
Nonexistence of self-similar singularities for
the $3\mathrm{D}$ incompressible Euler equations

Dongho Chae*
Departrnent of Mathematics
Sungkyunkwan University

Suwon 440-746, Korea
$\mathrm{e}$-mail: chae@skku.edu

Abstract

We announce that there exists no self-similar finite time blowing
up solution to the $3\mathrm{D}$ incompressible Euler equations if the vorticity
decays sufficiently fast near infinity in $\mathbb{R}^{3}$ .

1 The self-similar singularities
We are concerned here on the following incompressible fluid equations for the
homogeneous incompressible fluid flows in $\mathbb{R}^{3}$ .

where $v=(v_{1},v_{2},v_{3}),$ $v_{j}=v_{j}(x, t),$ $j=1,2,3$, is the velocity of the flow,
$p=p(x,t)$ is the scalar pressure, and $v_{0}$ is the given initial velocity, satisfying
$\mathrm{d}\mathrm{i}\mathrm{v}v_{0}=0$ . The constant $\nu\geq 0$ is called viscosity. If $\nu=0$ the system is called
the Euler equations, while if $\nu>0$ the system is the Navier-stokes system.

’The work was supported partially by the KOSEF Grant no. R01-2005-000-10077-0.

数理解析研究所講究録
1529巻 2007年 123-131 123



There are well-known results on the local existence of classical solutions(see
e.g. [18, 13, 7] and references therein). The problem of finite time blow-up
of the local classical solution is one of the most challenging open problem in
mathematical fluid mechanics. On this direction there is a celebrated result
on the blow-up criterion by Beale, Kato and Majda$([1])$ . By geometric type
of consideration some of the possible scenarios to the possible singularity
has been excluded(see [8, 9, 10]. One of the main purposes of this paper
is to exclude the possibility of self-similar type of singularities for the Euler
system.
The system (E) has scaling property that if $(v,p)$ is a solution of the system
(E), then for any $\lambda>0$ and $\alpha\in \mathbb{R}$ the functions

$v^{\lambda,\alpha}(x,t)=\lambda^{\alpha}v(\lambda x, \lambda^{\alpha+1}t)$ , $p^{\lambda,\alpha}(x,t)=\lambda^{2\alpha}p(\lambda x, \lambda^{\alpha+1}t)$ (1.1)

are also solutions of (E) with the initial data $v_{0}^{\lambda,\alpha}(x)=\lambda^{\alpha}v_{0}(\lambda x)$ . In view of
the scaling properties in (1.1), the self-similar blowing up solution $v(x, t)$ of
(E) should be of the form,

$v(x,t)$ $=$ $\frac{1}{(T_{*}-t)^{\frac{\alpha}{a+1}}}V(\frac{x}{(T_{*}-t)^{\frac{1}{\alpha+1}}})$ (1.2)

for $\alpha\neq-1$ and $t$ sufficiently close to $T$ . Substituting (1.2) into (E), we find
that $V$ should be a solution of the system

(SE)

for some scalar function $P$ , which could be regarded as the Euler version of
the Leray equations introduced in [15]. The question of existence of nontriv-
ial solution to (SE) is equivalent to tbat of existence of nontrivial self-similar
finite time blowing up solution to the Euler system of the form (1.2). Similar
question for the $3\mathrm{D}$ Navier-Stokes equations was raised by J. Leray in [15],
and answered negatively by the authors of [19], the result of which was re-
fined later in [20]. Combining the energy conservation with a simple scaling
argument, the author of this article showed that if there exists a nontrivial
self-similar finite time blowing up solution, then its helicity should be zero.
To the author’s knowledge, however, the possibility of self-similar blow-up of
the form (1.2) has never been excluded previously. In particular, due to lack
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of the laplacian term in the right hand side of the first equations of (SE),
we cannot apply the argument of the maximum principle, which was crucial
in the works in [19] and [20] for the $3\mathrm{D}$ Navier-Stokes equations. Using a
completely different argument from those used in [2], or [19], we prove here
that there cannot be self-similar blowing up solution to (E) of the form (1.2),
if the vorticity decays sufficiently fast near infinity. Before stating our main
theorem we recall the notions of particle trajectory and the $\mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k}- \mathrm{t}\mathrm{c}\succ \mathrm{l}\mathrm{a}\mathrm{b}\mathrm{e}\mathrm{l}$

map, which are used importantly in the recent work of [6]. Given a smooth
velocity field $v(x, t)$ , the particle trajectory mapping $a\vdasharrow X(a, t)$ is defined
by the solution of the system of ordinary differential equations,

$\frac{\partial X(a,t)}{\partial t}=v(X(a, t),$ $t)$ ; $X(a, \mathrm{O})=a$ .

