<table>
<thead>
<tr>
<th>Title</th>
<th>THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA (Harmonic Analysis and Nonlinear Partial Differential Equations)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>SAWADA, OKIHIRO</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 1529: 1-18</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58916</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

OKIHIRO SAWADA
Department of Mathematical Science, Waseda University
Okubo 3-4-1, 169-8555 Shinjuku, Japan

Abstract. Time-local existence and uniqueness of mild solutions to the non-stationary incompressible Navier-Stokes equations is established around a steady flow. The initial velocity U_0 is given by $U_0(x) := -f(x) + u_0(x)$, where $-f$ is a stationary solution and a globally Lipschitz continuous function, and a perturbation $u_0 \in L^p_\sigma(\mathbb{R}^n)$ for $p \geq n$. The key is to use the Ornstein-Uhlenbeck semigroup theory, since it is difficult to regard the drift terms (unbounded coefficients in front of first derivatives) as a minor perturbation of Laplacian. Our mild solution satisfies the Navier-Stokes equations in the classical sense when $f(x) = Mx$ with some matrix M and the pressure term is suitably chosen. Moreover, if M is skew-symmetric, then the solution is analytic in spatial variables.

1. Introduction.
This is a survey note of the author’s recent papers [20] joint work with Matthias Hieber in Darmstadt University of Technology, and [19] joint work with Matthias Hieber and Abdelaziz Rhandi in University of Marrakesh.

Key words and phrases. Navier-Stokes equations, unbounded initial data, globally Lipschitz continuous, spatial analyticity.
1.1. **Problem and Known Results.** Consider the flow of an incompressible, viscous ideal fluid in the whole space. That is mathematically described by the Cauchy problem for the system of the Navier-Stokes equations in \mathbb{R}^n for dimension $n \geq 2$:

$$
\begin{align*}
U_t - \Delta U + (U, \nabla)U + \nabla P &= F, & \text{in } \mathbb{R}^n \times (0, T), \\
\nabla \cdot U &= 0, & \text{in } \mathbb{R}^n \times (0, T), \\
U_{|t=0} &= U_0, & \text{in } \mathbb{R}^n.
\end{align*}
$$

Here, $U = (U^1, \ldots, U^n)$ and P represent the unknown velocity and the unknown pressure of the fluid; U_0 is a given initial velocity, and F is a given external force term, for example, the acceleration of gravity.

There are many contributitional works of studying (1.1), see e.g. [1, 7, 11, 26, 29]. In all these results the initial data are assumed that $U_0(x) \to 0$ as $|x| \to \infty$. In particular, when $F = 0$, (1.1) admits a time-local smooth solution provided the initial velocity U_0 belongs to $L^p_\sigma(\mathbb{R}^n)$ for $p \geq n$; see [15, 26]. Here $L^p = L^p(\mathbb{R}^n)$ denotes the standard Lebesgue space in \mathbb{R}^n for $p \in [1, \infty]$, and its solenoidal subspace is denoted by $L^p_\sigma(\mathbb{R}^n)$. Throughout of this note we sometimes suppress the notation of domain (\mathbb{R}^n), and we do not distinguish functions of vector valued and scalar as well as function spaces, if no confusion occurs likely.

We are now strongly forced to study the solution to (1.1) around the stationary flow. For this purpose we consider the initial velocity of the form

$$
U_0(x) = - f(x) + u_0(x), \quad x \in \mathbb{R}^n.
$$

Here $u_0 \in L^p(\mathbb{R}^n)$ satisfies $\nabla \cdot u_0 = 0$ and f is a globally Lipschitz continuous function fulfilling the following two conditions:

\begin{align*}
(H1) & \quad \nabla \cdot f = 0, \\
(H2) & \quad \exists \text{ scalar function } \Pi \text{ s.t. } \tilde{F} \in C(0, T; L^p_\sigma(\mathbb{R}^n)),
\end{align*}

where

$$
\tilde{F} := F - \Delta f - (f, \nabla)f - \nabla \Pi.
$$

In what follows, one may essentially take $(-f, \Pi)$ as the stationary solution to (1.1) into account; in this case $\tilde{F} = 0$ automatically.
THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

Due to the results of Seregin and Šverák [43], it is known that a bounded function \(-f\) satisfying stationary (NS) with \(F = 0\) in the classical sense is automatically a constant. However, there are many non-trivial stationary solutions if \(-f\) is allowed to take an unbounded function, even if \(F = 0\). In fact, the pair \(\Pi = \frac{1}{2}(M^2 x, x) + (V, M^T x)\) is a stationary solution to (1.1) with \(F = 0\).

Here \(M = (m_{ij})_{1 \leq i, j \leq n}\) is an \(n \times n\) real-valued constant square matrix enjoying \(\text{tr} M = 0\) and \(M^2\) is symmetric, and \(V\) is a real-valued constant vector; \(M^T\) denotes the transposed matrix of \(M\).

It is also known that (1.1) admits many exact solutions, which are studied in e.g. [9, 31, 36]. The reason why (1.1) with (1.2) is considered is to understand the classification of stationary solutions or exact solutions, for example, their uniqueness of solutions around these, stability or instability, asymptotic behavior, and so on.

