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GROUPS OF MEASURE-PRESERVING HOMEOMORPHISMS AND
VOLUME-PRESERVING DIFFEOMORPHISMS OF NONCOMPACT
MANIFOLDS AND MASS FLOW TOWARD ENDS
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1. SPACES OF MEASURES AND GROUPS OF MEASURE-PRESERVING HOMEOMORPHISMS

Suppose M is a connected n-manifold possibly with boundary. The symbol B(M) de-
notes the o-algebra of Borel subsets of M.

Definition 1.1. A Radon measure on M is a Borel measure y on M such that u(K) < oo
for any compact subset K of M. A Radon measure y is said to be good if

(i) u(p) = 0 for any point p of M and
(i) w(U) > 0 for any nonempty open subset U of M.

Definition 1.2.
(1) M(M) denotes the set of good Radon measures on M wth p(0M) = 0.
(2) The weak topology w on MZ(M) is the weakest topology such that the function

®p: MOU(M) > R: Qf(u)=/A4fdu

is continuous for any continuous function f : M — R with compact support.

Let H(M) denote the group of homeomorphisms of M with the compact-open topology.
Any subgroup G of H(M) is equipped with the subspace topology. G, and G; denote the

connected component and the path-component of the identity in G.

Definition 1.3. Suppose y is a good Radon measures on M. The subgroups H(M;u) C
H(M; p-reg) C H(M) are defined as follows:
(1) h € H(M) is p-preserving if u(h(B)) = u(B) for any B € B(M).
H(M; u) denotes the subgroup of H(M) consisting of u-preserving homeomor-
phisms of M.



(2) h € H(M) is p-biregular if “u(h(B)) = 0 iff u(B) = 0 for any B € B(M)”.
‘H(M; p-reg) denotes the subgroup of H(M) consisting of p-biregular homeomor-
phisms of M.

The topological group H(M) acts continuously on the space Mg(M Jw bY b= hop,
where h,p € MZ(M) is defined by (h.u)(B) = u(h™}(B)) (B € B(M)). The subgroup
‘H(M; u) coincides with the stabilizer of u under this action.

We also use the following terminologies.

Definition 1.4. Suppose X is a space and A is a subspace of X.

(1) Aisa SDR (strong deformation retract) of X if there exists a homotopy ¢; : X = X
such that o = idx, p1(X) = A and ;|4 =ids (0 <t < 1).

(2) Ais HD (homotopy dense) in X if there exists a homotopy ¢ : X — X such that
wo=1dx and p(X) CA (0 <t <1). '

In both cases the inclusion map A C X is a homotopy equivalence with a homotopy
inverse ¢; : X — A.

2. COMPACT CASE — FATHI’S RESULTS

Suppose M is a compact connected n-manifold. The von Neumann-Oxtoby-Ulam theo-

rem [10] asserts that the above action is essentially transitive.

Theorem 2.1. (von Neumann-Oxtoby-Ulam) Suppose M is compact and p, v € M3(M)
with V(M) = u(M). Then there ezists h € Ho(M)y such that h.p = v.

A parametrized version of this theorem was obtained by A. Fathi [6]. Let u € M2(M).
We need to restrict ourselves to the following subspace of M3(M).

Definition 2.1. M8(M; y-reg) denotes the subset of M3(M) consisting of v € ME(M)

which has the same total mass and the same null sets as u.

The action of H(M) on M?(M ) restricts to the action of the subgroup H(M; u-reg) on
the subspace MZ(M; p-reg),,. We obtain the orbit map

7 H(M; preg) — MO(M; preg)y = m(h) = hap
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Theorem 2.2. (A. Fathi [6], 1980) Suppose M is a compact connected n-manifold.
(1) The orbit map m admits a section o : ME(M; p-reg), — Ho(M; pu-reg)y C H(M; p-reg).
(2) H(M;p-reg) = H(M;p) x MI(M; p-reg)w

(3) SDR Weak HD
H(M;p) < H(M,p-reg) C H(M)
SDR
(4) n=2 ‘ I
SDR HD
H(M;p) C  H(M,p-reg) C H(M)
ANR ANR ANR

Corollary 2.1. (Yagasaki [13]) H(M; p) is an £y-manifold.
Corollary 2.1 easily follows from the next topological characterization of ¢;-manifold.

