GROUPS OF MEASURE-PRESERVING HOMEOMORPHISMS AND VOLUME-PRESERVING DIFFEOMORPHISMS OF NONCOMPACT MANIFOLDS AND MASS FLOW TOWARD ENDS

京都工芸繊維大学 矢ヶ崎 達彦 (TATSUHIKO YAGASAKI) KYOTO INSTITUTE OF TECHNOLOGY

1. Spaces of measures and groups of measure-preserving homeomorphisms

Suppose M is a connected n-manifold possibly with boundary. The symbol $\mathcal{B}(M)$ denotes the σ -algebra of Borel subsets of M.

Definition 1.1. A Radon measure on M is a Borel measure μ on M such that $\mu(K) < \infty$ for any compact subset K of M. A Radon measure μ is said to be good if

- (i) $\mu(p) = 0$ for any point p of M and
- (ii) $\mu(U) > 0$ for any nonempty open subset U of M.

Definition 1.2.

- (1) $\mathcal{M}_q^{\partial}(M)$ denotes the set of good Radon measures on M wth $\mu(\partial M) = 0$.
- (2) The weak topology w on $\mathcal{M}_q^{\partial}(M)$ is the weakest topology such that the function

$$\Phi_f: \mathcal{M}_g^{m{\partial}}(M)
ightarrow \mathbb{R}: \; \Phi_f(\mu) = \int_M f \, d\mu$$

is continuous for any continuous function $f: M \to \mathbb{R}$ with compact support.

Let $\mathcal{H}(M)$ denote the group of homeomorphisms of M with the compact-open topology. Any subgroup \mathcal{G} of $\mathcal{H}(M)$ is equipped with the subspace topology. \mathcal{G}_0 and \mathcal{G}_1 denote the connected component and the path-component of the identity in \mathcal{G} .

Definition 1.3. Suppose μ is a good Radon measures on M. The subgroups $\mathcal{H}(M;\mu) \subset \mathcal{H}(M;\mu\text{-reg}) \subset \mathcal{H}(M)$ are defined as follows:

(1) $h \in \mathcal{H}(M)$ is μ -preserving if $\mu(h(B)) = \mu(B)$ for any $B \in \mathcal{B}(M)$. $\mathcal{H}(M;\mu)$ denotes the subgroup of $\mathcal{H}(M)$ consisting of μ -preserving homeomorphisms of M.

(2) $h \in \mathcal{H}(M)$ is μ -biregular if " $\mu(h(B)) = 0$ iff $\mu(B) = 0$ for any $B \in \mathcal{B}(M)$ ". $\mathcal{H}(M; \mu\text{-reg})$ denotes the subgroup of $\mathcal{H}(M)$ consisting of μ -biregular homeomorphisms of M.

The topological group $\mathcal{H}(M)$ acts continuously on the space $\mathcal{M}_g^{\partial}(M)_w$ by $h \cdot \mu = h_*\mu$, where $h_*\mu \in \mathcal{M}_g^{\partial}(M)$ is defined by $(h_*\mu)(B) = \mu(h^{-1}(B))$ $(B \in \mathcal{B}(M))$. The subgroup $\mathcal{H}(M;\mu)$ coincides with the stabilizer of μ under this action.

We also use the following terminologies.

Definition 1.4. Suppose X is a space and A is a subspace of X.

- (1) A is a SDR (strong deformation retract) of X if there exists a homotopy $\varphi_t: X \to X$ such that $\varphi_0 = id_X$, $\varphi_1(X) = A$ and $\varphi_t|_A = id_A$ $(0 \le t \le 1)$.
- (2) A is HD (homotopy dense) in X if there exists a homotopy $\varphi_t : X \to X$ such that $\varphi_0 = id_X$ and $\varphi_t(X) \subset A$ (0 < t \le 1).

In both cases the inclusion map $A \subset X$ is a homotopy equivalence with a homotopy inverse $\varphi_1: X \to A$.

2. Compact case — Fathi's results

Suppose M is a compact connected n-manifold. The von Neumann-Oxtoby-Ulam theorem [10] asserts that the above action is essentially transitive.

