<table>
<thead>
<tr>
<th>Title</th>
<th>Cech-Completeness in Fibrewise Topology (General Topology, Geometric Topology and Their Applications)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Bai, Yun-Feng; Miwa, Takuo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2007), 1531: 49-54</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2007-02</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/58940</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
ČECH-COMPLETENESS IN FIBREWISE TOPOLOGY

Yun-Feng Bai
Department of Mathematics, Shimane Univ. (Capital Normal Univ.)

Takuo Miwa
Department of Mathematics, Shimane University

1. INTRODUCTION

We introduce a new notion "Čech-complete map", and investigate some basic properties, invariance under perfect maps, relationships between (locally) compact map, Čech-complete map and k-map, and characterizations by compactifications of Čech-complete maps.

Motivation and significance of Čech-complete maps are:

(1): The notion of Čech-complete maps in the fibrewise category TOP_B is corresponding to the notion of Čech-complete spaces in the topological category TOP. In fact, we can prove the following:

Compact map \Rightarrow Locally compact map \Rightarrow Čech-complete map \Rightarrow k-map.

(2): The notion of Čech-complete maps is a new idea in General Topology. So, General Topology becomes plentifully by this notion.

For an arbitrary topological space B one considers the category TOP_B, the objects of which are continuous maps into the space B, and for the objects $p : X \rightarrow B$ and $q : Y \rightarrow B$, a morphism from p into q is a continuous map $\lambda : X \rightarrow Y$ with the property $p = q \circ \lambda$. This is denoted by $\lambda : p \rightarrow q$. A morphism $\lambda : p \rightarrow q$ is said to be onto, closed, perfect, etc., if respectively, such is the map $\lambda : X \rightarrow Y$. A continuous map $p : X \rightarrow B$ is called by a projection, and X is called by a fibrewise space over B or (X, p) is called by a fibrewise space. Further we call $\lambda : X \rightarrow Y$ a morphism when we write $\lambda : p \rightarrow q$, and we also call it a fibrewise map when we write $\lambda : (X, p) \rightarrow (Y, q)$.

Throughout this paper, we assume that all spaces are topological spaces, and all maps and projections are continuous. For other terminology and notations undefined in this paper, one can consult [3] about TOP, and [5] and [8] about TOP_B.
2. Preliminaries

In this section, we refer to the notions and notations in Fibrewise Topology.

Let \((B, \tau)\) be a fixed topological space \(B\) with a fixed topology \(\tau\). Throughout this paper, we will use the abbreviation \(nbd(s)\) for \(neighborhood(s)\). We also use that for \(b \in B\), \(N(b)\) is the set of all open nbds of \(b\), and \(N, Q \text{ and } R\) are the sets of all natural numbers, all rational numbers and all real numbers, respectively. Note that regularity of \((B, \tau)\) is assumed in Theorems 3.7 and 3.10, further first countability of \((B, \tau)\) is assumed in Theorem 3.10.

For a projection \(p : X \to B\) and each point \(b \in B\), the fibre over \(b\) is the subset \(X_b = p^{-1}(b)\) of \(X\). Also for each subset \(B'\) of \(B\) we regard \(X_{B'} = p^{-1}(B')\) as a fibrewise space over \(B'\) with the projection determined by \(p\). For a filter (base) \(\mathcal{F}\) in \(X\), we denote that \(\mathcal{p}(\mathcal{F})\) is the filter generated by the family \(\{p(F)|F \in \mathcal{F}\}\).

First, we begin with defining some separation axioms on maps.

Definition 2.1. A projection \(p : X \to B\) is called a \(T_i\)-map, \(i = 0, 1, 2\), if for all \(x, x' \in X\) such that \(x \neq x'\), \(p(x) = p(x')\) the following condition is respectively satisfied:

1. \(i = 0\): at least one of the points \(x, x'\) has a nbhd in \(X\) not containing the other point;
2. \(i = 1\): each of the points \(x, x'\) has a nbhd in \(X\) not containing the other point;
3. \(i = 2\): the points \(x\) and \(x'\) have disjoint nbhds in \(X\).