The inverse $A(x, t):=X^{-1}(x, t)$ is called the back to label map, which satis-
fies $A(X(a,t),t)=a$ , and $X(A(x,t),t)=x$.

Theorem 1.1 There $e$ vists no finite time blowing up self-similar solution
$v(x, t)$ to the $\mathit{3}D$ Euler equations of the $fom(\mathit{1}.\mathit{2})fort\in(\mathrm{O}, T_{*})$ with $\alpha\neq-1$ ,
if $v$ and $V$ satisfy the following conditions:

(i) For all $t\in(0, T_{*})$ the particle trajectory mapping $X(\cdot, t)$ generated by
the classical solution $v\in C([0, T_{*});C^{1}(\mathbb{R}^{3};\mathbb{R}^{3}))$ is a $C^{1}$ diffeomorphism
from $\mathbb{R}^{3}$ onto itself.

(ii) The vorticity satisfies $\Omega=curlV\neq 0$ , and there $e$ vzsts $p_{1}>0$ such that
$\Omega\in L^{p}(\mathbb{R}^{3})$ for all $p\in(\mathrm{O},p_{1})$ .

Remark 1.1 The condition (i), which is equivalent to the existence of the
back-to-label map $A(\cdot, t)$ for our smooth velocity $v(x, t)$ for $t\in(0, T_{*})$ , is
guaranteed if we assume a uniform decay of $V(x)$ near infinity, independent
of the decay rate$([5])$ .

Remark 1.2 Regarding the condition (ii), for example, if $\Omega\in L_{\mathrm{t}oc}^{1}(\mathbb{R}^{3};\mathbb{R}^{3})$

and there exist constants $R,$ $K$ and $\epsilon_{1},$
$\epsilon_{2}>0$ such that $|\Omega(x)|\leq Ke^{-e_{1}|x|^{e_{2}}}$

for $|x|>R$ , then we have S2 $\in L^{p}(\mathbb{R}^{3};\mathbb{R}^{3})$ for all $p\in(0,1)$ . Indeed, for all
$p\in(\mathrm{O}, 1)$ , we have

$\int_{\mathrm{R}^{3}}|\Omega(x)|^{p}dx=$ $\int_{|x|\leq R}|\Omega(x)|^{p}dx+\int_{|x|>R}|\Omega(x)|^{p}dx$

$\leq$ $|B_{R}|^{1-p}( \int_{|x|\leq R}|\Omega(x)|dx)^{p}+K^{p}\int_{\mathrm{R}^{3}}e^{-p\epsilon_{1}|x|^{e_{2}}}dx<\infty$,
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where $|B_{R}|$ is the volume of the ball $B_{R}$ of radius $R$ .

Remark 1.3 In the zero vorticity case $\Omega=0$ , from $\mathrm{d}\mathrm{i}\mathrm{v}V=0$ and curl $V=0$ ,
we have $V=\nabla h$ , where $h(x)$ is a harmonic function in $\mathbb{R}^{3}$ . Hence, we have
an easy example of self-similar blow-up,

$v(x,t)= \frac{1}{(T_{*}-t)^{\frac{\alpha}{\alpha+1}}}\nabla h(\frac{x}{(T_{*}-t)^{\frac{1}{\alpha+1}}})$ ,

in $\mathbb{R}^{3}$ , which is also the case for the $3\mathrm{D}$ Navier-Stokes with $\alpha=1$ . We do
not consider this case in the theorem.

Remark 1.4 If we assume that initial vorticity $\omega_{0}$ has compact support, then
the nonexistence of self-similar blow-up of the form given by (1.2) is imme-
diate from the well-known formula, $\omega(X(a, t),t)=\nabla_{a}X(a,t)\omega_{0}(a)(\mathrm{s}\mathrm{e}\mathrm{e}$ e.g.
[18] $)$ .

The proof of Theorem 1.1 will follow as a corollary of the following more
general theorem, the proof of which is in [3].

Theorem 1.2 Let $v\in C([0,T)$ ; C’ $(\mathbb{R}^{3};\mathbb{R}^{3}))$ be a classical solution to the $\mathit{3}D$

Euler equations generating the particle trajectory mapping $X(\cdot, t)$ which is a
$C^{1}diffeomo7phism$ from $\mathbb{R}^{3}$ onto itself for all $t\in(0, T)$ . Suppose we have
representation of the vorticity of the solution, $by$

$\omega(x,t)=\Psi(t)\Omega(\Phi(t)x)$ $\forall t\in[0, T)$ (1.3)

where $\Psi(\cdot)\in C([0, T);(0, \infty)),$ $\Phi(\cdot)\in C([0,T);\mathbb{R}^{3\mathrm{x}3})$ with $\det(\Phi(t))\neq 0$ on
$[0,T);\Omega=\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{l}V$ for some $V$ , and there exists $p_{1}>0$ such that $\Omega\in L^{\mathrm{p}}(\mathbb{R}^{3})$

for all $p\in(0,p\iota)$ . Then, necessarily either $\det(\Phi(t))\equiv\det(\Phi(\mathrm{O}))on([0, T)$ ,
or $\Omega=0$ .