Theorem 2.1. (von Neumann-Oxtoby-Ulam) Suppose M is compact and μ , $\nu \in \mathcal{M}_g^{\partial}(M)$ with $\nu(M) = \mu(M)$. Then there exists $h \in \mathcal{H}_{\partial}(M)_0$ such that $h_*\mu = \nu$.

A parametrized version of this theorem was obtained by A. Fathi [6]. Let $\mu \in \mathcal{M}_g^{\partial}(M)$. We need to restrict ourselves to the following subspace of $\mathcal{M}_g^{\partial}(M)$.

Definition 2.1. $\mathcal{M}_g^{\partial}(M; \mu\text{-reg})$ denotes the subset of $\mathcal{M}_g^{\partial}(M)$ consisting of $\nu \in \mathcal{M}_g^{\partial}(M)$ which has the same total mass and the same null sets as μ .

The action of $\mathcal{H}(M)$ on $\mathcal{M}_g^{\partial}(M)$ restricts to the action of the subgroup $\mathcal{H}(M; \mu\text{-reg})$ on the subspace $\mathcal{M}_g^{\partial}(M; \mu\text{-reg})_w$. We obtain the orbit map

$$\pi: \mathcal{H}(M; \mu\text{-reg}) \longrightarrow \mathcal{M}_{g}^{\partial}(M; \mu\text{-reg})_{w} : \pi(h) = h_{*}\mu.$$

Theorem 2.2. (A. Fathi [6], 1980) Suppose M is a compact connected n-manifold.

- (1) The orbit map π admits a section $\sigma: \mathcal{M}_g^{\partial}(M; \mu\text{-reg})_w \to \mathcal{H}_{\partial}(M; \mu\text{-reg})_1 \subset \mathcal{H}(M; \mu\text{-reg}).$
- (2) $\mathcal{H}(M; \mu\text{-reg}) \cong \mathcal{H}(M; \mu) \times \mathcal{M}_g^{\partial}(M; \mu\text{-reg})_w$

(3)
$$SDR$$
 $Weak HD$ $\mathcal{H}(M;\mu) \subset \mathcal{H}(M,\mu\text{-reg}) \subset \mathcal{H}(M)$

(4)
$$n=2$$

$$SDR \atop SDR \atop \mathcal{H}(M;\mu) \subset \mathcal{H}(M,\mu\text{-reg}) \subset \mathcal{H}(M)$$

$$ANR \qquad ANR \qquad ANR$$

Corollary 2.1. (Yagasaki [13]) $\mathcal{H}(M;\mu)$ is an ℓ_2 -manifold.

Corollary 2.1 easily follows from the next topological characterization of ℓ_2 -manifold.

Theorem 2.3. (T. Dobrowolski - H. Toruńczyk [5])

A topological group G is a ℓ_2 -manifold iff G is a separable, non locally compact, completely metrizable ANR.

3. Non-Compact Case — R. Berlanga's results

Suppose M is a noncompact connected n-manifold possibly with boundary. First we introduce some notations on the ends of M.

Definition 3.1.

- (1) An end e of M is a function which assigns to each compact subset K of M a connected component e(K) of M-K such that $e(K_1) \supset e(K_2)$ if $K_1 \subset K_2$.
- (2) E(M) denotes the space of ends of M. $\overline{M} = M \cup E(M)$ denotes the end compactification of M.
- (3) The topology of \overline{M} is described by the following conditions:
 - (i) M is an open subspace of \overline{M} .
 - (ii) Fundamental open neighborhoods of $e \in E(M)$ is given by

$$N(e,K) = e(K) \cup \{e' \in E(M) \mid e'(K) = e(K)\}$$
 $(K \subset M : compact)$

 \overline{M} is a compact metrizable space and E(M) is a 0-dim compact subset of \overline{M} . Let $\mu \in \mathcal{M}_g^{\partial}(M)$.

Definition 3.2.

- (1) $e \in E(M)$ is μ -finite if $\mu(e(K)) < \infty$ for some compact subset K of M (i.e., e has a neighborhood with finite μ -mass).
- (2) $E_f(M; \mu)$ denotes the subspace of μ -finite ends of M.

The von Neumann-Oxtoby-Ulam theorem is extended to the non-compact case in the following form.

