical value of the functional

which corresponds to the equation
—EAu+V(@u=uP, u>0 inA,, u € Hy(A;). (1.3)

Our first theorem is

Theorem 1.1 ([S]). Assume that (V.1)-(V.2) hold and Ai,---,Ax C RY satisfy (V.3).
Then there exists ey > 0 such that for any € € (0, €p), there exists a positive solution u(z)
of (x)e which satisfies

2(p+1) .
\Ile,A,» (ue) = (—%— — ;)% Ce, A, +o(e p—1 ) (z =1,--- 7k), (1.4)
2(p+1
U, v\ (Ut a,) () = o€ 1), (1.5)

Moreover for some constants C, ¢ > 0, uc(z) satisfies

c dist(z,Ur_, 4;)
€

ue(z) < C exp (— ) for z € RN\ (Uf=1Ai) . (1.6)

We remark that under the assumptions of Theorem 1.1, for any non-empty subset
{21, i} € {1, -k}, Aiy,---, Ay, also satisfy (V.3). Thus we have

Corollaryb 1.2 ([S]). There exists ¢ > 0 such that for any ¢ € (0,¢p), there exists a
positive solution u(x) of (x)e such that

2(p+1) .
Wn, (0) = (3= 1 )cen, +olEH) (=1,,0), )
2(p+1)
Yy \(U§=1A.-J.)(u€ =o(e» T). (1.8)

Moreover for some constants C,c > 0, u(x) satisfies

¢ dist(x, Ui, Ai;)
€

ue(z) < Cexp (— ) forz € RN\ (U§=1A¢j) .
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Especially, for small € > 0, (). has at least 2¥ — 1 positive solutions.

(b) Asymptotic behavior of solutions

In this section, we consider the asymptotic behavior of solutions of (%), obtained in
Theorem 1.1 and Corollary 1.2. For some i € {1,---,k}, we assume that A; satisfies one

of the following assumptions:
(L.1) infzep, V() =m; >0

(L.2) V(z) has a unique local minimum z; in A; and V(z) is represented as
V(z) = P(z — z;) + Q(z — x;).

Here P(z) is a m-homogeneous positive function for some m > 0, that is,

P(z) >0 for all z € RV \{0},
P(tz) = t™P(z) for all (t,z) € [0,00) x R’

and lim|g|_o |2|"™Q(z) = 0.

(L.3) V(z) has a unique local minimum z; in A; and V() is represented as

V(z) = exp{—r(z — ;)" — Q(z — z;)}.

Here £ > 0 and r(z) : RN \{0} — (0, 00) is a positive continuous function such
that

r(z) >0 for all z € RV \{0},

r(tz) = %r(m) for all (t,2) € (0,00) x (RN \{0}).

We also assume Q = {z € R"; r(z) > 1} is strictly star-shaped with respect to
0 and lim;(—o [2/*Q(z) = 0.

(L.4) Q = int{z € A;; V(z) = 0} is a non-empty connected bounded set with smooth
boundary.

In [BW1], (L.2) is called finite case, (L.3) is infinite case and (L.4) is flat case. Now we
have

Theorem 1.3 ([S]). Suppose that the assumptions of Theorem 1.1 is satisfied and let
ue(z) be a positive solution obtained in Theorem 1.1. Assume also, for somei € {1,-- -, k},
A; satisfies one of the assumptions (L.1)—(L.4). Set g(¢) > 0, Qo C R" and Vp(z) €
C(Q0,RY) as in the table 0.1 below.
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(1) ce,a, given in (1.2) satisfies

lim (29) 7T ()N, =
m 9(6) Ce,A; = bVo,QO'

e—0 €

Here, by, q, is defined by

(1.9)

_ 1
Ja, 1Vul? + Vo(z)u? dz )
bvy .00 = 0 .

in 3
ueH3 (20)\{0} |[ut 12541 (20

(ii) After extracting a subsequence €, — 0, there exists a sequence T, € A; and a least
energy solution wy(z) of (L)v, a, such that the rescaled function

We, (y) = (i(;,?l) Fﬁuen (9(€n)y + zn) (1.10)

converges to wy(z) in the following sense

Tp — T; € Aj, (1.11)

|[we,, = wollz1(0,,.) = 0. - (112)

Here we set O; n = {y € RN; g(en)y + zn € As}.

1) T2 T.3) T4
g(e) € i (loge~2)~% 1
Vo(z) m P(z) 0 0
Qo RY RV Q Q

table 0.1

Remark 1.4. Byeon and Oshita [BO] constructed multi-peak solutions by a Lyapunov-
Schmidt reduction method; More precisely, they showed the existence of multi-peak solu-
tions under the following situations:
e V(z) € C(RN,R) and V(z) satisfies V(z) > 0 for all z € RY and (V.2)-(V.3).
o Al A; (i =1,---,k) satisfy one of the assumptions (L.2)-(L.4) and assumptions
of the non-degeneracy of least energy solutions of limit equations.
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Under the additional conditions V(z) € C*(RY,R) and u — |u[P~u € C4(R), they also
showed the existence of multi-peak solutions u.(z) which join peaks concentrating local
minima satisfying (L.2)-(L.4) and topologically non-trivial critical points z; of V(z) in A;
with V(z;) > 0. We remark that they also study the situation lim;|_. V(z) = 0.

