<table>
<thead>
<tr>
<th>Title</th>
<th>Properties on relative paracompactness and their absolute embeddings (General Topology, Geometric Topology and Their Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kawaguchi, Shinji</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1531: 113-128</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58932</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Properties on relative para-compactness and their absolute embeddings

奈良女子大学附属中等教育学校 川口 慎二 (Shinji Kawaguchi)
Nara Women's University Secondary School

1. Introduction

This report is a summary of [13].
Throughout this note all spaces are assumed to be T_1 and the symbol γ denotes an infinite cardinal. The symbol \mathbb{N} denotes the set of all natural numbers.
For a subset A of a space X, \overline{A}^X and $\text{Int}_X A$ denote the closure and the interior of A in X, respectively.
Let X be a space and Y a subspace of X. Y is Hausdorff (respectively, strongly Hausdorff) in X if for every $y \in Y$ and every $x \in Y$ (respectively, $x \in X$) with $x \neq y$, there exist disjoint open subsets U, V of X such that $x \in U$ and $y \in V$. Y is said to be regular (respectively, strongly regular) in X if for each $y \in Y$ (respectively, $y \in X$) and each closed subset F of X with $y \notin F$, there exist disjoint open subsets U, V of X such that $y \in U$ and $F \cap Y \subset V$. Moreover, Y is superregular in X if for every $y \in Y$ and each closed subset F of X with $y \notin F$, there exist disjoint open subsets U, V of X such that $y \in U$ and $F \subset V$ ([1], [2] and [3]).

As relative notions of para-compactness, the following are known. Let X be a space and Y a subspace of X. For $x \in X$, a collection A of subsets of X is said to be locally finite at x in X if there exists a neighborhood of x in X which intersects at most finitely many members of A. In [1], [2] and [3], Y is said to be 1- (respectively, 2-) para-compact in X if for every open cover U of X, there exists a collection V of open subsets of X with $X = \bigcup V$ (respectively, $Y \subset \bigcup V$) such that V is a partial refinement of U and V is locally finite at each point of Y in X. Here, V is said to be a partial refinement of U if each $V \in V$, there exists a $U \in U$ containing V. We also say that V is a refinement (respectively, an open refinement, a closed refinement) of U if V is a cover (respectively, an open cover, a closed cover) of X and a partial refinement of U. The term "2-paracompact" is often simply said "paracompact". Moreover, Y is said to be Aull-paracompact in X if for every collection U of open subsets of X with $Y \subset \bigcup U$, there exists a collection V of open subsets of X with $Y \subset \bigcup V$ such that V is a partial refinement of U and V is locally finite at each point of Y in X. ([2], [4]). The 1-paracompactness and Aull-paracompactness of Y in X need not imply each
other ([4]), but each of them clearly implies 2-paracompactness of Y in X. When Y is a closed subspace of X, Y is 2-paracompact in X if and only if Y is Aull-paracompact in X.

Aull [5] defined that Y is α-paracompact in X if for every collection \mathcal{U} of open subsets of X with $Y \subset \bigcup \mathcal{U}$, there exists a collection \mathcal{V} of open subsets of X such that $Y \subset \bigcup \mathcal{V}$, \mathcal{V} is a partial refinement of \mathcal{U} and \mathcal{V} is locally finite in X. Recall that 1- and α-paracompactness do not imply each other in general. But for a regular space X, if Y is α-paracompact in X then Y is 1-paracompact in X, the converse also holds if, in addition, Y is closed ([17, Theorem 1.3], see also Proposition 3.1 below for a generalization).

These notions are central in the study of relative paracompactness and the following relations fold.

$$
\begin{align*}
Y \text{ is } 1\text{-paracompact in } X & \quad \Downarrow \\
Y \text{ is } 2\text{-paracompact in } X & \quad \Downarrow \\
Y \text{ is Aull-paracompact in } X & \quad \Downarrow \\
Y \text{ is } \alpha\text{-paracompact in } X &
\end{align*}
$$

\textbf{Diagram 1}

Moreover, absolute embeddings of above relative paracompactness are characterized as follows (see also [14]).

\textbf{Theorem 1.1 (Lupiáñez [15]; Lupiáñez-Outerelo [17]).} For a Tychonoff (respectively, regular) space Y, the following statements are equivalent.