Theorem 3.1. (R. Berlanga [1], 1983)

Suppose $\mu, \nu \in \mathcal{M}_g^{\partial}(M)$ has same total mass and same finite ends. Then there exists $h \in \mathcal{H}_{\partial}(M)_1$ with $h_*\mu = \nu$.

A parametrized version of this theorem is obtained recently by R. Berlanga [3]. Simple examples show that the weak topology w on $\mathcal{M}_g^{\partial}(M; \mu\text{-reg})$ is not enough to extend the section theorem (Theorem 2.2 (1)) to the noncompact case. R. Berlanga introduces a little stronger topology called the finite-end weak topology, which turns out to be the correct topology for this purpose.

Definition 3.3. (Finite-end weak topology) Let $\mu \in \mathcal{M}_{\sigma}^{\partial}(M)$.

- (1) $\mathcal{M}_g^{\partial}(M; \mu\text{-end-reg})$ denotes the subset of $\nu \in \mathcal{M}_g^{\partial}(M)$ which has the same total mass, same null sets and same finite ends as μ .
- (2) Consider the inclusions $M \subset M \cup E_f(M; \mu) \subset \overline{M}$.

The map ι induces the natural map

$$\iota_*: \mathcal{M}_q^{\partial}(M; \mu\text{-end-reg}) \longrightarrow \mathcal{M}_q^{\partial}(M \cup E_f(M; \mu))_w : \nu \longmapsto \overline{\nu} = \iota_* \nu$$

(3) The finite-end weak topology ew on $\mathcal{M}_g^{\partial}(M; \mu\text{-end-reg})$ is the weakest topology such that ι_* is continuous.

The space $\mathcal{M}_g^{\partial}(M; \mu\text{-end-reg})_{ew}$ admits the contraction $\varphi_t(\nu) = (1-t)\nu + t\mu \quad (0 \le t \le 1)$.

Definition 3.4. $\mathcal{H}(M; \mu\text{-end-reg})$ denotes the subgroup of $\mathcal{H}(M)$ consisting of $h \in \mathcal{H}(M)$ which preserves μ -null sets and μ -finite ends of M.

The group $\mathcal{H}(M; \mu\text{-end-reg})$ acts continuously on $\mathcal{M}_g^{\partial}(M; \mu\text{-end-reg})_{ew}$ by $h \cdot \nu = h_* \nu$ and we obtain the orbit map

$$\pi: \mathcal{H}(M; \mu\text{-end-reg}) \longrightarrow \mathcal{M}_{g}^{\partial}(M; \mu\text{-end-reg})_{ew} : \pi(h) = h_{*}\mu.$$

Theorem 3.2. (R. Berlanga [3], 2003)

(1) The orbit map π has a section

$$\sigma: \mathcal{M}_q^{\partial}(M; \mu\text{-end-reg})_{ew} \longrightarrow \mathcal{H}_{\partial}(M; \mu\text{-end-reg})_1 \subset \mathcal{H}(M; \mu\text{-end-reg}).$$

- (2) $\mathcal{H}(M; \mu\text{-end-reg}) \cong \mathcal{H}(M; \mu) \times \mathcal{M}_g^{\partial}(M; \mu\text{-end-reg})_{ew}$
- (3) SDR $\mathcal{H}(M;\mu) \subset \mathcal{H}(M,\mu\text{-end-reg}) \subset \mathcal{H}(M)$

The relation between the two groups $\mathcal{H}(M, \mu\text{-end-reg}) \subset \mathcal{H}(M)$ is not known for $n \geq 3$. In n = 2 we can apply our results on homeomorphism groups of noncompact 2-manifolds [11, 12] to obtain the following conclusions.

Theorem 3.3. (Yagasaki [13])

$$n=2$$
 $\begin{array}{c|c} & \mathrm{SDR} & & & \\ & & \mathrm{HD} & & \\ \mathcal{H}(M;\mu)_0 \ \subset \ \mathcal{H}(M,\mu\text{-end-reg})_0 \ \subset \ \mathcal{H}(M)_0 \\ \ell_2\text{-MFD} & \mathrm{ANR} & \mathrm{ANR} \end{array}$

HD

The main statement $\mathcal{H}(M, \mu\text{-end-reg})_0 \subset \mathcal{H}(M)_0$ can be derived by the following arguments. When M is a PL n-manifold, $\mathcal{H}^{\text{PL}}(M)$ denotes the subgroup of $\mathcal{H}(M)$ consisting of PL-homeomorphisms of M.