(c) Other limit equations

In this section, we consider about more general assumptions than (L.2)-(L.3). Firstly, we

give some examples.

Examples.
(i) Suppose that N = 1 and A = (t1,t2) for t; < 0 < t2. We also assume that for
a>b>1, ‘

_ e if x € (¢1,0],
v ={ i ecto)

Then, setting g(€) = €1, Qg = (0,00) and Vp(z) = |x|*, after extracting subsequence
€n — 0, there exists a least energy solution wo(z) of (L)v,,q, such that the rescaled
function we, (y), which defined as (1.10), converges to wo(z).

(i) Suppose that N =2 and 0 € A. We also assume that fora > b > 1,

V(zy,z3) = |&1|% + |22/® for (z1,22) € A.

Then, setting g(e) = e7, Oy = R? and Vp(z1,z2) = |22|?, after extracting subse-
quence e, — 0, there exists a a least energy solution wg(z) of (L)y;,q, such that the
rescaled function we, (y), which defined as (1.10), converges to wo(z).

In what follows, we give a condition that there exist limit problems. This condition contains
(L.2)~(L.3) and two examples above. We fix a ip € {1,---,k} and we write A;, by A.
Without loss of generality, we assume that 0 € A and 0 is a local minimum of V(z). We
set

2
Ve(z) = (£2) V(g(e)2),
Agey = {y € RY; g(e)y € A}.
Now, we consider the following assumption.

(L*) 0 is a unique local minimum of V'(z) in A. Moreover, there exist g(e) > 0 such that
g(€) — 0 as e = 0 and setting

Vo(z) = lim Ve(z) € [0, ).
Qp = int{z € RY | Vo(z) < oo},
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it holds the following:
(i) For any compact set D CC Q,

lime—o sup,ep |Ve(x) = Vo(z)| = 0. (1.13)
(ii) For any closed set E DD (2o,
lime_,o infzeAg(e)\E‘ Ve(x) = O0. (1.14)

(iii) If Qo = RY, then for any 6§ € (0,1) there exists o = €9(6) > 0 such that for
€ € (0, €),
Ve(z) > (1 =0)Vo(z) forall z € Ay, (1.15)

Moreover, for k € N with 1 < k < N, V() satisfies

Vo(z1,+y Thy Ths1s -+, TN) = Vo(&1, 1 T, 0,- -+, 0) for all z € RV (1.16)
Vo(z1,-++, 2k, 0,--+,0) = 00. (1.17)

|zy |+ +|zK | —00

If Q9 # RY , then 89 is smooth and V,(z) satisfies

lim Vp(z) = o0 (1.18)

|| —o00

We remark that (L)y, g, has a least energy solution under the condition (1.16)—(1.17)
or (1.18). Here we have

Theorem 1.5. Suppose that the assumptions of Theorem 1.1 is satisfied and let u¢(x)
be a positive solution obtained in Theorem 1.1. Assume also A satisfies the assumptions
(L¥).

(i) ce,a, given in (1.2) satisfies

lim g(f)-NCe,A,- = byp, Q-

e—0

2(p+1
(ﬂeﬂ) P..'_fz
Here, by, q, is defined by (1.9).

(ii) After extracting a subsequence €, — 0, there exists a sequence z, € A; and a least
energy solution wo(z) of (L)y, q, such that the rescaled function

wea0) = (262) 7w, (glenly + 22) (119
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converges to wo(x) in the following sense

Zn — 0, (1.20)

||we,, — wol|£1(0;,,) — O- (1.21)

Here we set O; , = {y € RY; g(en)y + 7» € A}
In next sections, we will give a outline of the proof of main theorems.

2. Variational formulation

In this section, we give our variational formulation of (x), which used in [S]. We will
reduce to a variational problem defined on infinite dimensional torus X¢a, X - -+ X ¢ p, .
(a) Preliminary

We use the following notation: for an open subset D ¢ RY,

< UV D¢ p= / eVu- Vv +V(z)uv dz  for u,v € H*(D),
D

“qu,D =< U, U >¢D for u € I{1 (D),

Iflle.0 = sup [f(w)] for fe(HY(D))"
weH (D), fulle,0 <1

For an open subset D C RN and W(z) € C(D,R), we also set
Ew,p = {ve HY(D); [, W(z)v* dz < oo},
< U, U >w,p= / Vu-Vv+W(z)uv dz for u,v € EW,D,
D

HuH?MD =< u,u>w,p foru€ Ewp.