(a) Y is 1- (or equivalently, α-) paracompact in every larger Tychonoff (respectively, regular) space.

(b) Y is 1- (or equivalently, α-) paracompact in every larger Tychonoff (respectively, regular) space containing Y as a closed subspace.

(c) Y is compact.

\textbf{Theorem 1.2 (Arhangel’skii-Genedi [3]; see also [9], [20]).} For a Tychonoff (respectively, regular) space Y, the following statements are equivalent.

(a) Y is 2- (or equivalently, Aull-) paracompact in every larger Tychonoff (respectively, regular) space.

(b) Y is 2- (or equivalently, Aull-) paracompact in every larger Tychonoff (respectively, regular) space containing Y as a closed subspace.
(c) Y is Lindelöf.

Arhangel’skii [1, page 98], [2, page 174] asked if one can generalize the notions above to the well known Michael’s criteria of paracompactness in [18] and [19]. Concerning this problem, Aull [6, Theorem 5] already proved that a subspace Y of a normal space X is α-paracompact if and only if for every cover of Y by open subsets of X has a closure-preserving partial open refinement which covers Y. Moreover, Lupiañez [16, Theorem 1.3] proved that a subspace Y of a regular space X is α-paracompact if and only if for every cover \mathcal{U} of Y by open subsets of X has a partial refinement (or equivalently, a closed partial refinement) \mathcal{A} of \mathcal{U} such that \mathcal{A} is locally finite in X and $Y \subset \text{Int}_X(\bigcup \mathcal{A})$.

In Section 2, we introduce notions of relative paracompactness by using locally finite (not necessarily open) partial refinement and locally finite closed partial refinement. We also consider closure-preserving cases.

In Section 3, we discuss locally finite open refinement and closure-preserving open refinement by using the space X_Y, where X_Y is a space obtained from X by letting each point of $X \setminus Y$ be isolated.

In Section 4, we investigate their basic properties and discuss their absolute embeddings. In particular, we have

Theorem 1.3. For a Tychonoff (respectively, regular) space Y, the following statements are equivalent.

(a) Y is 1-lf- (or equivalently, 1-cp-) paracompact in every larger Tychonoff (respectively, regular) space.

(b) Y is 1-lf- (or equivalently, 1-cp-) paracompact in every larger Tychonoff (respectively, regular) space containing Y as a closed subspace.

(c) Y is Lindelöf.

Theorem 1.4. A Tychonoff (respectively, regular) space Y is α-lf- (or equivalently, α-cp-) paracompact in every larger Tychonoff (respectively, regular) space if and only if Y is compact.

For α-cp-paracompact case, a similar statement to (b) in Theorem 1.1 cannot be added to Theorem 1.4. Indeed, we replace “every larger Tychonoff (respectively, regular) space” by “every larger Tychonoff (respectively, regular) space containing Y as a closed subspace” in Theorem 1.4, “Y is compact” is replaced by “Y is paracompact” (see Remark 4.4). In addition, we point out that a Tychonoff (respectively, regular) space Y is 2- (or equivalently, Aull-) cp-paracompact in every larger Tychonoff (respectively, regular) space if and only if Y is paracompact (see Theorem 4.5 and Remark 4.6).

In the final section, a remark on definitions of relative paracompactness due to Grabner et.al. [10], [12] will be given and a gap of a result in [11] will be pointed out.
For general surveys on relative topological properties, see the Arhangelskii's subsequent articles [1] and [2]. Other undefined notations and terminology are used as in [7] and [13].

2 Some versions of relative para-compactness

In this section, we newly define some notions of relative para-compactness and discuss their basic properties.

Let X be a space and Y a subspace of X. We define that Y is 1-lf-para-compact (respectively, 1-lf-para-compact) in X if every open cover of X has a refinement (respectively, a closed refinement) of U which is locally finite at each point of Y in X. We also define that Y is 2-lf-para-compact (respectively, 2-lf-para-compact) in X if for every open cover U of X there exists a partial refinement (respectively, a closed partial refinement) V such that $Y \subset \bigcup V$ and V is locally finite at each point of Y in X. Furthermore, Y is Aull-lf-para-compact (respectively, Aull-lf-para-compact) in X if for every collection U of open subsets of X with $Y \subset \bigcup U$, there exists a partial refinement (respectively, a closed partial refinement) V of U such that $Y \subset \bigcup V$ and V is locally finite at each point of Y. We also say that Y is α-lf-para-compact (respectively, α-lf-para-compact) in X if for every collection U of open subsets of X with $Y \subset \bigcup U$ there exists a partial refinement (respectively, a closed partial refinement) V of U such that $Y \subset \bigcup V$ and V is locally finite in X.

