Borel classes dimensions

1 Introduction and results.

The classes of topological spaces are assumed to be

1. non-empty (we suppose that at least the empty space \emptyset is a member),
and

2. monotone with respect to closed subsets.

The letter \mathcal{P} is used to denote a such class and the following classes of spaces satisfy the conditions 1 and 2 above.

- The class of compact metrizable spaces \mathcal{K}.
- The class of σ-compact metrizable spaces \mathcal{S}.
- The class of completely metrizable spaces \mathcal{C}.
- The class of separable completely metrizable spaces \mathcal{C}_0.
Let X be a space and A, B disjoint subsets of X. We recall that a closed set $C \subset X$ is said to be a partition between A and B in X if there are disjoint open subsets U and V of X such that $A \subset U$, $B \subset V$ and $C = X \setminus (U \cup V)$.

In [4] Lelek introduced the small inductive dimension modulo a class \mathcal{P}, \mathcal{P}-ind, which is a natural generalization of well known dimension functions such as the small inductive dimension ind and the small inductive compactness degree cmp.

Definition 1.1 Let X be a regular T_1-space and \mathcal{P} a class of spaces. Then we define the small inductive dimension modulo a class \mathcal{P}, \mathcal{P}-ind X, of X as follows.

(i) \mathcal{P}-ind $X = -1$ iff $X \in \mathcal{P}$.

(ii) For a natural number n, \mathcal{P}-ind $X \leq n$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P}-ind $C < n$.

The small inductive dimension modulo a class \mathcal{P} has a natural transfinite extension.

Definition 1.2 Let X be a regular T_1-space and α either an ordinal number or the integer -1. Then the small transfinite inductive dimension modulo \mathcal{P}, \mathcal{P}-trind X, of X is defined as follows.

(i) \mathcal{P}-trind $X = -1$ iff $X \in \mathcal{P}$;

(ii) \mathcal{P}-trind $X \leq \alpha$ if for any point $x \in X$ and any closed subset A of X with $x \notin A$ there exists a partition C between x and A in X such that \mathcal{P}-trind $C < \alpha$.

(iii) \mathcal{P}-trind $X = \alpha$ if \mathcal{P}-trind $X \leq \alpha$ and \mathcal{P}-trind $X > \beta$ for any ordinal $\beta < \alpha$;

(iv) \mathcal{P}-trind $X = \infty$ if \mathcal{P}-trind $X > \alpha$ for any ordinal α.

We notice the following.

- $\{\emptyset\}$-trind $X = \text{trind} X$, i.e., the small transfinite dimension.
\begin{itemize}
 \item \mathcal{K}-ind $X = \text{comp} X$ (and \mathcal{K}-trind $X = \text{trcomp} X$), i.e., the small (transfinite) compactness degree.
 \item \mathcal{C}-ind $X = \text{id} X$ (and \mathcal{C}-trind $X = \text{trid} X$), i.e., the small (transfinite) completeness degree.
 \item If $\mathcal{P}_2 \subset \mathcal{P}_1$, then \mathcal{P}_1-trind $X \leq \mathcal{P}_2$-trind X; in particular, $\text{trid} X \leq \text{trcomp} X \leq \text{trid} X$ holds.
\end{itemize}

Here, we shall consider on the absolute Borel classes. For each ordinal number α, let $A(\alpha)$ and $\mathcal{M}(\alpha)$ be the absolute additive class α and the absolute multiplicative class α, respectively. Further, $A(\alpha) \cap \mathcal{M}(\alpha)$ is said to be the absolute ambiguous class α and we write $AB = \bigcup\{A_\alpha : \alpha < \omega_1\}$. We notice that the absolute Borel classes in the universe of metrizable spaces satisfy the conditions 1 and 2.

