Borel classes dimensions

1 Introduction and results.

The classes of topological spaces are assumed to be

1. non-empty (we suppose that at least the empty space \emptyset is a member), and

2. monotone with respect to closed subsets.

The letter \mathcal{P} is used to denote a such class and the following classes of spaces satisfy the conditions 1 and 2 above.

- The class of compact metrizable spaces \mathcal{K}.
- The class of σ-compact metrizable spaces \mathcal{S}.
- The class of completely metrizable spaces \mathcal{C}.
- The class of separable completely metrizable spaces \mathcal{C}_0.
Let X be a space and A, B disjoint subsets of X. We recall that a closed set $C \subset X$ is said to be a *partition* between A and B in X if there are disjoint open subsets U and V of X such that $A \subset U$, $B \subset V$ and $C = X \setminus (U \cup V)$.

In [4] Lelek introduced the small inductive dimension modulo a class \mathcal{P}, \mathcal{P}-ind, which is a natural generalization of well known dimension functions such as the small inductive dimension ind and the small inductive compactness degree cmp.

Definition 1.1 Let X be a regular T_1-space and \mathcal{P} a class of spaces. Then we define the *small inductive dimension modulo a class \mathcal{P}, \mathcal{P}-ind* X, of X as follows.

(i) \mathcal{P}-ind $X = -1$ iff $X \in \mathcal{P}$.

(ii) For a natural number n, \mathcal{P}-ind $X \leq n$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P}-ind $C < n$.

The small inductive dimension modulo a class \mathcal{P} has a natural transfinite extension.

Definition 1.2 Let X be a regular T_1-space and α either an ordinal number or the integer -1. Then the *small transfinite inductive dimension modulo \mathcal{P}, \mathcal{P}-trind* X, of X is defined as follows.

(i) \mathcal{P}-trind $X = -1$ iff $X \in \mathcal{P}$;

(ii) \mathcal{P}-trind $X \leq \alpha$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P}-trind $C < \alpha$.

(iii) \mathcal{P}-trind $X = \alpha$ if \mathcal{P}-trind $X \leq \alpha$ and \mathcal{P}-trind $X > \beta$ for any ordinal $\beta < \alpha$;

(iv) \mathcal{P}-trind $X = \infty$ if \mathcal{P}-trind $X > \alpha$ for any ordinal α.

We notice the following.

- $\{\emptyset\}$-trind $X = \text{trind} X$, i.e., the small transfinite dimension.
- \(\mathcal{K}\)-ind \(X = \text{cmp} X \) (and \(\mathcal{K}\)-trind \(X = \text{trcmp} X \)), i.e., the small (transfinite) compactness degree.

- \(C\)-ind \(X = \text{idc} X \) (and \(C\)-trind \(X = \text{tridc} X \)), i.e., the small (transfinite) completeness degree.

- If \(P_2 \subseteq P_1 \), then \(P_1\)-trind \(X \leq P_2\)-trind \(X \); in particular, \(\text{tridc} X \leq \text{trcmp} X \leq \text{trind} X \) holds.

Here, we shall consider on the absolute Borel classes. For each ordinal number \(\alpha \), let \(\mathcal{A}(\alpha) \) and \(\mathcal{M}(\alpha) \) be the absolute additive class \(\alpha \) and the absolute multiplicative classe \(\alpha \), respectively. Further, \(\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha) \) is said to be the absolute ambiguous class \(\alpha \) and we write \(AB = \bigcup \{\mathcal{A}_\alpha : \alpha < \omega_1\} \).

We notice that the absolute Borel classes in the universe of metrizable spaces satisfy the conditions 1 and 2.

Recall that in the universe of separable metrizable spaces, we have the following.

- \(\mathcal{A}(0) = \{\emptyset\} \).
- \(\mathcal{M}(0) = \mathcal{K} \).
- \(\mathcal{A}(1) = S \).
- \(\mathcal{M}(1) = C_0 \).