Let X be a space and $x \in X$. A collection A of subsets of X is said to be closure-preserving at x in X if for every $A' \subset A$ with $x \in \overline{A'}^X$, it holds that $x \in \bigcup A'$. The following are known.

Proposition 2.1. For a collection A of subsets of a space X and $x \in X$, each of the following statements hold.

(a) If A is locally finite at x in X, then A is closure-preserving at x in X.

(b) A is locally finite (respectively, closure-preserving) at x in X if and only if $\overline{A^X} = \{\overline{A^X} \mid A \in A'\}$. The following are known.

(c) A is locally finite at x in X if and only if $\overline{A^X}$ is point-finite at x and A is closure-preserving at x in X.

Hence, we have the following: (a') If A is locally finite at each point of Y in X, then A is closure-preserving at each point of Y in X. (b') If A is closure-preserving at each point of Y in X, then $\overline{A^X}$ is also closure-preserving at each point of Y in X. (c') For a collection A of closed subsets of X, A is locally finite at each point of Y in X if and only if A is point-finite at each point of Y and closure-preserving at each point of Y in X. Grabner et al. [10], [12] introduced
some relative notions related to closure-preserving collections; but their notions do not necessarily satisfy any of (a'), (b') and (c') above (for detail, see Section 5).

Let X be a space and Y a subspace of X. We define that Y is 1-cp-paracompact (respectively, 1-cpo-paracompact, 1-cpc-paracompact) in X if every open cover of X has a refinement (respectively, an open refinement, a closed refinement) which is closure-preserving at each point of Y in X. We also define that Y is 2-cp-paracompact (respectively, 2-cpo-paracompact, 2-cpc-paracompact) in X if for every open cover U of X there exists a partial refinement (respectively, an open partial refinement, a closed partial refinement) V such that $Y \subset \bigcup V$ and V is closure-preserving at each point of Y in X (see Remark 5.1 below). We say that Y is Aull-cp-paracompact (respectively, Aull-cpo-paracompact, Aull-cpc-paracompact) in X if for every collection U of open subsets of X with $Y \subset \bigcup U$ there exists a partial refinement (respectively, an open partial refinement, a closed partial refinement) V such that $Y \subset \bigcup V$ and V is closure-preserving at each point of Y in X. Moreover, we say that Y is α-cp-paracompact (respectively, α-cpo-paracompact, α-cpc-paracompact) in X if for every collection U of open subsets of X with $Y \subset \bigcup U$ there exists a partial refinement (respectively, an open partial refinement, a closed partial refinement) V such that $Y \subset \bigcup V$ and V is closure-preserving in X.

Proposition 2.1 (b) induces the following.

Proposition 2.2. Let Y be a subspace of a regular space X. Then, each of the following statements hold.

(a) If Y is 1-lf-paracompact in X, then Y is 1-lfc-paracompact in X.

(b) If Y is 1-cp-paracompact in X, then Y is 1-cpc-paracompact in X.

Remark 2.3. If we replace “1-” by “α-” “2-” or “Aull-” in the statements (a) and (b) of Proposition 2.2, then the condition “X is regular” can be weakened to “Y is strongly regular in X”.

For closed subspaces, we have the following. Here, notice that 2-cpc-paracompactness of Y in X induces regularity of Y when Y is closed in X.

Theorem 2.4. For a closed subspace Y of a space X, the following statements are equivalent.

(a) Y is α-lfc-paracompact in X.

(b) Y is 2-cpc-paracompact in X.

(c) Y is α-lf-paracompact in X and Y is regular.

(d) Y is 2-cp-paracompact in X and Y is regular.

(e) Y is paracompact Hausdorff.
Aull [5] proved that if a subspace Y of a Hausdorff space X is α-paracompact in X then Y is closed in X. We improve this fact as follows.

Lemma 2.5. Assume that Y is strongly Hausdorff in X. If Y is α-cp-paracompact in X, then Y is closed in X.

The following corollary immediately follows from Theorem 2.4 and Lemma 2.5.