Recall that in the universe of separable metrizable spaces, we have the following.

\begin{itemize}
 \item $A(0) = \{\emptyset\}$.
 \item $\mathcal{M}(0) = \mathcal{K}$.
 \item $A(1) = S$.
 \item $\mathcal{M}(1) = C_0$.
 \item A diagram of the hierarchy of absolute Borel classes:
\end{itemize}

\[
\begin{array}{ccccccc}
\mathcal{A}(1) = S & \mathcal{A}(2) & \ldots \\
\{\emptyset\} \subseteq \mathcal{K} \subseteq \mathcal{A}(1) \cap \mathcal{M}(1) & \subseteq & \mathcal{A}(2) \cap \mathcal{M}(2) & \subseteq & \ldots \\
\subseteq & \mathcal{M}(1) = C_0 & \subseteq & \mathcal{M}(2) & \ldots \\
\end{array}
\]

We have a trivial example which shows the difference between trind and trcmp: The Hilbert cube I^∞ has $\text{trind} I^\infty = \infty$ and $\text{comp} I^\infty (= \text{id} I^\infty = S\text{-ind} I^\infty) = -1$. Furthermore, E. Pol constructed the following example.
Example 1.1 (E. Pol, [5]) There exists a \(\sigma \)-compact, completely metrizable space \(P \) such that \(\text{trcmp} P = \infty \) (i.e., \(\text{trind} P = \text{trcmp} P = \infty \) and \(\text{tricd} P = \mathcal{S} \text{-trind} P = \mathcal{A}(1) \cap \mathcal{M}(1) \text{-trind} P = -1 \)).

Thus, we may ask whether we can generalize Pol's example to every ordinal number \(\alpha < \omega_1 \).

It is well known that the small compactness degree \(\text{cmp} \) is related to an extension property, i.e., de Groot proved that a separable metrizable space \(X \) is rim-compact (i.e., \(\text{cmp} X \leq 0 \)) iff \(X \) has a metric compactification \(Y \) such that \(\dim(Y - X) \leq 0 \). Connect with this theorem, we introduce other two dimension-like functions.

Definition 1.3 Let \(\mathcal{P} \) be a class of spaces. We recall that a separable metrizable space \(Y \) is a \(\mathcal{P} \)-hull (resp. \(\mathcal{P} \)-kernel) of a separable metrizable space \(X \) if \(Y \in \mathcal{P} \) and \(X \subset Y \) (resp. \(Y \subset X \)). Then the small transfinite \(\mathcal{P} \)-deficiency, \(\mathcal{P} \text{-trdef} X \), and the small transfinite \(\mathcal{P} \)-surplus, \(\mathcal{P} \text{-trsur} X \), of a separable metrizable space \(X \) are defined by

\[
\mathcal{P} \text{-trdef} X = \min \{ \text{trind} (Y \setminus X) : Y \text{ is an } \mathcal{P} \text{-hull of } X \},
\]

\[
(\mathcal{P} \text{-def} X = \min \{ \text{ind} (Y \setminus X) : Y \text{ is an } \mathcal{P} \text{-hull of } X \}),
\]

\[
\mathcal{P} \text{-trsur} X = \min \{ \text{trind} (X \setminus Y) : Y \text{ is an } \mathcal{P} \text{-kernel of } X \},
\]

\[
(\mathcal{P} \text{-sur} X = \min \{ \text{ind} (X \setminus Y) : Y \text{ is an } \mathcal{P} \text{-kernel of } X \}).
\]

It is clear that the functions \(\mathcal{P} \text{-trdef} \) and \(\mathcal{P} \text{-trsur} \) are transfinite extensions of the functions \(\mathcal{P} \text{-def} \) and \(\mathcal{P} \text{-sur} \), respectively, which are discussed in [1]. It is also clear that if \(\mathcal{P} \subset \mathcal{P}_1 \), then \(\mathcal{P}_1 \text{-trdef} X \leq \mathcal{P}_2 \text{-trdef} X \) and \(\mathcal{P}_1 \text{-trsur} X \leq \mathcal{P}_2 \text{-trsur} X \).

Recall also that for the function \(\mathcal{K} \text{-def} \) is the well known compact deficiency \(\text{def} \). We will denote the transfinite extension \(\mathcal{K} \text{-trdef} \) of the compact deficiency \(\text{def} \) by \(\text{trdef} \).