We shall list up the results on the time-local existence and uniqueness of smooth solutions to (1.1) related to our situation. In [5, 6, 12, 28, 37], the non-decaying initial velocity is also treated, for example, \(U_0 \in L^\infty\), \(BUC\), \(B_{\infty, \infty}^{-\epsilon}\) for \(0 \leq \epsilon < 1\), \(\dot{B}_{\infty, \infty}^{-\epsilon}\) for \(0 < \epsilon < 1\) or \(BMO^{-1} = \dot{F}_{\infty, 2}^{-1}\). Here \(BUC\) is the space of all bounded uniformly continuous functions, \(B^s_{p,q}\) denotes the inhomogeneous Besov space as well as its homogeneous version \(\dot{B}^s_{p,q}\), and \(\dot{F}^s_{p,q}\) stands for the homogeneous Triebel-Lizorkin space; see e.g. [44, 45]. Such Besov or Triebel-Lizorkin spaces are strictly wider than \(L^\infty\), however, the obtained solutions \(U(t)\) belong to \(L^\infty\) for any small \(t > 0\).

Considering (1.2) with \(f(x) = Rx\) where \(R\) is a skew-symmetric matrix, there are some results. In this situation we can employ the rotating coordinate to deduce the Navier-Stokes equations with the Coriolis terms. Since the Coriolis terms are linear perturbations, we may regard those as minor perturbation of Laplacian. So, it can be also shown easily that (1.1) admits a time-local unique smooth solution when the initial velocity is given by (1.2) with \(f(x) = Rx\). In fact, in [38] the author proved the existence of a time-local smooth solution of (1.1) with (1.2) and \(f(x) = Rx\), provided \(u_0\) belongs to \(\dot{B}_{\infty, 1}^0\). Although
\(\dot{B}_{\infty,1}^0 \) is strictly smaller than \(L^\infty \), this space still contains the non-decaying function.

Moreover, since \(U = Rx \) describes pure rotating fluid, it is also interesting to observe this. In particular, Constantin and Feffermann [8] showed the existence of time-global smooth solution in this situation, provided that the rotating speed is fast enough. This fact is called the global regularity. Babin, Mahalov and Nicolaenko [2, 3] also proved the global regularity for the less smooth initial data than that of [8].

Dealing with the problem of the rotating obstacle in the viscous fluid, one reads the similar equations to (1.4) below. On this problem Hishida [21, 22, 23] established the contraction semigroup theory in \(L^2_s(\Omega) \) where \(\Omega \subset \mathbb{R}^3 \) is an smooth exterior domain, and constructed time-local solutions provided initial disturbance belongs to a certain fractional power Sobolev space. Geissert, Heck and Hieber [10] established semigroup theory in \(L^p \) for general \(p \in (1, \infty) \), and obtained the time-local solvability of rotating obstacle problem in \(L^p \) for \(p \geq 3 \). Recently, Hishida and Shibata [24] obtained a time-global smooth solution for small initial disturbance in \(L^3 \). In the recent works of the author [20, 19] he was inspired by Hishida’s articles.

Further, the case \(f(x) = Jx = (ax_1, ax_2, -2ax_3) \) with some constant \(a \in \mathbb{R} \), was investigated by Giga and Kambe [13]. They studied the axisymmetric irrotational flow and the stability of the vortex.

Okamoto [35] obtained the uniqueness of classical solutions to (1.1), when \(U \) may grow linearly as \(|x| \to \infty \); see also [27]. One of our purpose in this note is to construct the solutions which belong to the framework of Okamoto’s uniqueness theorem. However, since Okamoto’s uniqueness theorem requires the decay on the pressure at \(|x| \to \infty \), we are not able to obtain such a solution so far.

1.2. Main Results. Before stating our main results, we consider simple substitutions \(u := U + f \) and \(\tilde{P} := P - \Pi \). Then the pair \((U, P)\) satisfies (1.1) in the classical sense, if and only if \((u, \tilde{P})\) satisfies

\[
\begin{aligned}
\left\{\begin{array}{l}
 u_t + Au + (u, \nabla)u - 2(u, \nabla)f + \nabla \tilde{P} = \tilde{F}, \\
 \nabla \cdot u = 0, \\
 u(0) = u_0.
\end{array}\right.
\end{aligned}
\] (1.4)
Recall \(\tilde{F} \) is defined by (1.3), and we denote the matrix operator \(A := -\Delta - (f, \nabla) + (\nabla f) \). Applying the Helmholtz projection \(\mathbb{P} \) onto solenoidal subspace, we rewrite the first equations of (1.4) as an abstract equation

\[
(1.5) \quad u' + Au + \mathbb{P}(u, \nabla)u - 2\mathbb{P}(u, \nabla)f = \tilde{F}.
\]

Notice that \(\mathbb{P} \) can be expressed explicitly by \(\mathbb{P} := (\delta_{ij} + RR_{j})_{i,j} \), where \(\delta_{ij} \) stands for Kronecker’s delta, and \(R_{i} := \partial_{i}(-\Delta)^{-1/2} \) for \(i = 1, \ldots, n \).

Considering the realization of \(A \) (also denoted by \(A \)), \(A \) is an operator in \(L_{\sigma}^{p}(\mathbb{R}^{n}) \) defined by

\[
Au := -\Delta u - (f, \nabla)u + (u, \nabla)f
\]

\[
D(A) := \{ u \in W^{2,p}(\mathbb{R}^{n}) \cap L_{\sigma}^{p}(\mathbb{R}^{n}); (f, \nabla)u \in L^{p}(\mathbb{R}^{n}) \}.
\]

Observe that \(A \) and \(\mathbb{P} \) commute, since \(\nabla \cdot Au = 0 \) if \(\nabla \cdot u = 0 \). Since \(u, F \) and \(f \) are divergence-free, \(\mathbb{P}u = u \) as well as \(\mathbb{P}\tilde{F} = \tilde{F} \).