In what follows, we assume that A; has smooth boundary. We set A, = Uf=1 A;. By the
following proposition, for subsets D = Ay,--+,Ax or RN \A,, norm || - ||¢,p is equivalent
to || - [lg2(p)-

Proposition 2.1. There exists C; > 0 independent of € € (0,1) such that for subsets
D =A1""’Ak OTRN\A*;

C]_ )
lullze(p) < Zllullep  for we HY(D). (2.1)
Proof. It follows from the Poincére inequality. (See Proposition 1.1 of [S].) i

From Proposition 2.1, we can easily show the following lemma.
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Lemma 2.2. There exists vy > 0 independent of € € (0,1) such that for subsets D =
Ay, -, Ag or RV \A,,

1
§HUIIE,D < ull? p ~ 2w |ullfa(p) forue HY(D). (2.2)

Proof. Setting v = ﬁ for the constant Oy appeared in (2.1), we get inequality (2.2).
|

In what follows, we choose A} such that
A; CC A CC A,

and set A, = i-°=1 A. We also use the following lemma.

Lemma 2.3. There exists a bounded linear operator P : H'(A., \A’ ) = HY(RN\AL)
such that for some C; > 0 independent of € € (0,1),

(Pu)(z) = u(z) forz e A, \ A, and u € H (A, \ A)),
Pulley . < Callullona, for u € HY (AL \ AL). (23)

Proof. By a standard way, there exists a bounded linear operator P : H*(A, \ A,) —
HY(RN\A’) such that for some C > 0,

(Pu)(z) = u(z) for x € A, \ A, and u € HY(A, \ AL),
1Pullp2g~\ay) < Cllullzeganagy  for uw € HH (AL \ AY),
|Pull g1 v \ag) < Cllullenaanag)  for u € HY (AL \ AY).

Thus, noting infzep,\a, V(z) > 0, we have
1Pull2 g \ar < El1Pullfga\ary + (mse‘;gv V(l‘)) 1PullZa gy \ar)

< el a.ny + € 308, V@) llsen

<C? / 62|Vu12d:c+026 + SuPsepy V(2) / V(z)u? do
ANAL infzeana, V(Z) Janag

1+ sup,egy Viz)
< C2 1 TER ;.
<0 (1+ e s ) e

This is nothing but (2.3). i
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(b) Functional setting

Firstly, to find critical points of ¥ (u), we modify the nonlinearity |u[P~'u. We use
a local mountain pass approach introduced by del Pino and Felmer [DF|. We choose
fe € C1([0,00),R) such that for some 0 < £; < {3 and a — 2 > g% -N>0

_fer for € € (0,e7-14;), ) N
f6) = {eayog Prec Otk 0<fO<u, frgeo). (24

Here vy is given in Lemma 2.2. We set

£  ifzreA,and€>0,
(z,€) = {fe(ﬁ) ifz¢ Asand £ 20, (2.5)
0 if€<0,

£ £
Gulz,8) = /0 ge(e,)dr, Fu() = /0 fo(r)dr.

Now, we define a functional ®,(u) by
1
2w) = glullry — [ | Gulasw)de & CHH'RY),R). (26)
R

We remark that ®.(u) satisfies (PS)-condition. (cf.[DT]) We also note that if u.(x) is a
critical point of ®.(u) satisfying

0 < ue(z) < €7=14; for z e RY \A., (2.7)

then uc(z) is a critical point of ¥(u). Thus, in what follows, we will find critical points
of ®.(u) which satisfy (2.7).

Next, we reduce our problem to a problem on H(A,). For given u € H'(A.), we
consider the following minimizing problem:

I(u) = inf  ®.(P . .
() L (Pu+¢) (2.8)

Remark 2.4. Letting @c(u) be a minimizer of (2.8), then Pu + p(u) is a minimizer
of infyep, ®c(v), where E, = {v € H'R") ;v = v on A}, Thus w(z) = (Pu+
©e(u))|r~ \A. (%) satisfies the following boundary value problem:

—e2Aw+ V(z)w = fo(w) in RV \A,, w=1u on JA.. (2.9)

For the minimizing problem (2.8), we have the following proposition.
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Proposition 2.5. For any u € H!(A,) and € € (0,1), the minimizing problem (2.8) has
a unique minimizer ¢(u) which satisfies
(i) u— @ (u): H(AL) — H3(RN \A.) is of class C*.
(i) Ie(u) = ®(Pu+ @e(u)) : HY(A,) — R is of class C2.
(iii) u € H*(A.) is a critical point of I.(u) if and only if Pu+ @¢(u) is a critical point of
D (u).
(iv) I.(u) satisfies (PS)-condition.

Proof. We outline the proof. (See Proposition 1.6 of [S].) We consider the functional

J(p) = ®(Pu+ ) : HX(RN \A.) — R. Then J(yp) is strongly convex and coercive, that
is, J(¢p) satisfies

1
(@), k) 2 SlIhlE g s, for any o,k € HY(RV \AL). (2.10)

From (2.10), (2.8) has a unique minimizer @.(u). (i) follows from the implicit function
theorem. (ii)—(iv) follows from the fact that

®.(Pu+ @ (u))h =0 for all h € H}(RY \A.), (2.11)
pe(w)¢ € Hy(RY\A.)  for all ¢ € H'(AL),

that is,
I'(u)¢ = ®L(Pu+ pe(uw))(P¢) for all ¢ € H'(AL). 1

Setting Qc(u) = (Pu + @c(u))|g~ \a., by Remark 2.4, Q.(u) satisfies (2.9). In what
follows, we identify H*(A.) and H*(A;)®- - -®H*(A), Moreover, for functions u; € H'(A;)
(t=1,---,k), we write u = (uy,---,ug) if u € H'(A,) satisfies u; = ulpa, (i = 1,---,k).