- A diagram of the hierarchy of absolute Borel classes:

\[
\begin{align*}
\mathcal{A}(1) & = S \\
\{\emptyset\} & \subseteq \mathcal{K} \subseteq \mathcal{A}(1) \cap \mathcal{M}(1) \\
\mathcal{A}(2) & \supseteq \mathcal{A}(1) \cap \mathcal{M}(1) \\
\mathcal{A}(2) & \cap \mathcal{M}(2) \\
\mathcal{M}(1) & = C_0 \\
\mathcal{M}(2) & \supseteq \mathcal{M}(2)
\end{align*}
\]

We have a trivial example which shows the difference between trind and trcmp: The Hilbert cube \(I^\infty \) has \(\text{trind} I^\infty = \infty \) and \(\text{cmp} I^\infty (= \text{idc} I^\infty = S\text{-ind} I^\infty) = -1 \). Furthermore, E. Pol constructed the following example.
Example 1.1 (E. Pol, [5]) There exists a σ-compact, completely metrizable space P such that $\text{trcmp } P = \infty$ (i.e., $\text{trind } P = \text{trcmp } P = \infty$ and $\text{tricd } P = S\text{-trind } P = A(1) \cap M(1)\text{-trind } P = -1$).

Thus, we may ask whether we can generalize Pol's example to every ordinal number $\alpha < \omega_1$.

It is well known that the small compactness degree cmp is related to an extension property, i.e., de Groot proved that a separable metrizable space X is rim-compact (i.e., $\text{cmp } X \leq 0$) iff X has a metric compactification Y such that $\dim(Y - X) \leq 0$. Connect with this theorem, we introduce other two dimension-like functions.

Definition 1.3 Let \mathcal{P} be a class of spaces. We recall that a separable metrizable space Y is a \mathcal{P}-hull (resp. \mathcal{P}-kernel) of a separable metrizable space X if $Y \in \mathcal{P}$ and $X \subset Y$ (resp. $Y \subset X$). Then the small transfinite \mathcal{P}-deficiency, $\mathcal{P}\text{-trdef } X$, and the small transfinite \mathcal{P}-surplus, $\mathcal{P}\text{-trsur } X$, of a separable metrizable space X are defined by

$$\mathcal{P}\text{-trdef } X = \min\{\text{trind } (Y \setminus X) : Y \text{ is an } \mathcal{P}\text{-hull of } X\},$$

$$\mathcal{P}\text{-trsur } X = \min\{\text{trind } (X \setminus Y) : Y \text{ is an } \mathcal{P}\text{-kernel of } X\},$$

$$\mathcal{P}\text{-trdef } X = \min\{\text{ind } (Y \setminus X) : Y \text{ is an } \mathcal{P}\text{-hull of } X\},$$

$$\mathcal{P}\text{-trsur } X = \min\{\text{ind } (X \setminus Y) : Y \text{ is an } \mathcal{P}\text{-kernel of } X\}.$$

It is clear that the functions $\mathcal{P}\text{-trdef}$ and $\mathcal{P}\text{-trsur}$ are transfinite extensions of the functions $\mathcal{P}\text{-def}$ and $\mathcal{P}\text{-sur}$, respectively, which are discussed in [1]. It is also clear that if $\mathcal{P}_2 \subset \mathcal{P}_1$, then $\mathcal{P}_1\text{-trdef } X \leq \mathcal{P}_2\text{-trdef } X$ and $\mathcal{P}_1\text{-trsur } X \leq \mathcal{P}_2\text{-trsur } X$.

Recall also that for the function $\mathcal{K}\text{-def}$ is the well known compact deficiency def. We will denote the transfinite extension $\mathcal{K}\text{-trdef}$ of the compact deficiency def by trdef.

Facts (cf. [1]). Let X be a separable metrizable space and α an ordinal number. Then we have the following.
1. If $\alpha = 0$, then $\mathcal{M}(0)$-ind $X \leq \mathcal{M}(0)$-def $X \leq \mathcal{M}(0)$-sur X holds and the converse of the inequalities do not hold. (We notice that $\mathcal{M}(0) = \mathcal{K}$ and so $\mathcal{M}(0)$-ind $X = \text{cmp} X$ and $\mathcal{M}(0)$-def $X = \text{def} X$.) We also notice that $\mathcal{A}(0) = \{\emptyset\}$ and hence $\mathcal{A}(0)$-ind $X = \mathcal{A}(0)$-sur X trivially holds and $\mathcal{A}(0)$-def X can not be defined if $X \neq \emptyset$.