Definition 2.2. The subsets \(F\) and \(H\) of the space \(X\) are said to be respectively:

1. \(nbd\) separated in \(U \subset X\),
2. functionally separated in \(U \subset X\),

if the sets \(F \cap U\) and \(H \cap U\)

1. have disjoint nbhds in \(U\),
2. are functionally separated in \(U\) (i.e. there exists a map \(\phi : U \to [0, 1]\) such that \(F \cap U \subset \phi^{-1}(0)\) and \(H \cap U \subset \phi^{-1}(1)\)).

Definition 2.3. A projection \(p : X \to B\) is called completely regular (resp. regular), if for every point \(x \in X\) and every closed set \(F\) in \(X\) such that \(x \notin F\), there exists a nbhd \(W \in N(p(x))\), such that the sets \(\{x\}\) and \(F\) are functionally separated (resp. nb'd separated) in \(X_W\). A completely regular (resp. regular) \(T_0\)-map is called Tychonoff or \(T_{3\frac{1}{2}}\) (resp. \(T_3\)) map.

It can be easily verified that every \(T_{3\frac{1}{2}}\)-map is a \(T_i\)-map for \(j, i = 0, 1, 2, 3, 3\frac{1}{2}\) and \(i \leq j\).

Definition 2.4. Let \(p : X \to B\) be a projection.

1. The map \(p\) is called a functionally \(T_2\)-map if for all \(x, x' \in X\) such that \(x \neq x'\), \(p(x) = p(x')\) there exists \(W \in N(b)\) such that the sets \(\{x\}\) and \(\{x'\}\) are functionally separated in \(X_W\).
(2) The map p is called \textit{functionally normal} (resp. \textit{normal}) if for every $b \in B$ and every two disjoint, closed sets F and H in X, there exists $W \in N(b)$ such that F and H are functionally separated (resp. nbd separated) in X_W. A functionally normal (resp. normal) T_3-map is called a \textit{functionally T_4-map} (resp. T_4-map).

It can be easily verified that (1) every T_4-map is a T_3-map, (2) every functionally T_4-map is a $T_{3\frac{1}{2}}$-map and every $T_{3\frac{1}{2}}$-map is a functionally T_2-map. However, note that every T_4-map is not necessarily a $T_{3\frac{1}{2}}$-map. For this, see the remark in this section.

We now give the definitions of submaps, compact maps [9] and locally compact maps [7].

\textbf{Definition 2.5.} The restriction of the projection $p : X \to B$ on a closed (resp. open, type G_{δ}, etc.) subset of the space X is called a \textit{closed} (resp. open, type G_{δ}, etc.) \textit{submap} of the map p.

\textbf{Definition 2.6.} (1) A projection $p : X \to B$ is called a \textit{compact map} if it is perfect (i.e. it is closed and all its fibres $p^{-1}(b)$ are compact).

(2) A projection $p : X \to B$ is said to be a \textit{locally compact map} if for each $x \in X_b$, where $b \in B$, there exists a nbd $W \in N(b)$ and a nbd $U \subset X_W$ of x such that $p' : X_W \cap \overline{U} \to W$ is a compact map, where p' is the restriction of p and $X_W \cap \overline{U}$ is the closure of U in X_W.

Note that a closed submap of a (resp. locally) compact map is (resp. locally) compact, and for a (resp. locally) compact map $p : X \to B$ and every $B' \subset B$ the restriction $p|_{X_{B'}} : X_{B'} \to B'$ is (resp. locally) compact.

\textbf{Definition 2.7.} (1) For a map $p : X \to B$, a map $c(p) : c_pX \to B$ is called a \textit{compactification} of p if $c(p)$ is compact, X is dense in c_pX and $c(p)|X = p$.