Facts (cf. [1]). Let \(X \) be a separable metrizable space and \(\alpha \) an ordinal number. Then we have the following.
1. If \(\alpha = 0 \), then \(\mathcal{M}(0)-\text{ind} \ X \leq \mathcal{M}(0)-\text{def} \ X \leq \mathcal{M}(0)-\text{sur} \ X \) holds and the converse of the inequalities do not hold. (We notice that \(\mathcal{M}(0) = \mathcal{K} \) and so \(\mathcal{M}(0)-\text{ind} \ X = \text{cmp} \ X \) and \(\mathcal{M}(0)-\text{def} \ X = \text{def} \ X \).) We also notice that \(\mathcal{A}(0) = \{ \emptyset \} \) and hence \(\mathcal{A}(0)-\text{ind} \ X = \mathcal{A}(0)-\text{sur} \ X \) trivially holds and \(\mathcal{A}(0)-\text{def} \ X \) cannot be defined if \(X \neq \emptyset \).

2. If \(\alpha = 1 \), then \(\mathcal{A}(1)-\text{ind} \ X \leq \mathcal{A}(1)-\text{def} \ X = \mathcal{A}(1)-\text{sur} \ X \) and \(\mathcal{M}(1)-\text{ind} \ X = \mathcal{M}(1)-\text{def} \ X \leq \mathcal{M}(1)-\text{sur} \ X \) hold. The converses of the inequalities above do not hold. (We notice that \(\mathcal{A}(1) = \mathcal{S} \) and \(\mathcal{M}(1) = \mathcal{C}_0 \) and so \(\mathcal{M}(1)-\text{ind} \ X = \text{icd} \ X \).)

3. If \(\alpha \geq 2 \), then \(\mathcal{A}(\alpha)-\text{ind} \ X = \mathcal{A}(\alpha)-\text{def} \ X = \mathcal{A}(\alpha)-\text{sur} \ X \) and \(\mathcal{M}(\alpha)-\text{ind} \ X = \mathcal{M}(\alpha)-\text{def} \ X = \mathcal{M}(\alpha)-\text{sur} \ X \) hold.

M. Charalambous [2] showed that the equality \(\mathcal{M}(\alpha)-\text{def} \ X = \mathcal{M}(\alpha)-\text{ind} \ X \) can not be extended to the transfinite dimension for the case of \(\alpha = 1 \).

Example 1.2 (M. Charalambous, [2]) There exists a separable metrizable space \(C \) such that \(C-\text{trdef} \ C = \omega_0 \) and \(\text{trind} \ C = \omega_0 \). (We notice that \(\mathcal{C}_0-\text{trdef} \leq \text{trind} \ X \) holds for every separable metrizable space.)

Thus, it seems to be natural that we ask whether for each ordinal number \(\alpha < \omega_1 \) there exists a separable metrizable space \(X \) such that \(\mathcal{M}(\alpha)-\text{trdef} \ X = \omega_0 \) and \(\mathcal{M}(\alpha)-\text{trind} \ X = \infty \) or \(\mathcal{A}(\alpha)-\text{trdef} \ X = \omega_0 \) and \(\mathcal{A}(\alpha)-\text{trind} \ X = \infty \).

Connect with the questions above, we have the following.

Theorem 1.1 Let \(\alpha \) be any ordinal with \(1 \leq \alpha < \omega_1 \).

1. There exist separable metrizable spaces \(X_\alpha, Y_\alpha \) and \(Z_\alpha \) such that

 (a) \(f \ X_\alpha, f \ Y_\alpha, f \ Z_\alpha \leq \omega_0 \), where \(f \) is either \(\text{trdef} \) or \(\mathcal{K}-\text{trsurr} \);

 (b) \(\mathcal{M}(\alpha)-\text{trind} \ X_\alpha = -1 \) and \(\mathcal{A}(\alpha)-\text{trind} \ X_\alpha = \infty \) (and hence \(\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)-\text{trind} \ X_\alpha = \infty \));

 (c) \(\mathcal{A}(\alpha)-\text{trind} \ Y_\alpha = -1 \) and \(\mathcal{M}(\alpha)-\text{trind} \ Y_\alpha = \infty \) (and hence \(\mathcal{A}(\alpha) \cap \mathcal{M}(\alpha)-\text{trind} \ Y_\alpha = \infty \));