This \(\{ e^{-tA} \}_{t \geq 0} \) is often called the Ornstein-Uhlenbeck semigroup, we use this terminology. In general, there is not explicit representation formula of \(e^{-tA} \). However, if \(f(x) = Mx \), then

\[
(1.6) \quad e^{-tA} \varphi(x) = \frac{e^{-tM}}{(4\pi)^{n/2}(\text{det}Q_{t})^{1/2}} \int_{\mathbb{R}^{n}} \varphi(e^{tM}x-y)e^{-1/4(Q_{t}^{-1}y,y)}dy
\]

for \(x \in \mathbb{R}^{n} \) and \(t > 0 \), where \(Q_{t} \) is given by \(Q_{t} := \int_{0}^{t}e^{sM}e^{sM^{T}}ds \).

It thus is straightforward to derive the integral equation by Duhamel’s principle:

\[
(1.7) \quad u(t) = e^{-tA}u_{0} - \int_{0}^{t} e^{-(t-s)A}\mathbb{P}(u(s), \nabla)u(s)ds
\]

\[
+ 2\int_{0}^{t} e^{-(t-s)A}\mathbb{P}(u(s), \nabla)fds + \int_{0}^{t} e^{-(t-s)A}\tilde{F}(s)ds
\]

for \(t \in (0, T) \) and \(u(0) = u_{0} \). We call a function \(u \in C([0, T); L_{\sigma}^{p}(\mathbb{R}^{n})) \) a mild solution if \(u \) satisfies (1.7). Formally, (1.7) is equivalent to (1.4). In fact, under some condition a mild solution \(u \) and the suitable choice of \(\tilde{P} \) satisfy (1.4) in the classical sense; see Theorem 1.1-(ii) below. In what follows, we rather discuss the mild solutions.
We now state the our existence and uniqueness results for mild solutions in L^p spaces.

1.1. **Theorem.** (i) Let $n \geq 2$ and $p \in [n, \infty)$. Let f be a globally Lipschitz continuous function satisfying $(H1)$ and $(H2)$ with suitable Π and F. Assume that $u_0 \in L^p_\sigma(\mathbb{R}^n)$. Then there exist $T_0 > 0$ and a unique mild solution u in the following class:

\[
[t \mapsto t^{\frac{n}{2} - \frac{1}{q}}u(t)] \in C([0, T_0); L^q(\mathbb{R}^n))
\]

for $q \in [p, \infty]$.

(ii) In addition, let $f(x) = Mx$ where M is a matrix. Then

\[
[t \mapsto t^{\frac{n}{2} - \frac{1}{q}} + \frac{1}{2} \nabla u(t)] \in C([0, T_0); L^q(\mathbb{R}^n))
\]

Moreover, u satisfies (1.4) in the classical sense provided \tilde{P} is taken as

\[
\partial_k \tilde{P} = \partial_k \sum_{i,j=1}^{n} R_i R_j u^i u^j - 2 \sum_{i,j=1}^{n} R_i R_k u^j (\partial_j f^i).
\]

(iii) In addition to the hypothesis of (ii), let M be skew-symmetric. Let $\Pi = \frac{1}{2}(M^2 x, x)$, and let F be analytic in x. Then $u(t)$ is analytic in x on $t \in (0, T_0)$.

1.2. **Remark.** (a) Because the Ornstein-Uhlenbeck semigroup $\{e^{-tA}\}_{t \geq 0}$ is not analytic, we cannot apply the usual argument to show our mild solution satisfies (1.4) like the Stokes case, for general Lipschitz function f. This means that we cannot control the time derivative of u with valued in L^p, although by Serrin's interior regularity theorem it seems true that

\[
u(t) \in C^\infty(\mathbb{R}^n) \text{ almost every } t \in (0, T_0).
\]

Unfortunately, (1.12) does not imply that u is a classical solution.

(b) For neither $u_0 \in L^p_\sigma$ nor $u_0 \in BUC_\sigma$, it is not easy to get the mild solutions, since \mathcal{P} is not bounded in such spaces as well as the Riesz transform. For dealing with non-decaying data we introduce the homogeneous Besov space $\dot{B}^0_{\infty,1} \subset L^\infty$, since \mathcal{P} is bounded in the homogeneous Besov spaces; other properties of $\dot{B}^0_{\infty,1}$ are found in [41].
THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

fact, we may obtain the time-local existence and uniqueness results of the mild solutions \(u \in C([0, T_0); \dot{B}_{\infty,1}^0) \) provided that \(u_0 \in \dot{B}_{\infty,1}^0 \) and \(\nabla \cdot u_0 = 0 \) at least for the the case \(f(x) = Mx \); the details discussed in [42].

(c) Thanks to (ii), if \(f(x) = Mx \) and \(p = n = 2 \), then we obtain the time-global solution by the following a priori estimate: there exist positive constants \(D_1 \) and \(D_2 \) depending only on \(u_0 \in L_\sigma^2(\mathbb{R}^2) \), \(M \) and \(\tilde{F} \in C(O, \infty; L_\sigma^2(\mathbb{R}^2)) \) such that

\[
\|u(t)\|_2 \leq D_1 e^{D_2 t}, \quad t \geq 0.
\]

This comes from the Energy estimate, multiplying \(u \) into the first equations of (1.4) and integrating in \(x \in \mathbb{R}^2 \).