When u = (uy,- - -, ux), we also write

I(uy,---,ug) for Ic(u),
Qe(u1, -, ux) for Qe(u). (2.12)

Moreover, we can write

k
1 1 1
sy ) = Y (Gl a, = =l 55,

=1

1
+ §||Qe(u1, v ,uk)”iRN \A. - / Fe(Qe(’Ud, PN ,uk)) d.’l!
RN \A.
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For he(z) € L=®(R" \A,) satisfying ||he||zor~\a,) < 2¢*1, we consider the following
linear boundary value problem:

—Av+V(@)v=he(z)v mRV\A., v=u onA,\AL. (2.13)

In a similar way to Proposition 2.5, we can easily observe (2.13) has a unique solution.
We denote the unique solution of (2.13) by Q. e(u1, -+, ux)(z). Then we can write as

Qec(ur, - uk)(Z) = Qf.(Qu(ur,wur))/Qe (ur,ur),e(U1, - - ug)(z). Here, we define the aux-
iliary functionals

1 1 1

Ie A, (i) ='2‘Hui||3,m - ;)—_"_"1‘||Uz‘+|\ﬁix(,\i) + §||Q0,e(0> gy, 0)|2 g \A.
€ CZ(HI(Ai)$R) (Z =1, :k)

The following proposition gives estimates of difference between I (u1, - - -, ux) and auxiliary

functional Zf___l I, A, (u;) and it plays an important role in our proof.

Proposition 2.6. There exists C3 > 0 such that fore € (0,1) and (uy,- -, ux) € H'(A1)®

- ® H' (Ak),

e(ut, -+ uk) = Sy Teas ()] < €72Cs T Hluil2 4, (2.14)
To prove Proposition 2.6, we show the following lemma.

Lemma 2.7. There exists C4 > 0 such that for € € (0,1) and (u1, - ,ux) € H (A1) & -

SH (Ax),
|@n.e(u1, -+ uir)llery \A. < Callufle,anar, (2.15)
[|Qe(ur; -+, uk)ller¥ \a. < Callulleanna, (2.16)
1Qe(u1, - uk) ~ Qo,e(ur, - uk)lerm \a. < € 2Cllulle,a\az - (2.17)

Proof. First of all, we set v(z) = Qo,e(u1, -, ur)(z) and w(z) = Qe(u1,---,ur)(x).
From Remark 2.4, we remark that w is a unique minimizer of the minimizing problem
K.(w) = infuep, Kc(u), where K(u) = [on \As 1(3|Vu| + V(z)u?) — F.(u)dz. Thus by
Lemma 2.2 and Lemma 2.3, we have

1
Z”ng,RN \A, S Ke(w) £ Ke(Pu) < ||PU“3,RN V- Cg”““?,A.\A;- : (2.18)

Thus (2.16) follows from (2.18). We can show (2.15) in a similar way. Next we show (2.17).
By variational characterizations for w(z) and v(z) w — v satisfies

<W =V, 0 >cRN\A= / fe(w)pdz for all o € HY(RN\AL). (2.19)
RN \A.
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Since w — v € HE (RN \A,), setting ¢ = w — v in (2.19), we have

= ol Py n. = / fe(w)(w — v) da

RN \A‘,
< e®vollw|L2@my \au) W — V|| L2 (m \AL)

< €2 2uCrl|wllery \au 1w — V]l g \A.L - (2.20)
Here we used Proposition 2.1. By (2.20), we get
|lw = vllerv \a, < €2 U0 |w]lery \A, - (2.21)

From (2.16) and (2.21), for some C; > 0 which is independent of u = (u3,---,ux) and
€ € (0,1), we obtain :

lw —vllerm\A. < 6("_QC'4||1L||e,1\.\f\{_- |

Proof of Proposition 2.6. From (2.12), we have

k
Ie(ula cee 7uk) - ZI€$AI' (ul)
=1

k
1
= E(HQE(U’I" .. "U,k)”Z,RN \A. - Z ”QO,G(O, ety Ujy ’O)HE,RN\A*)
i=1

- / Fu(Qe(us, - - ug)) do
RN \A.

1
= >0+ D).