Corollary 2.6. Assume that Y is strongly Hausdorff in X. Then, each of the following statements hold.

(a) Y is α-lf-paracompact in X if and only if Y is α-cpc-paracompact in X.

(b) Assume that Y is regular. Then, Y is α-lf-paracompact in X if and only if Y is α-cp-paracompact in X.

Hereafter, the symbol \mathcal{T}_3 (respectively, \mathcal{T}_2) denotes the class of all regular (respectively, Hausdorff) spaces. Moreover, the symbols SH, R, SuR and Str mean the conditions “Y is strongly Hausdorff in X”, “Y is regular in X”, “Y is superregular in X” and “Y is strongly regular in X”, respectively. The symbol C_X denotes the family of all closed subsets of X. We denote the condition “Y is T_3-embedded in X” (see Section 3 for definition) by T_3.

The following implications around 1-paracompactness follow from definitions, Proposition 2.2 and Theorem 3.4 below.

\[
\begin{array}{ccc}
Y \text{ is } 1\text{-paracompact } & \rightarrow & Y \text{ is } X \in \mathcal{T}_3 \rightarrow Y \text{ is } 1\text{-lf-paracompact } \\
in X & \rightarrow & Y \text{ is } 1\text{-lf-paracompact } \rightarrow Y \text{ is } X \in \mathcal{T}_3 \\
R & \rightarrow & Y \text{ is } 1\text{-lf-paracompact } \rightarrow Y \text{ is } X \in \mathcal{T}_3 \\
\downarrow \downarrow & & \downarrow \\
Y \text{ is } 1\text{-cpo-paracompact } & \rightarrow & Y \text{ is } 1\text{-cp-paracompact } \rightarrow Y \text{ is } 1\text{-cp-paracompact } \\
in X & \rightarrow & Y \text{ is } 1\text{-cp-paracompact } \rightarrow Y \text{ is } X \in \mathcal{T}_3 \\
\end{array}
\]

Diagram 2

For α-paracompact case, we have the following implications. These implications directly follow from definitions, Corollary 2.5, Remark 2.3 and Theorem 3.5.
Moreover, the following implications hold for 2-paracompact case. These implications follow from definitions, Theorem 2.4, Remark 2.2 and Theorem 3.3 below.

Finally, for Aull-paracompact case, we have the following implications. These implications follow from definitions, Theorem 2.4, Remark 2.3 and Theorem 3.2.
In Diagram 1, the terms “1-”, “α-”, “2-” and “Aull-” can be replaced by “1-lf”, “α-lf”, “2-lf” and “Aull-lf”, respectively. Moreover, these terms can be replaced by “1-lfc”, “α-lfc”, “2-lfc” and “Aull-lfc”, respectively. Furthermore, the same is available for cpo-, cp- and cpc-.

Let us emphasize the following proposition.

Proposition 2.7. Let Y be a subspace of a space X. If Y is 2-paracompact in X, then Y is 1-lf-paracompact in X.

For reverse implications in Diagrams 2, 3, 4, and 5, we have the following examples.

Example 2.8. There exist a Tychonoff space X and its closed subspace Y such that Y is α-lf-paracompact in X, but not 1-cp-paracompact in X (hence, not 2-paracompact in X).

Example 2.9. There exist a Tychonoff space X and its closed subspace Y such that Y is Aull-paracompact in X, but not 1-paracompact in X (hence, Y is 1-lf-paracompact in X, but not α-paracompact in X).

3 1-cpo-, 2-cpo-, Aull-cpo- and α-cpo-paracompactness of a subspace in a space

Y is said to be T_4- (respectively, T_3-) embedded in X if for every closed subset F of X disjoint from Y (respectively, $z \in X \setminus Y$), F (respectively, z) and Y are separated by disjoint open subsets of X ([5], see also [14]).

We often use the following proposition.

Proposition 3.1 ([14]; see also [5], [17]). Let Y be a subspace of a space X. Then, the following statements are equivalent.

(a) Y is 1-paracompact in X and T_3-embedded in X.
(b) Y is 2-paracompact in X and T_4-embedded in X.
(c) Y is Aull-paracompact in X and T_4-embedded in X.
(d) Y is α-paracompact in X and satisfies the following condition (\star): for every $y \in Y$ and every closed subset F of X with $F \cap Y = \emptyset$, there exists an open subset U of X such that $y \in U \subset \overline{U}^X \subset X \setminus F$.