(d) Obviously, the analyticity in \(x \) implies that the propagation speed of mild solution is infinity, that is, the support of \(u(t) \) coincides \(\mathbb{R}^n \) for any small \(t > 0 \), even if the support of \(u_0 \) is compact.

The proof of Theorem 1.1-(i) is based on Kato's iteration procedure. The key is to derive appropriate \(L^p - L^q \) smoothing estimates for the Ornstein-Uhlenbeck semigroup \(e^{-tA} \), including the gradient. Uniqueness follows by Gronwall's inequality.

To prove Theorem 1.1-(ii) we use the explicit representation formula of the Ornstein-Uhlenbeck semigroup (1.6), when \(f(x) = Mx \). Involving the \(k \)-th derivatives in \(x \) into the iteration, it is proved that \(u \in C(0, T_0; C^k(\mathbb{R}^n)) \) for all \(k \in \mathbb{N} \). To control the time derivatives of \(u \) we introduce the notion of a weak solution. From (1.10) we may see that \(u \) satisfies (1.5), and that \((u, \tilde{P})\) satisfies (1.4) provided \(\tilde{P} \) is given by (1.11).

An observation of analyticity goes back to work of Masuda [32] based on the implicit function theory. In this note we give another proof of the analyticity of \(u \) in \(x \). We shall derive the higher order derivatives in \(x \) of \(u \). More precisely, we establish the following estimate:

\[
(1.13) \quad \|\partial_x^\beta u(t)\|_q \leq D_3 (D_4 m)^m t^{-\frac{m}{2} - \frac{m}{2} \left(\frac{1}{p} - \frac{1}{q} \right)}
\]

with some positive constants \(D_3 \) and \(D_4 \) for all \(t \in (0, T_0) \), \(q \in [p, \infty] \) and \(\beta \in \mathbb{N}_0^n \) with \(m = |\beta| \). Here we use the conventional notation \(\partial_x^\beta := \partial_1^{\beta_1} \cdots \partial_n^{\beta_n} \) for multi-index \(\beta = (\beta_1, \ldots, \beta_n) \in \mathbb{N}_0^n \). Clearly, (1.13) yields
the analyticity of u in x by Stirling's formula and Cauchy's criterion. Indeed, there exists a constant $C > 0$ such that the size of radius of the convergence of Taylor's expansion ($=: \rho(t)$) is estimated from below by

$$\rho(t) = \limsup_{m \to \infty} \left(\frac{\|\partial^{m}_{i}u(t)\|_{\infty}}{m!} \right)^{-1/m} \geq C \sqrt{t}$$

for each $i = 1, \ldots, n$. The main idea to derive (1.13) is dividing the time-interval of (1.7) into $(0, (1-\varepsilon)t)$ and $((1-\varepsilon)t, t)$, and taking $\varepsilon = 1/|\beta|$. This technique was developed by Giga and the author [17, 39] to show (1.13) when $f = 0$.

This note is organized as follows. In Section 2 we recall the Ornstein-Uhlenbeck semigroup theory, and also we prepare the estimates used in the proof of Theorem 1.1. In Section 3 we give propositions and their idea of proofs briefly.

(Acknowledgment). The author would like to thank Professor Giorgio Metafune and Professor Enrico Priola for giving him many advice on the Ornstein-Uhlenbeck semigroup theory. The author would also like to thank Professor Kenji Nakanishi for letting him know how to prove that the mild solution is a classical solution via weak solutions. The work of the author is partly supported by the Japan Society for the Promotion of Science.

2. Semigroup Theory.

We prepare the linear estimates used for the proof of Theorem 1.1. In this section let f be a vector-valued globally Lipschitz function satisfying $\nabla \cdot f = 0$.

We define the operator A by

$$Au := -\Delta u - (f, \nabla)\nabla u + (u, \nabla)f,$$

$$D(A) := \{u \in W^{2,p} \cap L_{\sigma}^{p}; (f, \nabla)u \in L^{p}\}.$$

Thanks to add the lower order terms, we see $\nabla \cdot \{(f, \nabla)u-(u, \nabla)f\} = 0$ provided $\nabla \cdot u = 0$ and $\nabla \cdot f = 0$. Therefore, A and \mathbb{P} commute.

It is known that $-A$ generates a non-analytic C_{0}-semigroup in $L^{p}_{\sigma}(\mathbb{R}^{n})$ for $1 < p < \infty$. The family $\{e^{-tA}\}_{t \geq 0}$ is also a C_{0}-semigroup on L^{1}, and
a semigroup in L^∞ (lack of strong continuity), however, it is difficult to make sense the Helmholtz decomposition in such spaces.

We are now state $L^p - L^q$ smoothing properties for the semigroup e^{-tA} as well as gradient estimates up to second derivatives. Note that due to the non-analyticity of Ornstein-Uhlenbeck semigroup, gradient estimates do not follow from the general theory of analytic semigroup.