(2) A map $p : X \to B$ is called a T_2-\textit{compactifiable map} (resp. $T_{3\frac{1}{2}}$-\textit{compactifiable map}) if p has a compactification $c(p) : c_pX \to B$ and $c(p)$ is a T_2-map (resp. $T_{3\frac{1}{2}}$-map).

\textbf{Remark:} (1) The compactification of a map was studied by Pasynkov [7]. In James [5] Section 8, there are some basic study of compactifiable maps, but note that in [5] he uses a terminology “fibrewise compactification”. For other study of compactifiable maps, see [1] and [6].

(2) Note that we must consider both T_2- and $T_{3\frac{1}{2}}$-compactifiable maps because, unlike the case of spaces, there exist T_2-compact maps which are not $T_{3\frac{1}{2}}$-maps ([4] 4.2 or [2] Example 3.4).

\textbf{Definition 2.8.} For the collection of fibrewise spaces $\{(X_{\alpha}, p_{\alpha})|\alpha \in \Lambda\}$, the subspace $X = \{t = \{t_{\alpha}\} \in \prod\{X_{\alpha} : \alpha \in \Lambda : p_{\alpha}t_{\alpha} = p_{\beta}t_{\beta} \forall \alpha, \beta \in \Lambda\}$ of the Tychonoff product $\prod = \prod\{X_{\alpha} : \alpha \in \Lambda\}$ is called the \textit{fan product} of the spaces X_{α} with respect to the maps p_{α}, $\alpha \in \Lambda$.

For the projection \(pr_{\alpha} : \prod \to X_{\alpha} \) of the product \(\Pi \) onto the factor \(X_{\alpha} \), the restriction \(\pi_{\alpha} \) on \(X \) will be called the projection of the fan product onto the factor \(X_{\alpha}, \alpha \in \Lambda \). From the definition of fan product we have that, \(p_{\alpha} \circ \pi_{\alpha} = p_{\beta} \circ \pi_{\beta} \) for every \(\alpha \) and \(\beta \) in \(\Lambda \). Thus one can define a map \(p : X \to B \), called the product of the maps \(p_{\alpha}, \alpha \in \Lambda \), by \(p = p_{\alpha} \circ \pi_{\alpha}, \alpha \in \Lambda \), and \((X, p)\) is called the fibrewise product space of \(\{(X_{\alpha}, p_{\alpha})|\alpha \in \Lambda\} \).

Obviously, the projections \(p \) and \(\pi_{\alpha}, \alpha \in \Lambda \), are continuous.

Proposition 2.9. Let \(\{(X_{\alpha}, p_{\alpha})|\alpha \in \Lambda\} \) be a collection of fibrewise spaces.

1. If each \(p_{\alpha} \) is \(T_{i} \) \((i = 0, 1, 2)\) (resp. functionally \(T_{2} \)), then the product \(p \) is also \(T_{i} \) \((i = 0, 1, 2)\) (resp. functionally \(T_{2} \)).
2. If each \(p_{\alpha} \) is a surjective \(T_{3} \) (resp. \(T_{3}^{1} \)) map, then the product \(p \) is also a \(T_{3} \) (resp. \(T_{3}^{1} \)) map.
3. If each \(p_{\alpha} \) is a compact map, then the product \(p \) is a compact map.
4. If each \(p_{\alpha} \) is a \(T_{2} \)-compactifiable map, then the product \(p \) is a \(T_{2} \)-compactifiable map.

We shall conclude this section by defining the concept of \(b \)-filters (or tied filters) which plays an important role in this report.

Definition 2.10. (5 Section 4.) For a fibrewise space \(X \) over \(B \), by a \(b \)-filter (or tied filter) on \(X \) we mean a pair \((b, \mathcal{F})\), where \(b \in B \) and \(\mathcal{F} \) is a filter on \(X \) such that \(b \) is a limit point of the filter \(p_{\ast}(\mathcal{F}) \) on \(B \). By an adherence point of a \(b \)-filter \(\mathcal{F} \) \((b \in B)\) on \(X \), we mean a point of the fibre \(X_{b} \) which is an adherence point of \(\mathcal{F} \) as a filter on \(X \).