As was stated in the previous section, we have

Theorem 3.2. Assume that Y is regular in X. Then, Y is Aull-paracompact in X if and only if Y is Aull-cpo-paracompact in X.
Theorem 3.3. Assume that Y is a closed subspace of X and Y is regular in X. Then, Y is 2-paracompact in X if and only if Y is 2-cpo-paracompact in X.

Theorem 3.4. Assume that Y is regular in X and T_3-embedded in X. Then, Y is 1-paracompact in X if and only if Y is 1-cpo-paracompact in X.

In Theorem 3.4, the condition "Y is T$_3$-embedded in X" cannot be removed. Consider X as the space $\Psi = \omega \cup \mathcal{A}$ constructing a m.a.d. family \mathcal{A} of infinite subsets of ω ([8, 5I]) and $Y = \omega$.

Theorem 3.5. Assume that Y is superregular in X (more generally, Y satisfies the condition (\ast) in Proposition 3.1(d)). Then, Y is α-paracompact in X if and only if Y is α-cpo-paracompact in X.

Theorem 3.5 is a generalization of [6, Theorem 5] where X is normal.
Let X_Y denote the space obtained from the space X, with the topology generated by a subbase $\{U \mid U$ is open in X or $U \subset X \setminus Y\}$. Hence, points in $X \setminus Y$ are isolated and Y is closed in X_Y. Moreover, X and X_Y generate the same topology on Y ([7]). As is seen in [1], the space X_Y is often useful in discussing several relative topological properties. It is easy to see that Y is Hausdorff (respectively, regular) in X if and only if X_Y is Hausdorff (respectively, regular).

Lemma 3.6. Let Y be a subspace of a space X. Then, Y is Aull-2cpo-paracompact in X if and only if every open cover of X_Y has a closure-preserving open refinement.

To prove Theorems 3.4 and 3.5, we have the following lemma which improves [17, Lemma 1.2].

Lemma 3.7. For a subspace Y of a space X, each of the following statements hold.

(a) If Y is T_3-embedded in X and 1-cpo-paracompact in X, then Y is T_4-embedded in X.

(b) Assume that Y satisfies the condition (\ast) in Proposition 3.1(d). If Y is α-cpo-paracompact in X, then Y is T_4-embedded in X.

Corresponding to Proposition 3.1, we have the following result for cpo-paracompact cases. This fact follows from Theorems 3.2, 3.3, 3.4 and 3.5, Proposition 3.1 and Lemma 3.7. Notice that if Y is superregular in X, then Y obviously satisfies the condition (\ast) in Proposition 3.1 (d).

Corollary 3.8. Let Y be a subspace of a space X. Then, the following statements are equivalent.
(a) \(Y \) is 1-cpo-paracompact in \(X \) and \(T_3 \)-embedded in \(X \).
(b) \(Y \) is 2-cpo-paracompact in \(X \) and \(T_4 \)-embedded in \(X \).
(c) \(Y \) is Aull-cpo-paracompact in \(X \) and \(T_4 \)-embedded in \(X \).

At the end of this section, we discuss absolute embeddings of 1-, \(\alpha \)-, 2- and Aull-cpo-paracompactness. Corollary 3.9 below immediately follows from Theorems 1.1, 3.4 and 3.5.

Corollary 3.9. For a Tychonoff (respectively, regular) space \(Y \), the following statements are equivalent.

(a) \(Y \) is 1-cpo- (or equivalently, \(\alpha \)-cpo-) paracompact in every larger Tychonoff (respectively, regular) space.
(b) \(Y \) is 1-cpo- (or equivalently, \(\alpha \)-cpo-) paracompact in every larger Tychonoff (respectively, regular) space containing \(Y \) as a closed subspace.
(c) \(Y \) is compact.

Theorems 1.2, 3.2 and 3.3 induce the following.

Corollary 3.10. For a Tychonoff (respectively, regular) space \(Y \), the following statements are equivalent.

(a) \(Y \) is 2-cpo- (or equivalently, Aull-cpo-) paracompact in every larger Tychonoff (respectively, regular) space.
(b) \(Y \) is 2-cpo- (or equivalently, Aull-cpo-) paracompact in every larger Tychonoff (respectively, regular) space containing \(Y \) as a closed subspace.
(c) \(Y \) is Lindelöf.