The previous argument in the proof of Theorem 1.1 can also be applied
to the following transport equations by a divergence-free vector field in $\mathbb{R}^{n}$ ,
$n\geq 2$ .

$(TE)$
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where $v=(v_{1}, \cdots, v_{n})=v(x,t)$ , and $\theta=\theta(x, t)$ . In view of the invariance
of the transport equation under the scaling transform,

$v(x, t)\mapsto v^{\lambda,\alpha}(x, t)=\lambda^{\alpha}v(\lambda x, \lambda^{\alpha+1}t)$ ,
$\theta(x, t)\mapsto\theta^{\lambda,\alpha,\beta}(x,t)=\lambda^{\beta}\theta(\lambda x, \lambda^{\alpha+1}t)$

for all $\alpha,$
$\beta\in \mathbb{R}$ and $\lambda>0$ , the self-similar blowing up solution is of the form,

$v(x, t)$ $=$ $\frac{1}{(T_{*}-t)^{\frac{\alpha}{\alpha+1}}}V(\frac{x}{(T_{*}-t)^{\frac{1}{\alpha+1}}})$ , (1.4)

$\theta(x, t)$ $=$ $\frac{1}{(T_{*}-t)^{\beta}}\ominus(\frac{x}{(T_{*}-t)^{\frac{1}{\alpha+1}}})$ (1.5)

for $\alpha\neq-1$ and $t$ sufficiently close to $T_{*}$ . Substituting (1.4) and (1.5) into
the above transport equation, we obtain

$(ST)$
The question of existence of suitable nontrivial solution to $(\mathrm{S}\mathrm{T})$ is equiva-
lent to the that of existence of nontrivial self-similar finite time blowing up
solution to the transport equation. We will establish the following theorem.

Theorem 1.3 Let $v\in C([0,T_{*});C^{1}(\mathbb{R}^{n};\mathbb{R}^{n}))$ generate a $C^{1}$ diffeomorphism
from $\mathbb{R}^{n}$ onto itsef. Suppose there exist $\alpha\neq-1,$ $\beta\in \mathbb{R}$ and solution (V, $\Theta$ )
to the system $(ST)$ with $\Theta\in L^{p_{1}}(\mathbb{R}^{n})\cap L^{p_{2}}(\mathbb{R}^{n})$ for some $p_{1},p_{2}$ such that
$0<p_{1}<p_{2}\leq\infty$ . Then, $\Theta=0$ .
This theorem is a corollary of the following one.

Theorem 1.4 Suppose there exists $T>0$ such that there enists a represen-
tation of the solution $\theta(x, t)$ to the system $(TE)$ by

$\theta(x,t)=\Psi(t)\ominus(\Phi(t)x)$ $\forall t\in[0,T)$ (1.6)

where $\Psi(\cdot)\in C([0,T);(0, \infty)),$ $\Phi(\cdot)\in C([0,T);\mathbb{R}^{n\mathrm{x}n})$ with $\det(\Phi(t))\neq 0$

on $[0,T)_{i}$ there exists $p_{1}<p_{2}$ with $p_{1},p_{2}\in(0, \infty]$ such that $\Theta\in L^{p_{1}}(\mathbb{R}^{n})\cap$

$L^{p\mathrm{z}}(\mathbb{R}^{n})$ . Then, necessarily either $\det(\Phi(t))\equiv\det(\Phi(\mathrm{O}))$ and $\Psi(t)\equiv\Psi(0)$

on $[0,T)$ , or $\Theta=0$ .
For the proof we refer [3].
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2The asymptotic self-similar singularities

In this section we generalize the previous notion, and consider the possibil-
ity of the asymptotic self-similar singularities. This notion was previously
considered by Giga and Kohn in [11]. Here is the theorem for the Euler
system.