2. If $\alpha = 1$, then $\mathcal{A}(1)$-ind $X \leq \mathcal{A}(1)$-def $X = \mathcal{A}(1)$-sur X and $\mathcal{M}(1)$-ind $X = \mathcal{M}(1)$-def $X \leq \mathcal{M}(1)$-sur X hold. The converses of the inequalities above do not hold. (We notice that $\mathcal{A}(1) = \mathcal{S}$ and $\mathcal{M}(1) = \mathcal{C}_0$ and so $\mathcal{M}(1)$-ind $X = \text{icd} X$.)

3. If $\alpha \geq 2$, then $\mathcal{A}(\alpha)$-ind $X = \mathcal{A}(\alpha)$-def $X = \mathcal{A}(\alpha)$-sur X and $\mathcal{M}(\alpha)$-ind $X = \mathcal{M}(\alpha)$-def $X = \mathcal{M}(\alpha)$-sur X hold.

M. Charalambous [2] showed that the equality $\mathcal{M}(\alpha)$-def $X = \mathcal{M}(\alpha)$-ind X can not be extended to the transfinite dimension for the case of $\alpha = 1$.

Example 1.2 (M. Charalambous, [2]) There exists a separable metrizable space C such that C-trdef $C (= \mathcal{M}(1)$-trdef $C) = \omega_0$ and $\text{tricd} C (= \mathcal{M}(1)$-trind $C) = \infty$. (We notice that \mathcal{C}_0-trdef $\leq \text{tricd} X$ holds for every separable metrizable space.)

Thus, it seems to be natural that we ask whether for each ordinal number $\alpha < \omega_1$ there exits a separable metrizable space X such that $\mathcal{M}(\alpha)$-trdef $X = \omega_0$ and $\mathcal{M}(\alpha)$-trind $X = \infty$ or $\mathcal{A}(\alpha)$-trdef $X = \omega_0$ and $\mathcal{A}(\alpha)$-trind $X = \infty$.

Connect with the questions above, we have the following.

Theorem 1.1 Let α be any ordinal with $1 \leq \alpha < \omega_1$.
(1) There exist separable metrizable spaces X_α, Y_α and Z_α such that
(a) $f X_\alpha, f Y_\alpha, f Z_\alpha \leq \omega_0$, where f is either trdef or \mathcal{K}-trsur;
(b) $\mathcal{M}(\alpha)$-trind $X_\alpha = -1$ and $\mathcal{A}(\alpha)$-trind $X_\alpha = \infty$ (and hence $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$-trind $X_\alpha = \infty$);
(c) $\mathcal{A}(\alpha)$-trind $Y_\alpha = -1$ and $\mathcal{M}(\alpha)$-trind $Y_\alpha = \infty$ (and hence $\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)$-trind $X_\alpha = \infty$);
(d) $\mathcal{M}(\alpha)$-trind $Z_\alpha = \mathcal{A}(\alpha)$-trind $Z_\alpha = \infty$ and $\mathcal{A}(\alpha + 1) \cap \mathcal{M}(\alpha + 1)$-trind $Z_\alpha = -1$.

There does not exist a separable metrizable space W_α such that $A(\alpha)$-trind $W_\alpha \neq \infty$, $\mathcal{M}(\alpha)$-trind $W_\alpha \neq \infty$ and $A(\alpha) \cap \mathcal{M}(\alpha)$-trind $W_\alpha = \infty$.

Theorem 1.2 There exists a separable metrizable space X with trdef $X = K$-trsur $X = \omega_0$ such that for each $1 \leq \alpha < \omega_1$ we have B-trind $X = \infty$ and B-trdef $X = B$-trsur $X = \omega_0$, where $B = A(\alpha)$, $\mathcal{M}(\alpha)$ or $A(\alpha) \cap \mathcal{M}(\alpha)$.