Since Qo,e(u1,- -, ux) is a solution of the linear equation, we have Qo (u1,--,ux) =
E')’,c::l QO,G((], e 7u'i.$ Y O)- Thus,

(I) = ”QE(UI’ o ,Uk)Hf,RN \A. T “QO,e(ula T ’uk)Hz,RN \As
+ 2 Z < QO,E((), crryUgy e ,0)’Q0,e(05 Tty Ugy e 70) >e,RN \Au * (222)
1<i<j<k )

Now we remark that, for ¢ # j, the following estimate holds:

| < Qo,e(0,--,usy---,0), Qo,e(0, -+, uj,-+,0) >, RN \A. | < Ce™¢ HuiHG,AiHuijaAj’
| (2.23)
where constants C,a > 0 are independent of (uj,---,ux) € H'(A1) ®--- ® H(Ag) and
e € (0,1). It is showed in [ST]. The key of the proof is the subsolution estimate in [Si].
(Also see [GT].) From Lemma 2.7, (2.22) and (2.23), it follows that

(D] < 262G |[ullZa, +2Ce™ %2 > Jjusllelluslle, (2.24)
1<i<j<k
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On the other hand, since F(£) < $e*15€2, we have

Ga-21/001”Q5(u1a e ,uk)liz,RN \A-

< 220Gl 2. (2.25)

Here we use Proposition 2.1 and Lemma 2.7. We get (2.14) from (2.24) and (2.25). |
We use the following notation: for u;,v; € HY(A;) (i=1,---,k),

< Uiy Uy >£,A,;,#=< Ui, Uy >€,A,-
+ < QO,G(Oa"'aui""70),Q0,€(0a"'>vi>"'aO) >-e,RN\A., (7'= 17"'7k)a
il g =< wirui >epp (E=1,2-k).

By Lemma 2.7, we easily get

llille.ar < lluillens,# < 1+ Co)lluillea, for all u; € H*(Ay).

Thus || - ||¢,a;,# I8 equivalent to || - |[,a, for each 7. With this notation, I, A,(u) can be
written as

I = Ll - Pty HY (A i =1,---,k

e,hs (Ui) = Elluille,A,-,# - [ lllui+|’LP+1(Ai) tH (M) > R. (i=1,---,k)

We can easily see that I, 5,(u;) (i =1,---,k) has a mountain pass geometry and satisfies
(PS)-condition for all ¢ € R in a standard way.
(c) Reduction to a problem on X, 5, X --- x X¢ 5,

In this section, we reduce our problem to a variational problem on an infinite dimensional
torus L A, X «++ X Xe A, , Where

Bea, = {vi € H (M) (loill2a, 4 = den} (i=1,--,k). (2.26)

Here we define d A, by

2(p+1)

X p~1
_ ; ( ville,as ) (G=1,--,k). (2.27)
vi€H1(A;)\{0} H'Ui—i-”LP'H(Ai)

de,A,-

Then d, A, satisfies the following decay estimates.
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Lemma 2.8. (i) Ifinfzen, V(z) = m; > 0, then lim e Nden, = by, gy > 0.
E—
(ii) If infzen, V(z) = 0, then lim e Vd, », = 0 and liminf e” B, 4, € (0, 00)].
Proof. Lemma 2.8 can be shown by a similar way of Propositi;)n 4.2 below. |

We consider the auxiliary problems constrained on sphere X 4,:

1 1 de A, P .
Jen, (Vi) =supl itv-:(—— ) e tXen, 2R (=1, k).
s (0%) t>g i (t03) 2 p+1 (H’Uz'+||%p+1(1\.,-) A ( )

For v; € 3¢ 4,, we can see that ¢t — I, A, (tv;) : [0,00) — R takes a global maximum at

PR _=dp—i-1 ,|_’$} (228
6,4\,’ (v’b) G,Ai Ilv”’+ lLP+1(Ai) ' )

and

|
s

Jeps (Vi) = Tep, (b, (vi)vi) = (l 1 ) ( e ) p

2 p+1 “vi+||%p+1(A,.)

We choose 7 > 0 such that 1 — p(1 +7)~(P~1) < 0 and set
Nea, = {vi € Zea,; ||”i+||zl),:il(,\i) 21+ T)_’;_ldf:Ai} (i=1,---,k). (2:29)

N, is a neighborhood of least energy critical points of J¢ 4, (v;). In fact, we can easily
get the following lemma.

Lemma 2.9. For any € € (0,1),

(% - ﬁ)de,m = inf Jea,(vi) (E=1,---,k),

’UdENe‘Ai
()3 -5k )den < nf  Jen(w) G=1,00,k)

i€ e.Ai

Proof. By a direct computation, we can easily see that
—1
Jea,(vi) < (1+ r)(% _ Flr—l)de,m if and only if [[vi|[ZEh 4,y = (L +7) 7T dea,. (2.30)

Thus Lemma 2.9 follows. | [ |

For minimizing sequences of J, »,, we have the following estimates.
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Lemma 2.10. If a sequence v; . € X a, (€ — 0) satisfies

2(p+1)
Je,Ai (vi.e) = (% - ;i'?l)de,Ai + 0(5 pp—l )7 (2.31)
then we have
2(p+1)
Hvz‘,e+”ﬂj1(m) =dep, +o0(e77T). (2.32)
Proof. From (2.31) and (2.30), we have
( 2gp+12) ~egt
o€ -1
”Uz’,e+“1],::-tl-1(,\i) = (1 + _d:\—-> de,Ai-

Using a Taylor expansion, for small |r|, we find (1 + 7')‘%1 =1+ O(r). Thus we get