Theorem 2.3. (T.Dobrowolski - H. Toruiiczyk [5])
A topological group G 1is a £o-manifold iff G is a separable, non locally compact, completely
metrizable ANR.

3. NoN-CoMPACT CASE — R. BERLANGA’S RESULTS

Suppose M is a noncompact connected n-manifold possibly with boundary. First we

introduce some notations on the ends of M.

Definition 3.1.

(1) An end e of M is a function which assigns to each compact subset K of M a

connected component e(K) of M — K such that e(K;) D e(K;) if K C K,.
(2) E(M) denotes the space of ends of M.

M = M U E(M) denotes the end compactification of M.
(3) The topology of M is described by the following conditions:

(i) M is an open subspace of M.
(if) Fundamental open neighborhoods of e € E(M) is given by
N(e,K)=e(K)U{e € E(M) | €(K)=e(K)} (K C M : compact)

M is a compact metrizable space and E(M) is a 0-dim compact subset of M.
Let p € M3(M).



Definition 3.2.

(1) e € E(M) is p-finite if u(e(K)) < oo for some compact subset K of M (i.e., e has
a neighborhood with finite y-mass).
(2) Ef(M; 1) denotes the subspace of y-finite ends of M.

The von Neumann-Oxtoby-Ulam theorem is extended to the non-compact case in the

following form.

Theorem 3.1. (R.Berlanga [1], 1983)

Suppose u, v € Mg(M ) has same total mass and same finite ends. Then there exists
h € Ha(M); with hou = v.

A parametrized version of this theorem is obtained recently by R.Berlanga [3]. Simple
examples show that the weak topology w on M?(M ; u-reg) is not enough to extend the
section theorem (Theorem 2.2 (1)) to the noncompact case. R.Berlanga introduces a little
stronger topology called the finite-end weak topology, which turns out to be the correct
topology for this purpose.

Definition 3.3. (Finite-end weak topology)  Let u € M2(M).
(1) M2(M; prend-reg) denotes the subset of v € MZ(M) which has the same total

mass, same null sets and same finite ends as u.

(2) Consider the inclusions M ¢ MU E¢{(M;u) c M.

The map ¢ induces the natural map
bt MY(M; prend-reg) — ME(M UE;(M;p))w : v— U = 1,v

(3) The finite-end weak topology ew on M§(M; u-end-reg) is the weakest topology

such that ¢, is continuous.
The space M2 (M; pi-end-reg).,, admits the contraction ¢, (v) = (1-t)v+tu (0<t<1).

Definition 3.4. H(M; y-end-reg) denotes the subgroup of H (M) consisting of h € H(M)

which preserves p-null sets and p-finite ends of M.

The group H(M; u-end-reg) acts continuously on M?(M ; u-end-reg)ey, by h-v = hov

and we obtain the orbit map

7 : H(M; p-end-reg) — M?(M; prend-regle, : w(h) = h.p.
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Theorem 3.2. (R.Berlanga (3], 2003)
(1) The orbit map ™ has a section
o: Mg(M; p-end-reg)ey, —* Ho(M; p-end-reg)y C H(M; p-end-reg).
(2) H(M;p-end-reg) = H(M;p) x MY(M; p-end-reg)ey,

3) SDR
H(M;u) C  H(M,p-end-reg) C H(M)

The relation between the two groups H(M, u-end-reg) C H(M) is not known for n > 3.
In n = 2 we can apply our results on homeomorphism groups of noncompact 2-manifolds

[11, 12] to obtain the following conclusions.

Theorem 3.3. (Yagasaki [13])

SDR
n=2
‘ HD l
H(M;u)o C H(M,p-end-reghy C H(M)o
£,-MFD ANR ANR
HD

The main statement H(M, y-end-reg)y C H(M)o can be derived by the follow-
ing arguments. When M is a PL n-manifold, HPY(M) denotes the subgroup of H(M)
consisting of PL-homeomorphisms of M. |

(1) Suppose M is a noncompact connected 2-manifold. Then
(i) M admits a PL-structure.
(ii) HFL(M), is HD in H(M), for any PL-structure on M [12], cf. [7].
(2) Suppose M is a PL n-manifold and € M8(M). Then the PL-structure on M can
be isotoped to a new PL-structure so that HFY(M) C H(M; u-reg) [15].