2.1. Lemma. Let $n \geq 2$, $1 \leq p \leq \infty$ and $p \leq q \leq \infty$. Then there exist constants $C > 0$ and $\omega \in \mathbb{R}$ such that

$$\|\nabla^k e^{-tA} \varphi\|_q \leq C e^{\omega t} t^{-\frac{k}{2} - \frac{\omega}{2}(\frac{1}{p} - \frac{1}{q})}$$

for all $\varphi \in L^p(\mathbb{R}^n)$ and $k = 0, 1, 2$. Moreover, let either $1 \leq p \leq q \leq \infty$ and $k = 1, 2$ or $1 \leq p < q \leq \infty$ and $k = 0, 1, 2$. Then for $\varphi \in L^p(\mathbb{R}^n)$

$$t^{\frac{k}{2} + \frac{n}{2}(\frac{1}{p} - \frac{1}{q})} \|\nabla^k e^{-tA} \varphi\|_p \to 0 \quad \text{as} \quad t \to 0.$$

The proof of (2.1) is given by [30, Proposition 5.4], [4, Theorem 4.7 and Corollary 4.8]. For more details see [18, Corollary 5.2 and Theorem 5.3]. To get (2.2) we use the triangle inequality, and the fact that C_0^∞ is a densely subset of L^p for $p < \infty$.

In the case where $f(x) = Mx$, the Ornstein-Uhlenbeck semigroup $\{e^{-tA}\}_{t \geq 0}$ has an explicit representation (1.6). Thanks to (1.6), we may derive the higher order derivatives.

2.2. Lemma. Let $n \geq 2$, $1 \leq p \leq q \leq \infty$, $f(x) = Mx$ with some matrix M. Then there exist constants $C_1, C_2, C_3 > 0$ and $\omega_1, \omega_2, \omega_3, \omega_4 \in \mathbb{R}$ (depending only on n, p, q and M) such that

$$\|\nabla^m e^{-tA} \varphi\|_q \leq C_1 e^{(\omega_1 + \omega_2 m)t} t^{-\frac{m}{2}(\frac{1}{p} - \frac{1}{q})} \|\nabla^m \varphi\|_p$$

for all $t > 0$, $m \in \mathbb{N}$ and $\varphi \in W^{m,p}(\mathbb{R}^n)$, and

$$\|\nabla^m e^{-tA} \varphi\|_q \leq C_2 (C_3 m)^{m/2} e^{(\omega_3 + \omega_4 m)t} t^{-\frac{m}{2}(\frac{1}{p} - \frac{1}{q}) - \frac{m}{2}} \|\varphi\|_p$$

for all $t > 0$, $m \in \mathbb{N}$ and $\varphi \in L^p(\mathbb{R}^n)$.

2.3. Remark. If M is skew-symmetric, then $\omega_2 = 0$ in (2.3).

The proof of above lemma was shown in [20]. Thanks to (1.6), we see that

$$\nabla e^{-tA} = e^{tM} e^{-tA} \nabla.$$
If M is skew-symmetric, then e^{tM} is unitary, so Remark 2.3 holds true.

3. PROOF OF THEOREM 1.1.

For a given globally Lipschitz continuous function f satisfying (H1) and (H2) with suitable Π and F, we consider the substitution $u(x, t) := U(x, t) + f(x)$ and $\tilde{P}(x, t) := P(x, t) - \Pi(x)$. If (U, P) is a solution of (1.1) in the classical sense, then (u, \tilde{P}) satisfies (1.4). In what follows, we mainly deal with the mild solutions.

We only show the proof of Theorem 1.1 for the case $p = n$; because, in the case $p > n$ the proof is essentially similar and easier than that of $p = n$. Firstly, we state the proposition which yields Theorem 1.1-(i).

Proof of Theorem 1.1-(i). Let $n \geq 2$, $T > 0$ and $u_{0} \in L_{\sigma}^{n}(\mathbb{R}^{n})$. Assume that $\tilde{F} \in C(0, T; L_{\sigma}^{n}(\mathbb{R}^{n}))$. Recall that $\tilde{F} = F - \Delta f - (f, \nabla)f - \Pi$ with suitable scalar function Π, and that $\nabla \cdot f = 0$. For $j \in \mathbb{N}$ and $t \in (0, T)$ we define functions u_{j} successively by

$$u_{1}(t) := e^{-tA}u_{0} + \int_{0}^{t}e^{-(t-s)A}\tilde{F}(s)ds,$$

$$u_{j+1}(t) := u_{1}(t) - \int_{0}^{t}e^{-(t-s)A}\Pi\{(u_{j}(s), \nabla)u_{j}(s) - 2(u_{j}(s), \nabla)f\}ds.$$

Since $\{e^{-tA}\}_{t \geq 0}$ acts on $L_{\sigma}^{p}(\mathbb{R}^{n})$ for $p \in (1, \infty)$, it follows from the definition of the Helmholtz projection that the functions u_{j} are divergence-free for all $t > 0$ and all $j \in \mathbb{N}$.

As usual, using (2.1) and (2.2), we derive a priori estimates. In fact, for $\delta \in (0, 1)$ we may obtain bounds for

$$\sup_{0 < t < T_{0}}t^{\frac{1}{2}}||u_{j}(t)||_{n/\delta}$$

and

$$\sup_{0 < t < T_{0}}t^{\frac{1}{2}}||\nabla u_{j}(t)||_{n}$$

for any $T \leq T_{0}$ uniformly in j provided that T_{0} is small enough. These uniform bounds imply that $t^{\frac{1}{2} - \frac{2n}{2q}}||u_{j}(t)||_{q}$ as well as $t^{1 - \frac{2n}{2q}}||\nabla u_{j}(t)||_{q}$ are bounded for $q \in [n, \infty)$, $t \leq T_{0}$ and all $j \in \mathbb{N}$. The continuity of these functions follows from similar calculations.