2(p+1)
ole p-1 2(p+1)
Hvi,e+“1j:ti1(,\,.).= (1 + "‘(T)> de,a; = de,a; + 0(€ = ) i
€,/\4 »

We set a subset N, as follows:

Ne = {(Ula te ’vk) € EE,Al X X ZE,Ak; ”vi+H€:-ll~1(Ai) 2 (1 +T)—&;—1d€,/\i (7' =1,-- ’k)}

' (2.33)
From Lemma 2.9, we can see N, # 0. We try to find a critical point of Je(vy, -, vk) :
N, — (0, 00] which is defined by

Je('vl, v ,’Uk) = sup IE(Sl’Ul, T ,skvk). (234)
31,"',3k20
For simplicity, in what follows, we use notation: v = (v1,-+,vx) € N, 8 = (81, +,8k)€E
[07 Oo)ka sV = (slvla Tty SkUk)-

The following proposition is important.

Proposition 2.11. There exists €; € (0,1) such that for all € € (0,¢;) we have

(i) There exist constants R; > R; > 0 independent of € such that for any v € N,
s — I.(sv) has a unique maximizer s¢(v) = (s1,¢(V)," -+, 8k,¢(V)) in [Ry, Ra)*.

(ii) v+ s¢(v) : Ne = R¥ is of class of C*.

(iii) J.(v) : Ne — R is of class of C'.

(iv) Je(v) : Ne — R satisfies (PS)-condition.

(v) If v € N, is a critical point of J¢(v), then s.(v)v € H* (A1) ®---@® H*(Ay) is a critical
point of I.(uy, -, ug).
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(vi) For all v = (vy,---,v;) € N, we have

2(p+1)

Jo(v) = S8 Joa,(vi) +o(e 7). (2.35)
where o(euf—+11 ) is uniformly for v € N,.
Proof. See Proposition 1.13 and Proposition 1.14 of [S]. 1
3. Outline of the proof of Theorem 1.1.
In this section, we will show Theorem 1.1. We define
| ce = inf J.(v). (3.1)

veEN,
Then we show the following proposition.

Proposition 3.1. For small € € (0,¢;), we have

() e = (3 = 531) Ty de, + o 51).

2 p+1
(ii) infyen, Je(v) < infyean, Je(V).
(iii) c. is a critical value of J.(v). Moreover corresponding critical points lie in N,.

Proof. From (2.35), we recall

k
J(v) =3 Jon () + o) forall ve N,
=

where o(‘szfjI ) is uniformly for v € N,. Thus from Lemma 2.9, it follows

k
. 2(p+1)
Ce = vlenlge Je(v) = El vzel}r\}f/\ Jen, (Vi) + o(e7?T )
=

- (% - ﬁ) .Zldm. +o(e ). (3.2)
i

Next we show (ii). We note N, = U:-c=1(Ne,A1 X «++ X ONea, X --+ X Nep, ). Again, from
Lemma 2.9, we get for each j

2(p+1)
inf Je(v =§ inf  Jea, (v inf  Jea,(v;) 4+ o(e7 P
VEN A, X+ XONe,a; X+ X Neyay e( ) oy Uz'EIII\};,A,-' 6, A4 (’U-,) + v;€8N A, € A,( _7) ( )

)Zdem +(1+7)(3 = 51 )den, + +o(e*FT)
=c + r(§ — m)df’/‘j +o(ea}—t#). (3.3)

i
™~
N
+|~

(ii) follows from (3.2)-(3.3). Since J¢(v) satisfies (PS)-condition, we can see c is a critical
value of J.(v) in a standard way. 1
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Corollary 3.2. Minimizer v, = (v1,," -+, Uk,e) Of (3.1) satisfies

2(p+1 .
Ton(se) = (3 = 51 )den +0(F5) =1, k).

Proof. From (2.35), we have

2(p+1
(% B ;i—l)de’m < JE’A" (Ui’e) = JE(VG) - ;JE,AE ('Ue,e) + 0(64:71_1)
i

2(p+1
<ce— (% - #1_) ch,A, +O(GJH)

£#4

1 1 2ptl)
= (5 - m)de,m +o(e7>=T).

Thus we get Corollary 3.2. |

From the a minimizer of (3.1), we get a critical point of ®¢(u) by the following:

Proposition 3.3. Let ve = (v1,¢," ", Vk,e) be a minimizer of (3.1). Then
] sie(Ve)vie() forreA; (i=1,--:,k),
(@) = G o omalv (@) or 5 € B\ (84
is a critical point of ®.(u). Here (s1,¢(V)," -+, Sk,(V)) are given in Proposition 2.11.
Proof. It follows from Proposition 2.5, Proposition 2.11 and Proposition 3.1. [ |

Here we outline the proof of Theorem 1.1
Outline of the proof of Theorem 1.1. We can show that uc(z) defined by (3.4) has
an exponential decay on R \A/, as € = 0. (See [S].) Thus u.(z) satisfies (2.7) and u(2)
is a critical point of original functional ¥.(u). Moreover, we have the following detailed
estimate of u¢(z) (See [S].):