3. SOME PROPERTIES

Definition 3.1. Let \(X \) be a topological space, and \(A \) a subset of \(X \). We say that the diameter of \(A \) of the space \(X \) is less than a family \(\mathcal{A} = \{A_{s}\}_{s \in S} \) of subsets of the space \(X \), and we shall write \(\delta(A) < \mathcal{A} \), provided that there exists an \(s \in S \) such that \(A \subset A_{s} \).

Definition 3.2. A \(T_{2} \)-compactifiable map \(p : X \to B \) is \(\check{\mathrm{C}} \)ech-complete if for every \(b \in B \), there exists a countable family \(\{A_{n}\}_{n \in \mathbb{N}} \) of open (in \(X \)) covers of \(X_{b} \) with the property that every \(b \)-filter \(\mathcal{F} \) which contains sets of diameter less than \(A_{n} \) for every \(n \in \mathbb{N} \) has an adherence point.

Since the real line \(\mathbb{R} \) with the usual topology is \(\check{\mathrm{C}} \)ech-complete, \(p : \mathbb{R} \to B \) is \(\check{\mathrm{C}} \)ech-complete where \(B \) is a one-point space. All rational numbers \(\mathbb{Q} \), as a subset of \(\mathbb{R} \), is not \(\check{\mathrm{C}} \)ech-complete, thus \(p|\mathbb{Q} \) is not \(\check{\mathrm{C}} \)ech-complete though \(p|\mathbb{Q} \) is open and closed. But we have the following results.

Theorem 3.3. For a \(\check{\mathrm{C}} \)ech-complete map \(p : X \to B \), if \(F \) is closed subset of \(X \), then \(p|F : F \to B \) is \(\check{\mathrm{C}} \)ech-complete.
Theorem 3.4. For a Čech-complete map $p : X \to B$, if G is a G_δ-subset of X and X is regular, then $p|G : G \to B$ is Čech-complete.

Theorem 3.5. Let $\{(X_n, p_n)|n \in N\}$ be a countable family of fibrewise spaces and $(\prod_B X_n, p)$ be the fibrewise product space. If every p_n is surjective Čech-complete, then p is Čech-complete.

Theorem 3.6. Let a fibrewise map $\lambda : (X, p) \to (Y, q)$ be a perfect map, and p and q be T_2-compactifiable maps. Then p is Čech-complete if and only if q is Čech-complete.

Theorem 3.7. Suppose that B is regular. For a T_2-compactifiable map $p : X \to B$, the following are equivalent:

1. $p : X \to B$ is Čech-complete.
2. For every T_2-compactification $p' : X' \to B$ of p and each $b \in B$, X_b is a G_δ-subset of X'_b.
3. There exists a T_2-compactification $p' : X' \to B$ of p such that X_b is a G_δ-subset of X'_b for each $b \in B$.

Theorem 3.8. Every locally compact map, T_2-map is Čech-complete.

Definition 3.9. (James [5], Definitions 10.1 and 10.3) (1) Let (X, p) be a fibrewise space. The subset H of X is quasi-open (resp. quasi-closed) if the following condition is satisfied: for each $b \in B$ and $V \in N(b)$ there exists a nbd $W \in N(b)$ with $W \subset V$ such that whenever $p|K : K \to W$ is compact then $H \cap K$ is open (resp. closed) in K.

(2) Let a projection $p : X \to B$ be a T_2 map. The map p is a k-map if every quasi-closed subset of X is closed in X or, equivalently, if every quasi-open subset of X is open in X.

Theorem 3.10. Suppose that B is first countable and regular. Then a Čech-complete map $p : X \to B$ is a k-map.

REFERENCES