It can be also shown that these sequences are Cauchy sequences, once we choose T_{0} small enough if necessary. We thus conclude that there are unique limit functions

$$[t \mapsto t^{\frac{1}{2} - \frac{2n}{2q}}u(t)] \in C([0, T_{0}); L_{\sigma}^{q}),$$

$$[t \mapsto t^{1 - \frac{2n}{2q}}v(t)] \in C([0, T_{0}); L^{q})$$
THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

of the sequences \(\{ t^{\frac{1}{2}-\frac{n}{2q}} u_j(t) \}_{j \geq 1} \) and \(\{ t^{1-\frac{n}{2q}} \nabla u_j(t) \}_{j \geq 1} \). Finally, note that \(v(t) = t^{1/2} \nabla u(t) \) and that \(u \) is a mild solution on \([0, T_0]\). Uniqueness of mild solutions follows from standard Gronwall's inequality; see e.g. [14]. This completes the proof of Theorem 1.1-(i).

Next, we show the idea of the proof of Theorem 1.1-(ii). Smoothness of mild solution is also obtained by a modification of the proof above.

Proof of Theorem 1.1-(ii). Consider the case when \(f(x) = Mx \). To show (1.10) we establish the smoothing estimates with higher order differentiations; see Lemma 2.2. In order to get the up to \(\ell \)-th derivative in \(x \) for \(m \in \mathbb{N} \), we involve \((3.1) \)

\[
\sup_{0 < t < T} t^{\frac{\ell}{2}} \| \nabla^\ell u_j(t) \|_n
\]

for all \(\ell \leq m \) into the iteration scheme. To derive a priori estimates, we divide the time-interval \((0, t)\) of integrals of (1.7) into two parts \((0, t/2)\) and \((t/2, t)\) to distribute the singularities.

Similarly as the proof of Theorem 1.1-(i), we choose \(T_m > 0 \) small enough so that the quantities (3.1) are uniformly bounded. This implies (3.2)

\[
u \in C(0, T_m; C^m(\mathbb{R}^n)).\]

We see \(T_m \sim m^{-m} \), in general. (It is possible to take \(T_k \) independent of \(m \), if we divide the time-interval more cleverly, and if \(M \) is skew-symmetric; see the proof of Theorem 1.1-(iii).)

We may extend the time-interval \((0, T_m)\) up to \(T_0 \), since mild solution exists uniquely (no blow-up) at least until \(T_0 \). We see (3.2) for all \(m \in \mathbb{N} \), this yields \(u \in C(0, T_0; C^\infty(\mathbb{R}^n)) \).

For establishing the estimates for time derivatives, we will use the notion of a weak solution. Here the weak solution is a function satisfying (1.4) in distribution sense. Notice that our mild solution is a weak solution. We now take test-function \(\varphi \in C^\infty_0(\mathbb{R}^n) \), and \(h \in C^1(0, T) \) satisfying \(h(0) = h(T) = 0 \) for simplicity. Let

\[
< \psi, \varphi > := \int_{\mathbb{R}^n} \psi(x) \varphi(x) dx,
\]

and \(A^* \) denotes the dual of \(A \), i.e., \(< A\psi, \varphi >= < \psi, A^* \varphi > \). Assume that \(u \) is the mild solution obtained in Theorem 1.1-(i). Multiplying \(\varphi \)
and h' into (1.7), and integrating over $(0, T) \times \mathbb{R}^n$, we get
\[
\int_0^T <u(t), \varphi> h'(t) dt
\]
\[
= \int_0^T <e^{-tA}u_0, \varphi> h'(t) dt - \int_0^T \int_0^t <e^{-(t-s)A}P\tilde{F}(s)ds, \varphi> h'(t) dt
\]
\[
+ \int_0^T \int_0^t <e^{-(t-s)A}P\{2(u(s), \nabla)f - (u(s), \nabla)u(s)\}ds, \varphi> h'(t) dt
\]
\[
= \int_0^T <u_0, A^*e^{-tA} \varphi> h(t) dt - \int_0^T \int_0^t <\tilde{F}(s), A^*e^{-(t-s)A}P\varphi> dsh(t) dt
\]
\[
+ \int_0^T \int_0^t <\mathbb{P}\{2(u(s), \nabla)f - (u(s), \nabla)u(s)\}, A^*e^{-(t-s)A} \varphi> dsh(t) dt
\]
\[
= \int_0^T <Au(t) - \tilde{F}(t) + \mathbb{P}(u(t), \nabla)u(t) - 2\mathbb{P}(u(t), \nabla)f, \varphi> h(t) dt.
\]

Note that $\varphi \in C_0^\infty \subset D(A)$. Since $u \in C((0, T_0]; C^2(\mathbb{R}^n))$, we can make sense $Au(x, t)$ pointwisely. Moreover, the right-hand-side is well-defined at any $t \in (0, T_0]$ as well as these integrations are continuous in time. Hence, we can verify that $<u(\cdot), \varphi> \in C^1(0, T)$. We conclude that for all $t \in (0, T)$
\[
<u_t(t) + Au(t) - \tilde{F}(t) + \mathbb{P}(u(t), \nabla)u(t) - 2\mathbb{P}(u(t), \nabla)f, \varphi> \geq 0.
\]

Let \tilde{P} be given by (1.11), from above we have
\[
<u_t - \Delta u - (f, \nabla)u + (u, \nabla)u - (u, \nabla)f + \nabla \tilde{P} - \tilde{F}, \varphi> \geq 0.
\]

This holds true for all $\varphi \in C_0^\infty(\mathbb{R}^n)$. Therefore, (u, \tilde{P}) satisfies (1.4) in the classical sense at any $t \in (0, T_0)$ and $x \in \mathbb{R}^n$. Furthermore, higher order derivatives of u in time can be calculated, analogously. This implies that (1.10).