 (d) \(\mathcal{M}(\alpha)-\text{trind} \ Z_\alpha = \mathcal{A}(\alpha)-\text{trind} \ Z_\alpha = \infty \) and \(\mathcal{A}(\alpha + 1) \cap \mathcal{M}(\alpha + 1)-\text{trind} \ Z_\alpha = -1 \).
(2) There does not exist a separable metrizable space W_{α} such that $A(\alpha)$-trind $W_{\alpha} \neq \infty$, $\mathcal{M}(\alpha)$-trind $W_{\alpha} \neq \infty$ and $A(\alpha) \cap \mathcal{M}(\alpha)$-trind $W_{\alpha} = \infty$.

Theorem 1.2 There exists a separable metrizable space X with \mathcal{K}-trsurf $X = \omega_0$ such that for each $1 \leq \alpha < \omega_1$ we have B-trind $X = \infty$ and B-trdef $X = B$-trsurf $X = \omega_0$, where $B = A(\alpha), \mathcal{M}(\alpha)$ or $A(\alpha) \cap \mathcal{M}(\alpha)$.

Remark 1.1 By Theorems 1.1 and 1.2, it follows that the equalities $\mathcal{M}(\alpha)$-def $X = \mathcal{M}(\alpha)$-ind X and $A(\alpha)$-surf $X = A(\alpha)$-ind X can not be extended to transfinite-dimensional cases. For the spaces X_{α}, Y_{α} and Z_{α} in Theorem 1.1, we additionally have that

- $\mathcal{M}(\alpha)$-trdef $X_{\alpha} = A(\alpha)$-trsurf $Y_{\alpha} = -1$;
- $\mathcal{M}(\alpha)$-trdef $Y_{\alpha} = \mathcal{M}(\alpha)$-trdef $Z_{\alpha} = A(\alpha)$-trsurf $X_{\alpha} = A(\alpha)$-trsurf $Z_{\alpha} = \omega_0$.

We refer the readers to the books [1], [3] and [7] for the dimensions modulo classes, dimension theory and the theory of Borel sets, respectively.

2 Outline of proofs.

All classes of topological spaces considered here are additionally assumed to be finitely additive. We will follow some idea of E. Pol [5]. Let \mathcal{P} be a class of topological spaces. A space X is said to have the property $(*)_{\mathcal{P}}$ if for every sequence $\{(A_i, B_i)\}_{i=1}^{\infty}$ of pairs of disjoint compact subsets of X there exist partitions L_i between A_i and B_i in X and an integer N such that $\cap_{i=1}^{N} L_i \in \mathcal{P}$.

It is evident that the property $(*)_{\mathcal{P}}$ is closed hereditary.

We have two propositions on the property $(*)_{\mathcal{P}}$.

Proposition 2.1 If a space X is covered by a finite family of closed sets such that each element of this cover possesses property $(*)_{\mathcal{P}}$ then X also possesses this property.

Proposition 2.2 Let X be a space. If \mathcal{P}-trind $X \neq \infty$ then X possesses property $(*)_{\mathcal{P}}$.
Let $\mathbb{I}^\infty = \{(x_i) : 0 \leq x_i \leq 1, i = 1, 2, \ldots \}$ be the Hilbert cube and $Z = \{0, \frac{1}{2}, \frac{1}{3}, \ldots \}$ a subspace of the unit interval \mathbb{I}. For each $n \geq 1$ we denote the subset \{(x_i) \in \mathbb{I}^\infty : x_j = 0 \text{ for } j \geq n + 1 \} of \mathbb{I}^∞ by \mathbb{I}^n. For each $n \geq 1$ and each $i = 1, \ldots, n$, we put
$$A_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^\infty : x_i = 0 \}, \quad B_i^n = \{(x_i) \in \mathbb{I}^n \subset \mathbb{I}^\infty : x_i = 1 \}.$$ Choose for each $n \geq 1$ a subset E_n of \mathbb{I}^n and put
$$X = (\{0\} \times \mathbb{I}^\infty) \cup \left(\bigcup_{n=1}^{\infty} \left\{ \frac{1}{n} \right\} \times E_n \right). \quad (1)$$