Remark 1.1 By Theorems 1.1 and 1.2, it follows that the equalities $\mathcal{M}(\alpha)$-def $X = \mathcal{M}(\alpha)$-ind X and $A(\alpha)$-sur $X = A(\alpha)$-ind X can not be extended to transfinite-dimensional cases. For the spaces X_α, Y_{α} and Z_α in Theorem 1.1, we additionally have that

- $\mathcal{M}(\alpha)$-trdef $X_\alpha = A(\alpha)$-trsur $Y_\alpha = -1$;
- $\mathcal{M}(\alpha)$-trdef $Y_\alpha = \mathcal{M}(\alpha)$-trdef $Z_\alpha = A(\alpha)$-trsur $X_\alpha = A(\alpha)$-trsur $Z_\alpha = \omega_0$.

We refer the readers to the books [1], [3] and [7] for the dimensions modulo classes, dimension theory and the theory of Borel sets, respectively.

2 Outline of proofs.

All classes of topological spaces considered here are additionally assumed to be finitely additive. We will follow some idea of E. Pol [5]. Let P be a class of topological spaces. A space X is said to have the property $(\ast)_P$ if for every sequence $\{(A_i, B_i)\}_{i=1}^{\infty}$ of pairs of disjoint compact subsets of X there exist partitions L_i between A_i and B_i in X and an integer N such that $\cap_{i=1}^{N} L_i \in P$.

It is evident that the property $(\ast)_P$ is closed hereditary.

We have two propositions on the property $(\ast)_P$.

Proposition 2.1 If a space X is covered by a finite family of closed sets such that each element of this cover possesses property $(\ast)_P$ then X also possesses this property.

Proposition 2.2 Let X be a space. If P-trind $X \neq \infty$ then X possesses property $(\ast)_P$.
Let $\mathbb{I}^{\infty} = \{(x_i) : 0 \leq x_i \leq 1, i = 1, 2, \ldots\}$ be the Hilbert cube and $Z = \{0, \frac{1}{2}, \frac{1}{3}, \ldots\}$ a subspace of the unit interval \mathbb{I}. For each $n \geq 1$ we denote the subset $\{(x_i) \in \mathbb{I}^{\infty} : x_j = 0 \text{ for } j \geq n + 1\}$ of \mathbb{I}^{∞} by \mathbb{I}^n. For each $n \geq 1$ and each $i = 1, \ldots, n$, we put

$$A_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^{\infty} : x_i = 0\}, \quad B_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^{\infty} : x_i = 1\}.$$

Choose for each $n \geq 1$ a subset E_n of \mathbb{I}^n and put

$$X = (\{0\} \times \mathbb{I}^{\infty}) \cup \bigcup_{n=1}^{\infty} \left[\frac{1}{n}, \mathbb{I}^n \times E_n\right]. \quad (1)$$

Furthermore, we put $Y = (\{0\} \times \mathbb{I}^{\infty}) \cup (\bigcup_{n=1}^{\infty} \{\frac{1}{n}\} \times \mathbb{I}^n)$. It is clear that $X \subset Y \subset Z \times \mathbb{I}^{\infty}$, Y is compact, and $Y \setminus X$ is a subspace of the topological sum $\oplus_{n=1}^{\infty} \mathbb{I}^n$. Thus, $\text{trind} (Y \setminus X) \leq \omega_0$. Observe also that $\text{trind} (X \setminus (\{0\} \times \mathbb{I}^{\infty})) \leq \omega_0$. Hence

$$\text{trdef} X \leq \omega_0 \text{ and } K\text{-trsur} X \leq \omega_0. \quad (2)$$

Lemma 2.1 If for each $m \geq 1$ there exists an integer $k(m) \geq m + 1$ such that for any $n \geq k(m)$ and any partition L_i^n between A_i^n and B_i^n in \mathbb{I}^n, $i \leq m$, we have $E_n \cap \bigcap_{i=1}^{\infty} L_i^n \notin \mathcal{P}$, then \mathcal{P}-trind $X = \infty$.