- (1) Suppose M is a noncompact connected 2-manifold. Then
 - (i) M admits a PL-structure.
 - (ii) $\mathcal{H}^{\text{PL}}(M)_0$ is HD in $\mathcal{H}(M)_0$ for any PL-structure on M [12], cf. [7].
- (2) Suppose M is a PL n-manifold and $\mu \in \mathcal{M}_g^{\partial}(M)$. Then the PL-structure on M can be isotoped to a new PL-structure so that $\mathcal{H}^{\mathrm{PL}}(M) \subset \mathcal{H}(M; \mu\text{-reg})$ [15].
 - 4. Mass flow toward ends on non-compact n-manifolds

Suppose M is a noncompact connected n-manifold and $\mu \in \mathcal{M}_g^{\partial}(M)$.

4.1. Topological Vector Space $V_{\mu}(M)$.

First we define a topological vector space $V_{\mu}(M)$, which parametrizies mass flows toward ends by μ -preserving homeomorphisms.

Definition 4.1.

- (1) $\mathcal{B}_c(M) = \{ B \in \mathcal{B}(M) \mid \operatorname{Fr} B : \operatorname{Compact} \}$
- (2) W(M) denotes the space of all functions $a: \mathcal{B}_c(M) \to \mathbb{R}$.
 - (i) W(M) is a real vector space under the addition and the scalar product of real valued functions.
 - (ii) W(M) is equipped with the product topology,

i.e., the topology induced by the projections

$$\pi_C: W(M) \to \mathbb{R} : \pi_C(a) = a(C) \qquad (C \in \mathcal{B}_c(M)).$$

(3) $V(M) = \{a : \mathcal{B}_c(M) \to \mathbb{R} \mid (*)_1, (*)_2, (*)_3\}$

$$(*)_1$$
 $C, D \in \mathcal{B}_c(M), Cl(C-D), Cl(D-C) : compact $\implies a(C) = a(D)$$

$$(*)_2 \ C,D \in \mathcal{B}_c(M), \ C \cap D = \emptyset \implies a(C \cup D) = a(C) + a(D)$$

$$(*)_3 \ a(M) = 0$$

$$V_{\mu}(M) = \{ a \in V(M) \mid (*)_4 \}$$

$$(*)_4 \ C \in \mathcal{B}_c(M), \ \mu(C) < \infty \implies a(C) = 0$$

V(M) and $V_{\mu}(M)$ are linear subspaces of W(M), which are equipped with the subspace topology.

4.2. Mass flow homomorphism toward ends $J:\mathcal{H}_E(M,\mu) \to V_\mu(M)$.

Next we define a continuous group homomorphism $J: \mathcal{H}_E(M,\mu) \to V_{\mu}(M)$, which measures a mass moved toward ends by each $h \in \mathcal{H}_E(M,\mu)$. Let E = E(M). Each $h \in \mathcal{H}(M)$ has a unique extension $\overline{h} \in \mathcal{H}(\overline{M})$.

Definition 4.2.

(1)
$$\mathcal{H}_E(M,\mu) = \{ h \in \mathcal{H}(M,\mu) \mid \overline{h}|_E = id_E \}$$
 (a subgroup of $\mathcal{H}(M,\mu)$)

(2)
$$J: \mathcal{H}_E(M, \mu) \ni h \longmapsto J_h \in V_\mu(M)$$

$$J_h(C) = \mu(C - h(C)) - \mu(h(C) - C) \quad (C \in \mathcal{B}_c(M))$$

The group $\mathcal{H}_E(M,\mu)$ acts continously on $V_{\mu}(M)$ by $h \cdot a = J_h + a$ and the homomorphism $J: \mathcal{H}_E(M,\mu) \to V_{\mu}(M)$ coincides with the orbit map at $0 \in V_{\mu}(M)$.