Finally, we show the proof of Theorem 1.1-(iii). It is sufficient to establish the estimates for higher order derivatives of u in x, which is formally equivalent to (1.13). Again, we only discuss the case $p = n$ in what follows.

3.1. Proposition. Let $n \geq 2$, $u_0 \in L^p_0(\mathbb{R}^n)$ and $f(x) = Mx$, where M is skew-symmetric. Let $\Pi = \frac{1}{2}(M^2x, x)$, and let the external force
THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

$F \in C(0,T;L_{\sigma}^{n} \cap C^{\infty})$ with some $T > 0$. Let $\delta \in (1/2,1]$. Suppose that there exist positive constants L_{1} and L_{2} such that

\[
||\partial_{x}^{\beta}F(t)||_{q} \leq L_{1}(L_{2}||\beta||)^{||\beta||-\delta}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{n})}
\]

hold for $t \in (0,T)$ and $q \in [n, \infty]$. Assume that u is a mild solution in the class

$u \in C([0,T);L_{\sigma}^{n}) \cap C(0,T;L_{\sigma}^{r})$

for some $r > n$. Suppose that there exist positive constants M_{1} and M_{2} such that

$M_{1} \geq \sup_{0 \leq t < T} ||u(t)||_{n}, \quad M_{2} \geq \sup_{0 < t < T} t^{\frac{n}{2} \left(\frac{1}{n}-\frac{1}{r}\right)} ||u(t)||_{r}.$

Then there exist positive constants D_{5} and D_{6} depending only on n, r, M, L_{1}, L_{2}, M_{1}, M_{2}, T and δ such that

\[
||\partial_{x}^{\beta}u(t)||_{q} \leq D_{5}(D_{6}||\beta||)^{||\beta||-\delta}t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{n})}
\]

for all $q \in [n, \infty]$, $t \in (0,T]$ and multi-index $\beta \in N_{0}^{n}$.

Obviously, (3.4) implies (1.13). Notice that (3.3) holds true if $F(t)$ is analytic in x. Also, $\tilde{F} = F$, since $\Delta Mx = 0$ and $(Mx, \nabla)Mx + \nabla \Pi = 0$.

Proof of Proposition 3.1. We use an induction with respect to $m = ||\beta||$. Let $m_{0} \geq 2$ (determined later). From above arguments we see

\[
||\partial_{x}^{\beta}u(t)||_{q} \leq D_{5}t^{-\frac{n}{2}-\frac{3}{2}(\frac{1}{n}-\frac{1}{n})}
\]

hold true for all $t \in (0,T)$ and $m = ||\beta|| \leq m_{0}$, provided D_{5} is chosen large enough.

Hence, we assume that $m \geq m_{0}$. We suppose by assumption of induction that (3.4) holds for all $q \in [n, \infty]$ and all $||\beta|| \leq m - 1$. We claim that (3.4) holds for $||\beta|| = m$. For simplicity, we first prove the assertion under the additional assumptions that $T \leq 1$, $n \geq 3$ and $q < \infty$. The claim then follows by minor modifications of the proof given below.
Let \(q \in [n, \infty) \), and let \(\varepsilon \in (0,1) \). We have
\[
\| \partial_x^\beta u(t) \|_q \leq \| \partial_x^\beta u_1 \|_q + \left(\int_0^{(1-\varepsilon)t} + \int_{(1-\varepsilon)t}^t \right) \| \partial_x^\beta e^{-(t-s)A} \mathcal{P}(u(s), \nabla) u(s) \|_q ds
\]
\[
+ 2 \left(\int_0^{(1-\varepsilon)t} + \int_{(1-\varepsilon)t}^t \right) \| \partial_x^\beta e^{-(t-s)A} \mathcal{P}(u(s), \nabla) f \|_q ds
\]
\[
=: B_1 + B_2 + B_3 + B_4 + B_5.
\]

We shall estimate each the above terms \(B_1 - B_5 \) separately.

To this end, taking into account \(\varepsilon = 1/m \), the estimates for \(B_1, B_2 \) and \(B_4 \) are derived from (2.4) as follows:
\[
B_1 + B_2 + B_4 \leq C_4(C_5m)m^{-\delta} t^{-2n} (\varepsilon \perp -\frac{1}{q}) - \frac{m}{2}
\]
for constants \(C_4 \) and \(C_5 \) independent of \(t \) and \(\beta \).

Main difficulties arise from \(B_3 \).

\[
B_3 \leq C \int_{(1-\varepsilon)t}^t (t-s)^{-\frac{1}{2}} \| \partial_x^\beta (u(s) \otimes u(s)) \|_q ds
\]
with some \(C := C(n, M) \). Here we have used [20, Lemma 3.7], that is, \(\| \nabla e^{-tA} \mathcal{P} \|_{\mathcal{L}(L^q)} \leq C t^{-1/2} e^{\omega t} \) for some \(C > 0 \) and some \(\omega \in \mathbb{R} \) for all \(t > 0 \) and \(q \in [1, \infty] \). We now calculate \(\partial_x^\beta (u \otimes u) \) by Leibniz's rule.