Proof. By Proposition 2.2, it suffices to show that X does not have the property $(*)_{\mathcal{P}}$. For each $i = 1, 2, \ldots$ let L_i be a partition between compact sets $A_i = \{(0, (x_j)) \in \{0\} \times \mathbb{I}^{\infty} : x_i = 0\}$ and $B_i = \{(0, (x_j)) \in \{0\} \times \mathbb{I}^{\infty} : x_i = 1\}$ We shall show that $\cap_{i=1}^{N} L_i \notin \mathcal{P}$ for every natural number N. Let N be a natural number. For each $i \geq 1$ let us consider a partition L_i' between A_i and B_i in Y such that $L_i = L_i' \cap X$. Note that for every i there exists a natural number $n_i \geq 2$ such that for any $n \geq n_i$ $L_i^n = L_i' \cap \{\frac{1}{n}\} \times \mathbb{I}^n$ is a partition between $\{\frac{1}{n}\} \times A_i^n$ and $\{\frac{1}{n}\} \times B_i^n$ in $\{\frac{1}{n}\} \times \mathbb{I}^n$. Let n a fixed integer with $n \geq \max\{n_1, \ldots, n_N, k(N)\}$. Then $C = (\bigcap_{i=1}^{N} L_i^n) \cap \{\frac{1}{n}\} \times E_n$ is a closed subset of $\bigcap_{i=1}^{N} L_i$, and $C \notin \mathcal{P}$ by the assumption. So $\cap_{i=1}^{N} L_i \notin \mathcal{P}$.

We shall also use the following.

Lemma 2.2 ([8, Lemma 5.2]) Let L_{ij} be partitions between the opposite faces A_{ij}^n and B_{ij}^n in \mathbb{I}^n, where $1 \leq i_1 < i_2 < \ldots < i_p \leq n$ and $1 \leq p < \infty$. Then for any $k \neq i_j, j = 1, \ldots, p$, there is a continuum $C \subset \bigcap_{j=1}^{p} L_{ij}$ meeting the faces A_{ij}^k and B_{ij}^k.

Lemma 2.3 Let α be an ordinal number with $1 \leq \alpha < \omega_1$. Then there exist subsets Q_α, P_α and D_α of I such that

1. $Q_\alpha \in A(\alpha) - M(\alpha)$,
2. $P_\alpha \in M(\alpha) - A(\alpha)$,
3. $D_\alpha \in A(\alpha + 1) \cap M(\alpha + 1) - (A(\alpha) \cup M(\alpha))$.

Proof of Theorem 1.1. (1) We shall prove for Y_α only. We put

$$Y_\alpha = (\{0\} \times \mathbb{I}^\infty) \cup \left(\bigcup_{n=2}^{\infty} \left\{ \frac{1}{n} \right\} \times \pi_n^{-1}(Q_\alpha) \right),$$

where Q_α is the subspace \mathbb{I} described in Lemma 2.3 and $\pi_n : \mathbb{I}^n \to \mathbb{I}$ be the projection onto the n-th factor. By the construction of Y_α, it is clear that $M(\alpha)$-trdef $Y_\alpha \leq \text{trdef} Y_\alpha \leq \omega_0$, and $M(\alpha)$-trsur $Y_\alpha \leq \omega_0$. Since the absolute Borel classes are preserved under perfect preimages, it follows that $\pi_n^{-1}(Q_\alpha) \in A(\alpha)$. Thus, $Y_\alpha \in A(\alpha)$ and hence $A(\alpha)$-trind $Y_\alpha = -1$. Now, it suffices to show that $M(\alpha)$-trind $Y_\alpha = \infty$. To apply Lemma 2.1, for every natural number m let $k(m) = m + 1$. For each $n \geq k(m)$ and each $i \leq n$ let L_i^n be a partition between A_i^n and B_i^n in \mathbb{I}^n. By Lemma 2.2, there exists a continuum C such that $C \subset \cap_{i=1}^{n} L_i^n$ and $C \cap A_i^n \neq \emptyset \neq C \cap B_i^n$. Let $\pi_n^C = \pi|C : C \to \mathbb{I}$ be the restriction of the projection π_n over C. Then $C \cap \pi_n^{-1}(Q_\alpha) = (\pi_n^C)^{-1}(Q_\alpha) \subset \cap_{i=1}^{n} L_i^n \cap \pi_n^{-1}(Q_\alpha)$. Since $C \cap \pi_n^{-1}(Q_\alpha)$ is closed set of $\cap_{i=1}^{n} L_i^n \cap \pi_n^{-1}(Q_\alpha)$ and $(\pi_n^C)^{-1}(Q_\alpha) \notin M(\alpha)$, it follows that $\cap_{i=1}^{n} L_i^n \cap \pi_n^{-1}(Q_\alpha) \notin M(\alpha)$. Thus, it follows from Lemma 2.1 that $M(\alpha)$-trind $Y_\alpha = \infty$. This completes the proof.