Theorem 4.1. (Yagasaki [14])

- (1) The map J admits a section $s: V_{\mu}(M) \to \mathcal{H}_{\partial}(M,\mu)_1 \subset \mathcal{H}_E(M,\mu)$ (i.e., Js = id) with $s(0) = id_M$.
- (2) (i) $\mathcal{H}_E(M;\mu) \cong \operatorname{Ker} J \times V_{\mu}(M)$ (ii) $\operatorname{Ker} J \subset \mathcal{H}_E(M;\mu) : a SDR$

Ker J contains the subgroup $\mathcal{H}^c(M;\mu)$ of μ -preserving homeomorphisms with compact support. Our next aim is the study of relation between these groups.

5. Spaces of volume forms and

GROUPS OF VOLUME-PRESERVING DIFFEOMORPHISMS

Suppose M is a connected oriented C^{∞} n-manifold without boundary.

Definition 5.1.

- (1) $\mathcal{D}^+(M)$ deotes the group of orientation-preserving diffeomorphisms of M with the compact-open C^{∞} -topology.
- (2) For a positive volume form ω on M, $\mathcal{D}(M;\omega)$ denotes the subgroup of ω -preserving diffeomorphisms of M.
- (3) $\mathcal{V}^+(M)_w$ denotes the space of positive volume forms on M equipped with the weak C^{∞} topology.

For $m \in (0, \infty]$, $\mathcal{V}^+(M, m)_w = \{\mu \in \mathcal{V}^+(M) \mid \mu(M) = m\}$ (the weak C^{∞} topology). Each $\mu \in \mathcal{V}^+(M)$ determines a unique good Radon measure on M, which is denoted by the same symbol μ . This defines an inclusion $\mathcal{V}^+(M) \subset \mathcal{M}_g^{\partial}(M)$.

The topological group $\mathcal{D}^+(M)$ acts continuously on $\mathcal{V}^+(M)_w$ and $\mathcal{V}^+(M,m)_w$ by $h \cdot \mu = h_*\mu$ (= $(h^{-1})^*\mu$). The subgroup $\mathcal{D}(M;\omega)$ coincides with the stabilizer of ω under this action.

5.1. Compact case.

Suppose M is a compact connected oriented C^{∞} n-manifold without boundary. Moser's theorem [9] implies the transitivity of this action and its parametrized version.

Theorem 5.1. Suppose M is a compact connected oriented C^{∞} n-manifold.

- (1) (Transitivity) For any μ , $\nu \in \mathcal{V}^+(M,m)$ there exists $h \in \mathcal{D}(M)_1$ such that $h_*\mu = \nu$.
- (2) (Parametrized version) Let $\omega \in \mathcal{V}^+(M;m)$. Then the orbit map $\pi : \mathcal{D}^+(M) \to \mathcal{V}^+(M;m)_w$, $\pi(h) = h_*\omega$, admits a section $\sigma : \mathcal{V}^+(M;m)_w \longrightarrow \mathcal{D}(M)_1 \subset \mathcal{D}^+(M)$.

5.2. Non-compact case.

Suppose M is a non-compact connected C^{∞} n-manifold without boundary. Recall that E=E(M) is the space of ends of M and $\overline{M}=M\cup E(M)$ is the end compactification of M. Each $h\in\mathcal{D}(M)$ has a unique extension $\overline{h}\in\mathcal{H}(\overline{M})$. For $\mu\in\mathcal{V}^+(M)$, $E_f(M,\mu)$ denotes the subspace of E(M) consisting of μ -finite ends of M.

Definition 5.2. Suppose $F \subset E(M)$ is an open subset.

(1)
$$\mathcal{D}^+(M; F) = \{ h \in \mathcal{D}^+(M) \mid \overline{h}(F) = F \}$$
 (a subgroup of $\mathcal{D}^+(M)$)

(2)
$$\mathcal{V}^{+}(M; F) = \{ \mu \in \mathcal{V}^{+}(M) \mid E_{f}(M, \mu) = F \}$$

 $\mathcal{V}^{+}(M; m, F) = \mathcal{V}^{+}(M; m) \cap \mathcal{V}^{+}(M; F)$
 $\mathcal{M}_{a}^{\partial}(M; F) = \{ \mu \in \mathcal{M}_{a}^{\partial}(M) \mid E_{f}(M, \mu) = F \}$

(3) (Finite-end weak topology)