Theorem 2.1 Let $v\in C([0,T);B^{\frac{3}{p\mathrm{p}}+1},(1\mathbb{R}^{3}))$ be a classical solution to the $\mathit{3}D$

Euler equations. Suppose there enist $p_{1}>0,$ $\alpha>-1,\overline{V}\in C^{1}(\mathbb{R}^{3})$ with
$\lim_{Rarrow\infty}\sup_{|x|=R}|\overline{V}(x)|=0$ such that $\overline{\Omega}=curl\overline{V}\in L^{q}(\mathbb{R}^{3})$ for all $q\in(\mathrm{O},p_{1})$ ,
and the following convergence holds true:

$\lim_{t\nearrow T}(T-t)^{\frac{\alpha-3}{\alpha+1}}v(\cdot,t)-\frac{1}{(T-t)^{\frac{\alpha}{\alpha+1}}}\overline{V}(_{\overline{(T-t)^{\frac{1}{\alpha+1}}}})|$ $=0$ , (2.1)
$L^{1}$

and

$\lim_{t\nearrow T}(T-t)||\omega(\cdot, t)-\frac{1}{T-t}\overline{\Omega}(_{(T-t)^{\frac{\overline 1}{\alpha+1}}})||_{\dot{B}_{\infty,1}^{0}}=0$ . (2.2)

Then, $\overline{\Omega}=0$ , and $v(x,t)$ can be extended to a solution of the $\mathit{3}D$ Euler system

in $[0,T+\delta]\cross \mathbb{R}^{3}$ , and belongs to $C([0,T+\delta];B^{\frac{3}{pp}+1},1(\mathbb{R}^{3}))$ for some $\delta>0$ .

Remark 1.3 We note that Theorem 1.2 still does not exclude the possibility
that the vorticity convergence to the asymptotically self-similar singularity
is weaker than $L^{\infty}(\mathbb{R}^{3})$ sense. Namely, a self-similar vorticity profile could
be approached from a local classical solution in the pointwise sense in space,
or in the $L^{p}(\mathbb{R}^{3})$ sense for some $p$ with $1\leq p<\infty$ .

Next, we consider the asymptotic self-similar singularities for the Navier-
Stokes equations. The following theorem for the case $p\in(3, \infty)$ was ob-
tained by Hou and Li in [12]. In [4] we presented an alternative proof, which
is very simple and elementary compared to the one given in [12].

Theorem 2.2 Let $p\in[3, \infty)_{f}$ and $v\in C([0, T);L^{p}(\mathbb{R}^{3}))$ be a classical so-
lution to $(NS)$ . Suppose there exists $\overline{V}\in L^{\mathrm{p}}(\mathbb{R}^{3})$ with $\nabla\overline{V}\in L_{loc}^{2}(\mathbb{R}^{3})$ such
that

$\lim_{t\nearrow T}(T-t)^{\epsilon_{\frac{-3}{2\mathrm{p}}}}||v(\cdot,t)-\frac{1}{\sqrt{T-t}}\overline{V}(_{\overline{\sqrt{T-t}}})||_{L^{\mathrm{p}}}=0$ . (2.3)
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Then, $\overline{V}=0_{f}$ and $v(x,t)$ can be extended to a solution of the Navier-Stokes
equations in $[0, T+\delta]\cross \mathbb{R}^{3}$ and belongs to $C([0, T+\delta];L^{p}(\mathbb{R}^{3}))$ for some
$\delta>0$ .

The following is a localized and improved version of the above theorem, the
proof of which is in [4]

Theorem 2.3 Let $p\in[3, \infty)$ , and $v\in C([0,T);L^{p}(\mathbb{R}^{3}))$ be a classical solu-
tion to $(NS)$ . Suppose either one of the followings hold.

(i) Let $q\in[3, \infty)$ . Suppose there enists $\overline{V}\in L^{p}(\mathbb{R}^{3})$ with $\nabla\overline{V}\in L_{loc}^{2}(\mathbb{R}^{3})$

and $R\in(\mathrm{O}, \infty)$ such that we have

$\lim_{t\nearrow T}(T-t)^{\mathrm{L}^{-}}2^{\frac{3}{q}}\sup_{t<\tau<T}||v(\cdot,\tau)-\frac{1}{\sqrt{T-\tau}}\overline{V}(.\frac{-Z}{\sqrt{T-\tau}})||_{L^{q}(B(z,R\sqrt{T-t}))}=0$ .

(2.4)

(ii) Let $q\in[2,3)$ . Suppose there exists $\overline{V}\in L^{p}(\mathbb{R}^{3})$ with $\nabla\overline{V}\in L_{\mathrm{t}\alpha}^{2}(\mathbb{R}^{3})$

such that (2.4) hol& $for$ all $R\in(\mathrm{O}, \infty)$ .

Then, $\overline{V}=0$ , and $v(x,t)$ is H\"older continuous near $(z, T)$ in the space and
the time variables.

Remark 1.5 We note that, in contrast to Theorem 1.4, the range of $q\in[2,3)$

is also allowed for the possible convergence of the local classical solution to
the self-similar profile.
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