2gg+12
Hue-*-“%til(m) = Ce,p; H0(€7P7T ), (3.5)
2(p+1)
el 4, = Ceps +0(€ 7). (3.6)

Thus (1.4)—(1.5) follow from (3.5)-(3.6). We get (1.6) by a standard way. The proof of
Theorem 1.1 is completed. [ ]
4. Asymptotic profile of solutions uc(z). ‘

In this section, we will prove Theorem 1.5. By a similar way, we can prove Theorem 1.3.
(See Section 3 of [S].) First of all, we note the following.
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Remark 4.1. When assumption (L*) holds, there exists a constant Cs > 0 independent
of € € (0,1) such that

HwHHl(Ag(e)) < CSHwHVe,Ag(e) for all w € Hl(Ag(e)). (4.1)
In fact we can see that, for some £ > 0 and § > 0 independent of € € (0, 1), V.(y) satisfies
Voy) > {O for y € (—£,0)F x RN % Cc RY,
6 elsewhere.
Thus (4.1) can be shown as Proposition 2.1. (See Lemma 1.2 of [S].)

In the following arguments, d, A defined in (2.27) and by, o, defined in (1.9) will play
important roles.
Proposition 4.2. by, q, is achieved by some w(z) € H}(Qo) and

g(e) zppjll -N
(——) g9(e)™"dep — by, 0, ase— 0. (4.2)

€

Proof. From Lemma 2.11 of [S], it suffice to show
3(p+1)

(g@) g9 ™Neen = brog, ase—0. (4.3)

€

(e

Suppose that w(z) € H () achieves by, o. We choose a function ¢ € C(RY, [0,1]) such
that

Firstly we show

) 0(0)Nean < by +0(L). (4.4)

!
(z)z{l forz € A |Ve(z)| < C for z € RY,

0 forze RM\A

and set

o) = o(o) (55 o (). o) =wlo(om)

Then by direct computations, we have

2(p+1

el = (m)lrl

+ / Ve (2) Pw(z)? + 2Vepe(z) - Vw(z)ve(z)w(z) dx
Ag(e)\Ag(e)

——-(@) 9™ (D) + (ID)).

g(e)¥ [/A Ye(@)*{|Vw(@)® + Ve(@)w(z)*} do
g(e)
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Here we have

()] < C2llwll3acn,

as € — 0. Thus, from (1.13), we find

) + 20|Vl L2 (s \ar g 10l 2 g \2750) = 0

g(e)

el P4 = (Q—(—)) 9(6) (l% 0, +01). (45)
By a similér way, we get
¢ \ F
ettt = (555) 9O Ul gy +ol0) (46)

Thus from definition of ¢. 5 and (4.5)-(4.6),

Hetp ) S . =
(g_(‘;_)> 9(e) " een < (2%2) 9(e)” ( P+1) <||Ue‘Jle|L|p+t(A))

2(p+1)
= (l - 1 ) ( ”w“Vo,ﬂo +o(1) ) P L
2 p+1) \llwyllze+1(ae) +o(1)
2(2-1-1!
= (.1_ — 1 ) ( ||w]lve,00 ) Pt +o(1)
2 p+1) \J|lwellzerr (o)
= bv,,00 + 0(1). (4.7)
Next, we show
2!2-{»1!
gle)) *77 -N
oo < (22) 7 g0 Meun +ol0). (48)

2(p+1)
Let ve(z) € H}(A) attains c.o. We may assume ||vg|[? RN = (j—c—) """ g(e)N. Then,

from (4.4), we see that

2(p+1

o) 1 |
lim <ﬁ-—)-) 9(6)—NH’Ue+HLP+1(A) > 0. - (4.9)

e—0 €

We set

we(z) = (2(—)) ™ la(e)2).

€

Then |jwe|ly, gv = 1 and lime_o ||We||gr+1(gnvy > 0. We need to divide in two cases:
Qo = RY or Qy # RY. Firstly, we consider the case = R™. By direct computations,

we have

llwel 2, gv = (g(:))a%u g(e)‘N/AezlvUEl2 + (j—e—;)z% (3%) v2(z) da.
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Thus, from (1.15), for any 6 € (0, 1), we obtain

( ) 2(p+1)
gle)\ 7 -
el gprer < (22) 7 00l + 000 (410)
On the other hand, we have

© 2(pt)

1 gle)\ *~ -N +1
lwdEhm = (Z2) 7 a0 Vvl (411)

From (4.10)-(4.11) we get

( ) 2 1

€ p-1 _

ba-svo,rN < (_ge_) g(e) NCe,A +0o(1).

(4.8) follows from the fact b(; sy, g¥ — by, g~ a8 & — 0. Next, we consider the case (g #
RY. Since ||we||ly, gy = 1, we can choose a subsequense €, — 0 and wo(z) € H(RY)
such that

we, (z) — wo(z) weakly in H*(R"Y) and strongly in Lfotl RM) (4.12).