The inclusion $M \subset M \cup F \subset \overline{M}$ induces the injection

$$\iota_{\#}: \mathcal{V}^{+}(M; m, F) \subset \mathcal{M}_{g}^{\partial}(M; F) \xrightarrow{\iota_{*}} \mathcal{M}_{g}(M \cup F)_{w}.$$
 $\nu \longmapsto \overline{\nu} = \iota_{*}\nu$

The finite-end weak topology ew on $\mathcal{V}^+(M; m, F)$ is the weakest topology such that the maps $\iota_\#$ and $id: \mathcal{V}^+(M; m, F) \to \mathcal{V}^+(M; m, F)_w$ are continuous.

The group $\mathcal{D}^+(M; F)$ acts continuously on $\mathcal{V}^+(M; m, F)_{ew}$ by $h \cdot \mu = h_* \mu$ and the stabilizer of $\omega \in \mathcal{V}^+(M; m, F)_w$ coincides with the subgroup $\mathcal{D}(M; \omega)$. Transitivity of this action was verified by R. E. Greene - K. Shiohama [8].

Theorem 5.2. (R. E. Greene - K. Shiohama [8])

For any μ , $\nu \in \mathcal{V}^+(M; m, F)$ there exists $h \in \mathcal{D}(M)_1$ such that $h_*\mu = \nu$.

A C^{∞} -modification of R. Berlanga's argument [3] leads to the parametrized version of this theorem.

Theorem 5.3. (Yagasaki [15])

Suppose P is a paracompact Hausdorff space and $\mu, \nu : P \to \mathcal{V}^+(M; F)_{ew}$ are maps such that $\mu_p(M) = \nu_p(M)$ $(p \in P)$. Then there exists a map $h : P \to \mathcal{D}(M)_1$ such that

(i) $h_{p_*}\mu_p = \nu_p$ $(p \in P)$ and (ii) if $p \in P$ and $\mu_p = \nu_p$, then $h_p = id_M$.

Corollary 5.1. Let $\omega \in \mathcal{V}^+(M; m, F)$.

- (1) The orbit map $\pi: \mathcal{D}^+(M; F) \longrightarrow \mathcal{V}^+(M; m, F)_{ew}$, $\pi(h) = h_*\omega$, admits a section $\sigma: \mathcal{V}^+(M; m, F)_{ew} \to \mathcal{D}(M)_1 \subset \mathcal{D}^+(M; F)$.
- (2) (i) $\mathcal{D}^+(M;F) \cong \mathcal{V}^+(M;m,F)_{ew} \times \mathcal{D}(M;\omega)$ (ii) $\mathcal{D}(M;\omega) \subset \mathcal{D}^+(M;F)$: a SDR

5.3. Mass flow toward ends on non-compact C^{∞} n-manifolds.

Suppose M is a non-compact connected C^{∞} n-manifold without boundary and $\omega \in \mathcal{V}^+(M)$. The topological vector space V(M), $V_{\omega}(M)$ and a continuous group homomorphism $J^{\omega}: \mathcal{D}_E(M,\omega) \to V_{\omega}(M)$ are defined as in § 4.1 and § 4.2. For $h \in \mathcal{D}_E(M;\omega)$

$$J_h^\omega:\mathcal{B}_c(M) o\mathbb{R}:\ J_h^\omega(C)=\omega(C-h(C))-\omega(h(C)-C)\ (C\in\mathcal{B}_c(M)).$$

The group $\mathcal{D}_E(M,\omega)$ acts continuously on $V_{\omega}(M)$ by

$$h \cdot a = J_h^{\omega} + a$$
 $(h \in \mathcal{D}_E(M, \omega), a \in V_{\omega}(M)).$

The map $J^{\omega}: \mathcal{D}_{E}(M,\omega) \to V_{\omega}(M)$ coincides with the orbit map at $0 \in V_{\omega}(M)$.

Definition 5.3. For two maps $\mu, \nu: P \to \mathcal{V}^+(M)$ we write as $\mu \sim \nu$ if for any $p \in P$ there exists a neighborhood U of p in P and a compact subset $K \subset M$ such that $\mu_q = \nu_q$ on M - K for any $q \in U$.