We divide the sum into two parts:
\[
B_3 \leq 2C \int_{(1-\varepsilon)t}^t (t-s)^{-\frac{1}{2}} \| \partial_x^\beta u(s) \|_q \| u(s) \|_\infty ds
\]
\[
+ C \int_{(1-\varepsilon)t}^t (t-s)^{-\frac{1}{2}} \sum_{0<\gamma<\beta} \left(\beta \right)_\gamma \| \partial_x^\gamma u(s) \|_q \| \partial_x^\beta-\gamma u(s) \|_\infty ds
\]
\[
=: B_{3a} + B_{3b}.
\]

Here, \(\gamma < \beta \) denotes \(\gamma_i \leq \beta_i \) for all \(i \) and \(|\gamma| < |\beta| \) for multi-indices \(\beta \) and \(\gamma; \left(\beta \right)_\gamma := \prod_{i=1}^n \frac{\beta_i}{\gamma_i!} \) is the binomial coefficient.

Recall that \(\| u(s) \|_\infty \leq Cs^{-1/2} \) for some \(C \). So, we have
\[
B_{3a} + B_5 \leq C_6 \int_{(1-\varepsilon)t}^t (t-s)^{-\frac{1}{2}} s^{-\frac{1}{2}} \| \partial_x^\beta u(s) \|_q ds
\]
for some \(C_6 \), since we derive the estimate for \(B_5 \) as well.
THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

Estimating B_{3b}, by assumption of induction we obtain

$$B_{3b} \leq C \int_{(1-\epsilon)t}^{t} (t-s)^{-\frac{1}{2}} \sum_{0<\gamma<\beta} \left(\frac{\beta}{\gamma} \right) D_5(D_6|\gamma|)|\gamma|-\delta_s s^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{m}{2}}$$

$$\times D_5(D_6|\beta-\gamma|)|\beta-\gamma|\delta_s s^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{m}{2}} ds$$

$$\leq CD_5^2D_6^{m-2\delta}J_{\epsilon} \sum_{0<\gamma<\beta} |\gamma|^{|\gamma|-\delta} |\beta-\gamma|^{|\beta-\gamma|-\delta} t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{m}{2}}.$$}

Here

$$J_{\epsilon} := \int_{1-\epsilon}^{1} (1-\tau)^{-\frac{1}{2}} \tau^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{m}{2}-\frac{1}{2}} d\tau.$$}

Note that $J_{1/m} \leq 1/(2C_3+2)$ and $\lim_{m \to \infty} J_{1/m} \to 0$, since $r > 2$. For the multiplication of multi-sequences we apply Kahane's lemma \[25, \text{Lemma 2.1}\] to obtain

$$B_{3b} \leq C_7 D_5^2 D_6^{m-2\delta} m^{m-\delta} t^{-\frac{n}{2}(\frac{1}{n}-1)-\frac{m}{2}} q,$$

where C_7 depends also on δ; indeed, $C_7 \sim \sum_{j=1}^{\infty} j^{-1/2-\delta/2}$.

Combining the estimates for B_1-B_5, and applying a Gronwall's type inequality \[17, \text{Lemma 2.4}\], there exists $\epsilon_m \in (0,1)$ such that

$$||\partial_x^\beta u(t)||_q \leq 2b_{\epsilon_m} t^{-\frac{n}{2}(\frac{1}{n}-\frac{1}{q})-\frac{m}{2}}, \quad t \in (0,T).$$

We have taken $\epsilon_m := 1/m$, we fix $m_0 \in \mathbb{N}$ which is the smallest number satisfying $J_{1/m} \leq \frac{1}{2C_6}$.

Finally, we verify (3.4) for all m under suitable choices of D_5 and D_6. To get (3.4) for $|\beta| = m \leq m_0$, it is sufficient to choose D_5 large enough such that (3.5) holds, where m_0 is given above. Also, it is sufficient to take $D_6 \geq (2C_7 D_6)^{1/\delta}$, then (3.4) holds for all $m \geq m_0$. The proof is complete. \[\square\]

If M is skew-symmetric, then $||e^{tM}|| \leq 1$. It is not enough to assume that $||e^{tM}|| \leq C$ for some $C > 1$, at least for the author.

One can get the similar results on the Keller-Segel equations, Fujita equation (semilinear heat equation) of algebraic nonlinearity, Allen-Cahn equation, and other equations of parabolic type. See the details in \[40\].

At the end of this note we show a modification of iteration arguments. Recall that the mild solution u is a unique limit of successive
OKIHIRO SAWADA

approximation u_j. Take $\beta \in \mathbb{N}_0^n$ arbitrary. We now define for $j \in \mathbb{N}$

$$
\psi_j(t) := \|\partial^\beta_x u_j(t)\|_q,
$$

and argue in the similar way in the proof of Proposition 3.1 to get $\partial^\beta_x u \in C(0, T_0; L^q)$ by applying the sequence version of Gronwall's inequalities.

REFERENCES

THE NAVIER-STOKES FLOW WITH LIPSCHITZ DATA

DEPARTMENT OF MATHEMATICAL SCIENCE, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO 3-4-1, 169-8555 SHINJUKU, JAPAN
E-mail address: sawada@gm.math.waseda.ac.jp