Furthermore, we put $Y = (\{0\} \times \mathbb{I}^\infty) \cup \left(\bigcup_{n=1}^{\infty} \left\{ \frac{1}{n} \right\} \times \mathbb{I}^n \right)$. It is clear that $X \subset Y \subset Z \times \mathbb{I}^\infty$, Y is compact, and $Y \setminus X$ is a subspace of the topological sum $\oplus_{n=1}^{\infty} \mathbb{I}^n$. Thus, trind $(Y \setminus X) \leq \omega_0$. Observe also that trind $(X \setminus (\{0\} \times \mathbb{I}^\infty)) \leq \omega_0$. Hence
$$\text{trind} X \leq \omega_0 \text{ and } \mathcal{K}\text{-trsurf} X \leq \omega_0. \quad (2)$$

Lemma 2.1 If for each $m \geq 1$ there exists an integer $k(m) \geq m + 1$ such that for any $n \geq k(m)$ and any partition L_i^n between A_i^n and B_i^n in \mathbb{I}^n, $i \leq m$, we have $E_n \cap \bigcap_{i=1}^{N} L_i^n \not\in \mathcal{P}$, then \mathcal{P}-trind $X = \infty$.

Proof. By Proposition 2.2, it suffices to show that X does not have the property $(*)_\mathcal{P}$. For each $i = 1, 2, \ldots$ let L_i be a partition between compact sets $A_i = \{(0, (x_j)) \in (0, \mathbb{I}^\infty) \cap \mathbb{I}^\infty : x_i = 0 \}$ and $B_i = \{(0, (x_j)) \in (0, \mathbb{I}^\infty) \cap \mathbb{I}^\infty : x_i = 1 \}$. We shall show that $\cap_{i=1}^{N} L_i \not\in \mathcal{P}$ for every natural number N. Let N be a natural number. For each $i \geq 1$ let us consider a partition L_i between A_i and B_i in Y such that $L_i = L_i \cap X$. Note that for every i there exists a natural number $n_i \geq 2$ such that for any $n \geq n_i$ $L_i^n = L_i \cap (\{1/\} \times \mathbb{I}^n)$ is a partition between $\{1/\} \times A_i^n$ and $\{1/\} \times B_i^n$ in \mathbb{I}^∞. Let n a fixed integer with $n \geq \max\{n_1, \ldots, n_N, k(N)\}$. Then $C = (\cap_{i=1}^{N} L_i^n) \cap (\{1/\} \times E_n) = (\cap_{i=1}^{N} L_i) \cap (\{1/\} \times E_n)$ is a closed subset of $\cap_{i=1}^{N} L_i$, and $C \not\in \mathcal{P}$ by the assumption. So $\cap_{i=1}^{N} L_i \not\in \mathcal{P}$.

We shall also use the following.

Lemma 2.2 ([8, Lemma 5.2]) Let L_{ij} be partitions between the opposite faces A_i^n and B_i^n in \mathbb{I}^n, where $1 \leq i_1 < i_2 < \cdots < i_p \leq n$ and $1 \leq p < n$. Then for any $k \neq j$, $j = 1, \ldots, p$, there is a continuum $C \subset \cap_{j=1}^{p} L_{ij}$ meeting the faces A_k^n and B_k^n.
Lemma 2.3 Let \(\alpha \) be an ordinal number with \(1 \leq \alpha < \omega_1 \). Then there exist subsets \(Q_\alpha, P_\alpha \) and \(D_\alpha \) of \(\mathbb{I} \) such that

1. \(Q_\alpha \in A(\alpha) - \mathcal{M}(\alpha) \),
2. \(P_\alpha \in \mathcal{M}(\alpha) - A(\alpha) \),
3. \(D_\alpha \in A(\alpha + 1) \cap \mathcal{M}(\alpha + 1) - (A(\alpha) \cup \mathcal{M}(\alpha)) \).