(2) The second part of Theorem 1.1 is a direct consequence of the following proposition.

Proposition 2.3 Let X be a separable metrizable space with $A(\alpha)$-trind $X \leq \mu_1$ and $M(\alpha)$-trind $X \leq \mu_2$. Then

$$A(\alpha) \cap M(\alpha)$$

trind $X = \begin{cases}
\mu_1 + n(\mu_2) + 1, & \text{if } \lambda(\mu_1) = \lambda(\mu_2), \\
\mu_1, & \text{if } \lambda(\mu_1) > \lambda(\mu_2).
\end{cases}$

Proof. The proposition can be proved by a standard transfinite induction on $\nu = \max\{\mu_1, \mu_2\}$.

Connect with Proposition 2.1, we ask the following question.
Question 2.1 Does there exist a separable metrizable space X_α such that $A(\alpha) \cap \mathcal{M}(\alpha)$-trind $X_\alpha > \max\{A(\alpha)$-trind $X_\alpha, \mathcal{M}(\alpha)$-trind $X_\alpha\}$ for each ordinal number α? In particular, does there exist a separable metrizable space X such that $C_0 \cap \mathcal{S}$-ind $X = 1$ and C_0-ind $X = \mathcal{S}$-trind $X = 0$?

Recall from M.G. Charalambous ([2]) that we call a subset A of a space X a Bernstein set if $|A \cap B| = |(X \setminus A) \cap B| = c$ for every uncountable Borel set B of X, where c denotes the cardinality of the continuum. It is known that every uncountable completely metrizable space X has countably many disjoint Bernstein sets. We notice that $A \notin \mathcal{A}B$ for every Bernstein set A of an uncountable completely metrizable space X.

Proof of Theorem 1.2. Let F be a Bernstein set of \mathbb{I}. We put $X = (\{0\} \times \mathbb{I}^\infty) \cup (\bigcup_{n=1}^{\infty} \{1\} \times \pi_n^{-1}(F))$. Then, we can show that X is the desired space by an argument similar to Theorem 1.1.

Connect with Theorem 1.1, we may ask the following question.

Question 2.2 For each ordinal numbers α and β with $1 \leq \alpha < \omega_1$ and $0 \leq \beta < \omega_1$ do there exist separable metrizable spaces $X_{\alpha,\beta}$ and $Y_{\alpha,\beta}$ which satisfy the following conditions?

1. $A(\alpha)$-trind $X_{\alpha,\beta} = \beta$,
2. $\mathcal{M}(\alpha)$-trind $Y_{\alpha,\beta} = \beta$, and
3. $\mathcal{M}(\alpha)$-trind $X_{\alpha,\beta} = A(\alpha)$-trind $Y_{\alpha,\beta} = -1$.

References

(V.A. Chatyrko)
Department of Mathematics, Linköping University, 581 83 Linkeping, Sweden.
vitja@mai.liu.se

(Y. Hattori)
Department of Mathematics, Shimane University, Matsue, Shimane, 690-8504 Japan
hattori@riko.shimane-u.ac.jp