4. MASS FLOW TOWARD ENDS ON NON-COMPACT n-MANIFOLDS
Suppose M is a noncompact connected n-manifold and u € Mg(M ).

4.1. Topological Vector Space V,(M).

First we define a topological vector space V, (M), which parametrizies mass flows toward

ends by u-preserving homeomorphisms.
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Definition 4.1.
(1) B.(M)={B e B(M)|FrB:Compact}
(2) W(M) denotes the space of all functions a : B,(M) — R.
(i) W(M) is a real vector space under the addition and the scalar product of real
valued functions.
(i) W(M) is equipped with the product topology,
i.e., the topology induced by the projections
o W(M) =R : ngla) =a(C) (C € B,(M)).
(3) V(M) ={a:B(M) = R (%), (*)2, (+)a}
(*)1 C,D € B,(M), CI(C - D), Cl(D-C): compact = a(C) = a(D)
(¥)2 C,DeB (M), CND=0 = a(CUD)=a(C)+a(D)
(x)s a(M)=0
VuM) = {a € V(M) | (¥)}
(¥)a Ce€B(M), p(C)<oo = a(C)=0
V(M) and V,(M) are linear subspaces of W(M), which are equipped with the
subspace topology.

4.2. Mass flow homomorphism toward ends J : Hg(M, u) — V,.(M).

Next we define a continuous group homomorphism J : Hg(M,u) — V,(M), which
measures a mass moved toward ends by each h € Hg(M,u). Let E = E(M). Each
h € H(M) has a unique extension h € H(M).

Definition 4.2. |
(1) He(M,u) = {h € H(M,p) | hlz = idg} (a subgroup of H(M, u))
@) J:He(M,p) 3 h—s Jy € Vu(M)
Jn(C) = u(C = R(C)) — p(h(C) — C) (C € Be(M))

The group Hg(M, u) acts continously on V,(M) by h-a = J,+a and the homomorphism
J : He(M, p) = V,(M) coincides with the orbit map at 0 € V,,(M). |
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Theorem 4.1. (Yagasaki [14])
(1) The map J admits a section s : V(M) — Ho(M, p), C He(M,p) (ie., Js = id)
with s(0) =idy.
(2) (1) He(M;up) = KerJ xV,(M) (i) KerJ C Hg(M;u): a SDR

Ker J contains the subgroup H°(M; i) of u-preserving homeomorphisms with compact

support. Our next aim is the study of relation between these groups.

5. SPACES OF VOLUME FORMS AND
GROUPS OF VOLUME-PRESERVING DIFFEOMORPHISMS

Suppose M is a connected oriented C* n-manifold without boundary.

Definition 5.1.

(1) D*(M) deotes the group of orientation-preserving diffeomorphisms of M with the
compact-open C*-topology.

(2) For a positive volume form w on M,
D(M;w) denotes the subgroup of w-preserving diffeomorphisms of M.

(3) V*(M),, denotes the space of positive volume forms on M equipped with the weak
C* topology.
For m € (0,00], VY (M, m)y = {n € VV(M) | p(M) = m} (the weak C* topology).
Each p € V*(M) determines a unique good Radon measure on M, which is denoted
by the same symbol u. This defines an inclusion V*(M) c M3(M).

The topological group D*(M) acts continuously on V*(M),, and V*(M, m), by h-p =
hatt (= (h™1)*p). The subgroup D(M;w) coincides with the stabilizer of w under this

action.

5.1. Compact case.
Suppose M is a compact connected oriented C* n-manifold without boundary. Moser’s

theorem [9] implies the transitivity of this action and its parametrized version.
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Theorem 5.1. Suppose M is a compact connected oriented C™ n-manifold.
(1) (Transitivity) For any u, v € V*(M,m) there exists h € D(M); such that hyp = v.
(2) (Parametrized version) Let w € VY (M;m). Then the orbit map © : DY (M) —
V*+(M;m)y, 7(h) = hw, admits a section o : VY(M;m)y, — D(M), C D*(M).