From (1.18) and (4.12), we see w,, (z) — wp(z) strongly in LP*}(RY). Moreover, from
(1.14), for any closed set E DD Qg we find

1 Ve(z)we, ()% dz — 0.

e < J
Il enHLﬂ(Ag(en)\E) )\EVe(m) Agen)\E

infzeAg(en

In particular, we find wo € H}(Q) and wo+ # 0. Thus we have

2(p+1
b o < (L__1 llwollv,00 p-T
Vo, = 5 - 1
p+ [wo+||Le+1(0)
2(p+1)
1 1 w n ns € Pt
Sliminf(—— ) H € ”e Aglen)
=0 \2  p+1) \[[Wentllzori(age,y)
2(p+1) —
= liminf (M) e N (1 1 ) ( [ven lea, )4’—2
6n—->0 En n 2 p -+_ 1 |Iv€n+||Lp+1(A)
2( +11
e+l
= liminf (g(fn)) g(ﬁn)_Ncen,A- (4.13)
" €p—0 €n

Since (4.13) is not depend on subsequense, (4.8) holds. From (4.4) and (4.8), we get (4.4)
and complete the proof of Proposition 4.2. | |



82

To prove Theorem 1.5, we define a rescaled functional

~ 1 1
(I)Ag(e)(w) = 5”?.0”%/511\9( ) p+ 1 || +HLp+1(A (e)) Hl(Ag(e)) —R.

We also define a functional corresponding to the limit problem (L)v,,q, by

1
IVo,Qo(w) = 5”“’“%’0,90 H +HLP+1(QO) EVo,Qo n HO (QO) R.

D+ 1
Now we have the following proposition.

Proposition 4.3. Suppose (we(y)) C H(Ay()) satisfles

1
Hwe“II);H(Ag(e)) = bye, 00 + (1), (4.14)
”welﬁ/ﬂl\g(c) S bVOaQO + 0(1)7 (4'15)
Agey(Wedp =0 forall p e Hj(Ag(ey)- (4.16)

If (L*) holds, then after extracting a subsequence €, — 0, there exist z,, € A, and a least
energy solution wo € H}(Qo) of (L)v,,q, such that

€nZn — 0,

|lwe, —wo(+ — zn)llH1(A,,,) =0 as5€n—0,

IVOsQO (wO) = (% - P_i‘T)bVOvQ(” I{/o,Qo (wo) = 0

To prove Proposition 4.3, we will use the following lemma.

Lemma 4.4. Suppose w € Hj(Q) \ {0} satisfies I}, o (w)w < 0. Then

”w| I%/(),Qo Z bV0>QO *

Proof. Ij o (w)w < 0 implies lwl3, 00 < ||w+“1{;}-1(90). Thus, from the definition of

bv;,.00, We have
2! E+1!

‘ Hw“V 2 p=i 2
b < 01. 0 < .
Vo.flo = <||w+“LP+1(Qo) < [l o '

Proof of Proposition 4.3. For the case o = R”, we show the proposition. For the
case 0y # RY, we can show it by a similar way. We use concentration compactness
argument. From (4.14)-(4.16) and (1.15)-(1.17), we can easily see that there exists z. =
(0,-++,0,Zck, 1 Te,N) € RY such that for large R > 0, liminf._.o l|wel|Lp+1(BR(z.)) > O
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From (4.15)—(4.16), there exist a subsequence ¢, — 0 and wo € H!(R") such that for any
bounded set D C RY,

Ve, () = we, (T + Te, ) — wo(x) weakly in H(D) and strongly in LPT'(D).  (4.17)

For any ¢ € C}(p) we have

/ Ve, .Vga+1/6n(m+xen)vengodx—/ v? Lpdzr=0.
AH(En)+m‘n : A

g(en) +m€n

Since supp ¢ is compact, from (1.13), (1.15)—(1.17), wo(z) satisfies
Vwo - Vi + Vo(z)wop dz — / wg+<,oda: <0,
RN RV

that is, Iy, o,(wo)wo < 0. From Lemma 4.4 and (4.15), it follows that

bVO:RN S ||w0H%,0,RN S liel':l__i_'%f ”Ive'n”%/en !Ag(en)+-‘tgn S bVOvRN' (4‘18)

By (4.17) and (4.18), we can see

. 2 =
E}zlgo H’Uén - w0||Ven,A9(5n)+z!n o

From (4.1), we also obtain lime, o ||ve, — woll#1(a,(.,,+z.,) = 0. Therefore we have
I{/O,Qo(w()) = 0 a:nd

(I.Ag(m)(wén) - IVo,Qo(wo) = (‘é"" E—%—T)bVo,Qm

We complete the proof of Proposition 4.3. |

End of proof of Theorem 1.5. (i) of Theorem 1.5 follows from (4.3). Let u.(z) be

a critical point of ¥,(u) obtained in Theorem 1.1. We set we(z) = (1(6_6) 7T ue(g(e)x).

Then from Proposition 4.2 and (3.5)~(3.6), wela,,, (z) satisfies (4.14)-(4.16). This implies
(ii) of Theorem 1.5. Thus we complete the proof of Theorem 1.5. |
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