Proof of Theorem 1.1. (1) We shall prove for \(Y_\alpha \) only. We put

\[
Y_\alpha = ([0] \times \mathbb{I}^\infty) \cup \left(\bigcup_{n=2}^{\infty} \left(\frac{1}{n} \times \pi_{n}^{-1}(Q_\alpha) \right) \right),
\]

where \(Q_\alpha \) is the subspace \(\mathbb{I} \) described in Lemma 2.3 and \(\pi_{n} : \mathbb{I}^n \to \mathbb{I} \) be the projection onto the \(n \)-th factor. By the construction of \(Y_\alpha \), it is clear that \(\mathcal{M}(\alpha) - \text{trind} Y_\alpha \leq \text{trind} Y_\alpha \leq \omega_0 \), and \(\mathcal{M}(\alpha) - \text{trsur} Y_\alpha \leq \omega_0 \). Since the absolute Borel classes are preserved under perfect preimages, it follows that \(\pi_{n}^{-1}(Q_\alpha) \in A(\alpha) \). Thus, \(Y_\alpha \in A(\alpha) \) and hence \(A(\alpha) - \text{trind} Y_\alpha = -1 \). Now, it suffices to show that \(\mathcal{M}(\alpha) - \text{trind} Y_\alpha = \infty \).

(2) The second part of Theorem 1.1 is a direct consequence of the following proposition.

Proposition 2.3 Let \(X \) be a separable metrizable space with \(A(\alpha) - \text{trind} X \leq \mu_1 \) and \(\mathcal{M}(\alpha) - \text{trind} X \leq \mu_2 \). Then

\[
A(\alpha) \cap \mathcal{M}(\alpha) - \text{trind} X = \begin{cases} \mu_1 + \mu_2 + 1, & \text{if } \lambda(\mu_1) = \lambda(\mu_2), \\ \mu_1, & \text{if } \lambda(\mu_1) > \lambda(\mu_2). \end{cases}
\]

Proof. The proposition can be proved by a standard transfinite induction on \(\nu = \max\{\mu_1, \mu_2\} \).
Question 2.1 Does there exist a separable metrizable space X_α such that $A(\alpha) \cap \mathcal{M}(\alpha)$-trind $X_\alpha > \max \{A(\alpha)$-trind $X_\alpha, \mathcal{M}(\alpha)$-trind $X_\alpha\}$ for each ordinal number α? In particular, does there exist a separable metrizable space X such that $C_0 \cap \mathcal{S}$-ind $X = 1$ and C_0-ind $X = \mathcal{S}$-trind $X = 0$?

Recall from M.G. Charalambous ([2]) that we call a subset A of a space X a Bernstein set if $|A \cap B| = |(X \setminus A) \cap B| = c$ for every uncountable Borel set B of X, where c denotes the cardinality of the continuum. It is known that every uncountable completely metrizable space X has countably many disjoint Bernstein sets. We notice that $A \notin \mathcal{A}$ for every Bernstein set A of an uncountable completely metrizable space X.

Proof of Theorem 1.2. Let F be a Bernstein set of \mathbb{I}. We put $X = (\{0\} \times \mathbb{I}^\infty) \cup (\bigcup_{n=1}^\infty \{\frac{1}{n}\} \times \pi_n^{-1}(F))$. Then, we can show that X is the desired space by an argument similar to Theorem 1.1.

Connect with Theorem 1.1, we may ask the following question.

Question 2.2 For each ordinal numbers α and β with $1 \leq \alpha < \omega_1$ and $0 \leq \beta < \omega_1$ do there exist separable metrizable spaces $X_{\alpha,\beta}$ and $Y_{\alpha,\beta}$ which satisfy the following conditions?

1. $A(\alpha)$-trind $X_{\alpha,\beta} = \beta$,
2. $\mathcal{M}(\alpha)$-trind $Y_{\alpha,\beta} = \beta$, and
3. $\mathcal{M}(\alpha)$-trind $X_{\alpha,\beta} = A(\alpha)$-trind $Y_{\alpha,\beta} = -1$.

References

(V.A. Chatyrko)
Department of Mathematics, Linköping University, 581 83 Linkeping, Sweden.
vitja@mai.liu.se

(Y. Hattori)
Department of Mathematics, Shimane University, Matsue, Shimane, 690-8504 Japan
hattori@riko.shimane-u.ac.jp