5.2. Non-compact case.

Suppose M is a non-compact connected C* n-manifold without boundary. Recall that
E = E(M) is the space of ends of M and M = M U E(M) is the end compactification
of M. Each h € D(M) has a unique extension h € H(M). For p € V*(M), E¢(M, )
denotes the subspace of E(M) consisting of u-finite ends of M.

Definition 5.2. Suppose F' C E(M) is an open subset.
(1) DH(M; F) = {h € DY(M) | (F) = F} (a subgroup of D*(M))
(2) V*(M; F) = {u € V<(M) | Ey(M, ) = F}
VH(M;m,F) =Vt (M;m)NV+(M;F)
MO(M; F) = {u € M2(M) | Ey(M,p) = F}
(3) (Finite-end weak topology)

The inclusion M ¢ MUF (C M) induces the injection
L

L+ VI(M;m,F) < MYUM;F) — Mg(MUF), .
v — v — U= (,V
The finite-end weak topology ew on V*(M;m, F) is the weakest topology such that

the maps 1y and id : V¥ (M;m, F) — V*(M;m, F),, are continuous.

The group D+ (M; F) acts continuously on V+(M;m,F)e, by h - pu = h,u and the
stabilizer of w € V*(M;m, F),, coincides with the subgroup D(M;w). Transitivity of this
action was verified by R. E. Greene - K. Shiohama [8].

Theorem 5.2. (R.E. Greene - K. Shiohama [8])
For any u, v € V¥ (M;m, F) there exists h € D(M);, such that h,u = v.

A C*-modification of R.Berlanga’s argument [3] leads to the parametrized version of

this theorem.
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Theorem 5.3. (Yagasaki [15])
Suppose P is a paracompact Hausdorff space and p,v : P — V¥ (M; F)e, are maps such
that pu,(M) = vp(M) (p € P). Then there ezists a map h: P — D(M), such that |
(i) hpup=v, (p€P) and (ii) ifp € P and p, = vp, then h, = idy.
Corollary 5.1. Let w € VT(M;m, F).
(1) The orbit map m : DY (M;F) — V1 (M;m, F)ew, 7(h) = huw, admits a section
o :VH(M;m,F)ey = D(M), C DY(M; F),
(2) (i) DH(M;F) 2V (M;m, F)ew xD(M;w) (i) D(M;w) C DY (M;F) : a SDR
5.3. Mass flow toward ends on non-compact C* n-manifolds.
Suppose M is a non-compact connected C*° n-manifold without boundary and w €

V*(M). The topological vector space V(M), V,,(M) and a continuous group homomor-
phism J¥ : Dg(M,w) = V(M) are defined as in §4.1 and §4.2. For h € Dp(M;w)

JY:B.(M)-R: J(C)= w(C’ - h(C)) —w(h(C) — C) (C € B.(M)).
The group Dg(M,w) acts continuously on V,,(M) by
h-a=J¢+a (h€Dg(M,w),ac V,(M)).
The map J* : Dg(M,w) — V., (M) coincides with the orbit map at 0 € V,,(M).

Definition 5.3. For two maps u,v : P — V*(M) we write as p ~ v if
C

for any p € P there exists a neighborhood U of p in P and a compact subset K C M
such that p, =y, on M — K foranygeU.

Theorem 5.4. Suppose P is a paracompact Hausdorff space and p,v : P = VT(M),,
a: P — V(M) are maps such that p N, (p—v)(M)=0 and a, € V,,,(M) (p € P).
Then there exists a map h : P — D(M), such that

(1) hputp=v, (PEP) and (ii) ifp € P and p, = v, then Ji* = ay.

Corollary 5.2. Let w € V*(M).
(1) The map J* : Dg(M,w) — V(M) admits a section s : V(M) = D(M,w); C
Dp(M,w) (J¥s = idy,(m)) with s(0) = idy.
(2) (i) De(M;w)=2KerJ” x V(M) (i) KerJ* C Dg(M;w) : a SDR

Our next aim is to study the relation between two groups D°(M;w) C Ker J¥.
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