4 More on absolute embeddings

In this section, we discuss absolute embeddings on other versions of relative paracompactness defined in Section 2. The results obtained in this section should be compared with Theorems 1.1 and 1.2.

We actually give characterizations of absolute 1-\(l_f \)- and 1-\(cp \)-paracompactness as follows.

Theorem 4.1. For a Tychonoff (respectively, regular) space \(Y \), the following statements are equivalent.

(a) \(Y \) is 1-lfc-paracompact in every larger Tychonoff (respectively, regular) space.
(b) \(Y \) is 1-cpc-paracompact in every larger Tychonoff (respectively, regular) space.
(c) \(Y \) is 1-lf-paracompact in every larger Tychonoff (respectively, regular) space.

(d) \(Y \) is 1-cp-paracompact in every larger Tychonoff (respectively, regular) space.

(e) \(Y \) is Lindelöf.

In the statements from (a) to (d) above, "every larger Tychonoff (respectively, regular) space" can be replaced by "every larger Tychonoff (respectively, regular) space containing \(Y \) as a closed subspace".

The proof of Theorem 4.1 is based on the following fact: let \(X = A(\omega_1) \times (\omega + 1) \setminus \{\langle \infty, \omega \rangle\} \) and \(Y = (\{\infty\} \times \omega) \cup (D(\omega_1) \times \{\omega\}) \). Then, \(Y \) is not 1-cp-paracompact in \(X \).

Example 4.2. There exist a Tychonoff space \(X \) and an open subspace \(Y \) of \(X \) such that \(Y \) is Aull-paracompact in \(X \) and 1-cpo-paracompact in \(X \), but neither 1-paracompact in \(X \) nor \(\alpha \)-cp-paracompact in \(X \).

For absolute \(\alpha \)-lf- or \(\alpha \)-cp-paracompactness, we have

Theorem 4.3. For a Tychonoff (respectively, regular) space \(Y \), the following statements are equivalent.

(a) \(Y \) is \(\alpha \)-lf\(c \)-paracompact in every larger Tychonoff (respectively, regular) space.

(b) \(Y \) is \(\alpha \)-cpc-paracompact in every larger Tychonoff (respectively, regular) space.

(c) \(Y \) is \(\alpha \)-lf-paracompact in every larger Tychonoff (respectively, regular) space.

(d) \(Y \) is \(\alpha \)-cp-paracompact in every larger Tychonoff (respectively, regular) space.

(e) \(Y \) is compact.

Remark 4.4. Notice that in Theorems 4.3, "every larger Tychonoff (respectively, regular) space" cannot be replaced by "every larger Tychonoff (respectively, regular) space containing \(Y \) as a closed subspace". Indeed, for a Tychonoff (respectively, regular) space \(Y \), the following statements are equivalent:

(a) \(Y \) is \(\alpha \)-lf\(c \)-paracompact in every larger Tychonoff (respectively, regular) space containing \(Y \) as a closed subspace.

(b) \(Y \) is \(\alpha \)-cp-paracompact in every larger Tychonoff (respectively, regular) space containing \(Y \) as a closed subspace.

(c) \(Y \) is paracompact.

In the statements (a) and (b) above, "\(\alpha \)-lf\(c \)" (or equivalently, "\(\alpha \)-cp") can be replaced by "\(\alpha \)-lf" (or "\(\alpha \)-cp").
Moreover, we characterize absolute embeddings of relative para-compactness of 2- or Aull-paracompactness types as follows.

Theorem 4.5. For a Tychonoff (respectively, regular) space Y, the following statements are equivalent.

(a) Y is Aull-lfc-paracompact in every larger Tychonoff (respectively, regular) space.

(b) Y is 2-cp-paracompact in every larger Tychonoff (respectively, regular) space.

(c) Y is paracompact.

In the statements (a) and (b) above, “every larger Tychonoff (respectively, regular) space” can be replaced by “every larger Tychonoff (respectively, regular) space containing Y as a closed subspace”.

Remark 4.6. Theorem 4.5 shows that “Aull-lfc-paracompact” in Theorem 4.5 can be replaced by “Aull-cp-paracompact”, “Aull-lf-paracompact” and “Aull-cp-cparacompact”. Moreover in Theorem 4.5, “2-cp-paracompact” can be replaced by “2-lf-paracompact”, “2-cpc-paracompact” and “2-lf-paracompact”.