Theorem 5.4. Suppose P is a paracompact Hausdorff space and $\mu, \nu : P \to \mathcal{V}^+(M)_w$, $a: P \to V(M)$ are maps such that $\mu \sim \nu$, $(\mu - \nu)(M) = 0$ and $a_p \in V_{\mu_p}(M)$ $(p \in P)$. Then there exists a map $h: P \to \mathcal{D}(M)_1$ such that

(i) $h_{p_*}\mu_p = \nu_p \ (p \in P)$ and (ii) if $p \in P$ and $\mu_p = \nu_p$, then $J_{h_p}^{\mu_p} = a_p$.

Corollary 5.2. Let $\omega \in \mathcal{V}^+(M)$.

- (1) The map $J^{\omega}: \mathcal{D}_{E}(M,\omega) \to V_{\omega}(M)$ admits a section $s: V_{\omega}(M) \to \mathcal{D}(M,\omega)_{1} \subset \mathcal{D}_{E}(M,\omega)$ $(J^{\omega}s = id_{V_{\omega}(M)})$ with $s(0) = id_{M}$.
- (2) (i) $\mathcal{D}_E(M;\omega) \cong \operatorname{Ker} J^{\omega} \times V_{\omega}(M)$ (ii) $\operatorname{Ker} J^{\omega} \subset \mathcal{D}_E(M;\omega) : a SDR$

Our next aim is to study the relation between two groups $\mathcal{D}^c(M;\omega)\subset \operatorname{Ker} J^\omega$.

REFERENCES

- [1] R. Berlanga and D. B. A. Epstein, Measures on sigma-compact manifolds and their equivalence under homeomorphism, J. London Math. Soc. (2) 27 (1983) 63 74.
- [2] R. Berlanga, A mapping theorem for topological sigma-compact manifolds, Compositio Math., 63 (1987) 209 216.
- [3] R. Berlanga, Groups of measure-preserving homeomorphisms as deformation retracts, J. London Math. Soc. (2) 68 (2003) 241 254.
- [4] M. Brown, A mapping theorem for untriangulated manifolds, Topology of 3-manifolds and related topics (ed. M. K. Fort), Prentice Hall, Englewood Cliffs (1963) pp. 92 94.
- [5] T. Dobrowolski and H. Toruńczyk, Separable complete ANR's admitting a group structure are Hilbert manifolds, Top. Appl. 12 (1981) 229-235.
- [6] A. Fathi, Structures of the group of homeomorphisms preserving a good measure on a compact manifold, Ann. scient. Ec. Norm. Sup. (4) 13 (1980) 45 - 93.
- [7] R. Geoghegan and W. E. Haver, On the space of piecewise linear homeomorphisms of a manifold, Proc. of Amer. Math. Soc. 55 (1976) 145-151.
- [8] R. E. Greene and K. Shiohama, Diffeomorphisms and volume-preserving embeddings of noncompact manifolds, Trans. Amer. Math. Soc., 255 (1979) 403 414.
- [9] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc., 120 (1965) 286 294.
- [10] J. Oxtoby and S. Ulam, Measure preserving homeomorphisms and metrical transitivity, Ann. of Math., 42 (1941) 874 - 920.
- [11] T. Yagasaki, Homotopy types of homeomorphism groups of noncompact 2-manifolds, Topology Appl. 108 (2000) 123-136.
- [12] T. Yagasaki, The groups of PL and Lipschitz homeomorphisms of noncompact 2-manifolds, Bulletin of the Polish Academy of Sciences, Mathematics 51(4) (2003) 445-466.
- [13] T. Yagasaki, Groups of measure-preserving homeomorphisms of noncompact 2-manifolds, to appear in Topology Appl. (arXiv math.GT/0507328).
- [14] T. Yagasaki, Measure-preserving homeomorphisms of noncompact manifolds and mass flow toward ends, arXiv math.GT/0512231.
- [15] T. Yagasaki, Groups of volume-preserving diffeomorphisms of noncompact manifolds and mass flow toward ends, preprint.

Tatsuhiko Yagasaki

Division of Mathematics, Department of Comprehensive Science, Kyoto Institute of Technology, Matsugasaki, Sakyoku, Kyoto 606-8585, Japan

E-mail address: yagasaki@kit.ac.jp