5 Concluding remarks

In this section, we give some related remarks to relative para-compactness discussed in the previous sections. Let Y be a subspace of a space X and \mathcal{F} a collection of subsets of X. In [10] ans [12], Grabner et.al. introduced the following two relative notions of closure-preserving collections. It is defined in [12] that \mathcal{F} is closure preserving with respect to Y if for every $\mathcal{F}' \subset \{F \in \mathcal{F} \mid F \cap Y \neq \emptyset\}$ either $Y \subset \bigcup \mathcal{F}'$ or $\bigcup \mathcal{F}'$ is closed in X. Moreover, \mathcal{F} is weakly closure preserving with respect to Y if for every $\mathcal{F}' \subset \{F \in \mathcal{F} \mid F \cap Y \neq \emptyset\}$, it holds that $(\bigcup \mathcal{F'}) \cap Y = \bigcup \overline{\mathcal{F}'} Y$. In [10], they assume that \mathcal{F} is a collection of closed subsets of X in the above definitions. As was mentioned in Section 2, the notion of closure preserving collections with respect to Y above does not satisfy the statements (a'), (b') and (c') stated below Proposition 2.1. Actually, there exists a collection \mathcal{A} of closed subsets of X such that \mathcal{A} is locally finite at each point of Y in X, but not closure preserving with respect to Y (consider $X = \omega + 1$, $Y = \omega$ and $\mathcal{A} = \{\{n\} \mid n < \omega\}$). There exists a collection \mathcal{A} of subsets of X such that \mathcal{A} is closure preserving with respect to Y, but $\overline{\mathcal{A}}^X$ is not closure preserving with respect to Y (consider, $X = (\omega + 1)^2 \setminus (\{\omega\} \times \omega)$, $Y = (\omega + 1) \times \{\omega\}$ and $\mathcal{A} = \{\{n\} \times \omega \mid n < \omega\}$). Moreover, there exists a collection \mathcal{A} of closed subsets of X which is point-finite at each point of Y and closure preserving with respect to Y, but not locally finite at some point of Y in X (consider $X = \omega + 1$, $Y = \{\omega\}$ and $\mathcal{A} = \{\{n\} \mid n < \omega\}$).
Remark 5.1. In [10], Grabner et.al. defined that Y is weakly cp-paracompact in X if for every open cover \mathcal{U}, there is a closed partial refinement \mathcal{F} such that $Y \subset \bigcup \mathcal{F}$ and \mathcal{F} is weakly closure preserving with respect to Y. In [12], Grabner et.al. modified the definition of weak cp-paracompactness in X as follows; Y is weakly cp-paracompact in X if for every open cover \mathcal{U}, there is a (not necessarily closed) partial refinement \mathcal{F} such that $Y \subset \bigcup \mathcal{F}$ and \mathcal{F} is weakly closure preserving with respect to Y. They commented in [12] that the new definition of weak cp-paracompactness in X appears to be weaker. Note that Y is 2-cpc-paracompact in X if and only if Y is weakly cp-paracompact in X (in the sense in [10]). Moreover, Y is 2-cp-paracompact in X if Y is weakly cp-paracompact in X (in the sense of revised definition in [12]). Assuming Y is strongly regular in X, these notions are equivalent as in Diagram 4.

Remark 5.2. In [11, Lemma 2.2], Grabner et.al. assert that if a closed collection \mathcal{F} is weakly closure preserving with respect to Y and A is a subset of Y then $A \subset X \setminus \bigcup (\mathcal{F} \setminus \{F \in \mathcal{F} \mid F \cap Y \neq \emptyset\})$. However, this contains a gap. For, consider $X = \omega + 1$, $Y = A = \{\omega\}$ and $\mathcal{F} = \{\{n\} \mid n \in \omega\}$.

To discuss the notions by Grabner et.al. and our notions defined in Section 2, let us introduce some other notions relative paracompactness. We define that Y is α'-$paracompact$ (respectively, α'-lf-$paracompact$, α'-lfc-$paracompact$) in X if for every open cover \mathcal{U} of X there exists an open partial refinement (respectively, a partial refinement, a closed partial refinement) \mathcal{V} of \mathcal{U} such that $Y \subset \bigcup \mathcal{V}$ and \mathcal{V} is locally finite in X.

We also say that Y is α'-cpo-$paracompact$ (respectively, α'-cp-$paracompact$, α'-cpc-$paracompact$) in X if for every open cover \mathcal{U} of X there exists an open partial refinement (respectively, a partial refinement, a closed partial refinement) \mathcal{V} such that $Y \subset \bigcup \mathcal{V}$ and \mathcal{V} is closure-preserving in X. Notice that it is easy to see that a subspace Y of a space X is α'-cpc-$paracompact$ in X if and only if Y is cp-$paracompact$ in X in the sense of Grabner et.al. [10]; this fact is pointed out in [12] assuming that X is Hausdorff. But, in Proposition 5.3 below, we show that α'-lfc-$paracompactness$ is coincident with α'-cpc-$paracompactness$ without any additional condition.

The notion of α'-$paracompactness$ is intermediate between α- and 2-$paracompactness$, and is independent from 1-$paracompactness$. It is obvious that α'-$paracompactness$ is equivalent to α-$paracompactness$ for closed subspaces. On the other hand, there exist a Tychonoff space X and its subspace Y such that Y is α'-$paracompact$ in X, but not α-$paracompact$ in X (consider $X = \omega + 1$ and $Y = \omega$). Moreover, there exist a Tychonoff space X and its subspace Y such that Y is 1-$paracompact$ in X, but not α'-$paracompact$ in X (consider $X = A(\omega_1) \times (\omega + 1) \setminus \{(\infty, \omega)\}$ and $Y = D(\omega_1) \times \omega$).

In the rest of this section, we consider the following Proposition 5.3.
Proposition 5.3. For a subspace Y of a space X, the following statements are equivalent.

(a) Y is α'-lfc-paracompact in X.
(b) Y is α'-cpc-paracompact in X.
(c) Y is α'-lf-paracompact in X and \overline{Y}^X is regular.
(d) Y is α'-cp-paracompact in X and \overline{Y}^X is regular.
(e) \overline{Y}^X is paracompact Hausdorff.

Grabner et al. [10, Theorem 35] (respectively, [12, Theorem 8]) proved that the statements (b) and (e) in Proposition 5.3 above are equivalent assuming that X is regular (respectively, Hausdorff).

Lemma 5.4. Let Y be a subspace of a space X. Then, the following statements are equivalent.

(a) Y is α'-lf- (respectively, α'-cp-) paracompact in X and \overline{Y}^X is regular.
(b) \overline{Y}^X is α'-lf- (respectively, α'-cpc-) paracompact in X.
(c) Y is α'-lf- (respectively, α'-cpc-) paracompact in X.

Proposition 5.3 and Lemma 5.4 induce the following.

Corollary 5.5. Assume that \overline{Y}^X is regular. If Y is α'-cp-paracompact, then Y is α'-lf-paracompact in X.

Moreover, by applying Theorem 3.5, we have

Corollary 5.6. Assume that Y is closed in X and Y satisfies the condition (\ast) in Proposition 3.1. If Y is α'-cω-paracompact in X, then Y is α'-paracompact in X.

We conclude this note by the following implications among α'-cases. These implications directly follow from definitions, Proposition 5.3, Corollaries 5.5 and 5.6. Here, the symbol (\ast) denotes the condition (\ast) in Proposition 3.1.

\[
\begin{array}{ccc}
Y \text{ is } \alpha'\text{-paracompact} & \iff \ Y \text{ is } \alpha'\text{-lf-paracompact} & \iff \ Y \text{ is } \alpha'\text{-lf}^c\text{-paracompact} \\
\text{in } X & \text{in } X & \text{in } X \\
Y \in \mathcal{C}_X & \overline{Y}^X \in \mathcal{T}_3 & \overline{Y}^X \in \mathcal{T}_3 \\
Y \text{ is } \alpha'\text{-c}\omega\text{-paracompact} & \iff \ Y \text{ is } \alpha'\text{-cp-paracompact} & \iff \ Y \text{ is } \alpha'\text{-cpc-paracompact} \\
\text{in } X & \text{in } X & \text{in } X \\
\end{array}
\]
References

Nara Women's University Secondary School,
Higashikidera, Nara 630-8305, Japan
E-mail: kawaguchi@cc.nara-wu.ac.jp