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Orbital approach to free entropy and
free entropy dimension
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INTRODUCTION

The (microstate) free entropy (as well as the free entropy dimension) is a highlight
in free probability theory and its definition is based on the idea to regard matrices as
microstates which approximate noncommutative random variables. In fact, the free
entropy of several noncommutative random variables is the asymptotic growth rate of
the volume of the set of matrices approximating those random variables in moments.

In this report we propose a somewhat new approach to microstate free entropy and
free entropy dimension based on the joint work [6] with T. Miyamoto and Y. Ueda.
§1 is a short survey on the microstate free entropy x mostly developed by Voiculescu
[15]-{18] and [20]. (Also, Voiculescu developed the non-microstate free entropy x* in
[19].) In §2 we introduce the orbital free entropy which is defined in terms of the
unitary orbital microstates of given noncommutative random variables. We establish
the relation between x and xo. The quantity 7 := —xorb is the free probabilistic
analog of the classical mutual information, which is also considered as the microstate
counterpart of the mutual free information 7* introduced in [21]. §3 is a brief survey on
the free entropy dimension § and its modified version &y developed in [16] and [17]. An
.important fact due to Jung [11] is that & is equal to the fractal free entropy dimension
0, defined via the packing number of the set of approximating microstates. In §4 we
~ introduce the orbital versions & o of 8 and d; o of 6;. We discuss the relations
among do, do,or and 81 orb-

1. MICROSTATE FREE ENTROPY

Let us start with the classical result providing the microstate formulation for the
Boltzmann-Gibbs entropy. Let X = (Xj,...,X,) be an n-tuple of classical random
variables, whose Boltzmann-Gibbs entropy H(X) is defined by

Jon (@) log p(Z) dZ  if ug < dZ and p := dpg/dz,
00 otherwise, '

H(X) := {:
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where u z is the distribution measure of X and dZ the Lebesgue measure on R". Here,
assume that all X; are bounded, and choose R > maX;<i<y || Xi[lo- We consider n-
tuples of RV-vectors as microstates, which are conveniently written in the matrix form

Z11 T22 -+ TN
- - i Ta1 T2 '+ ToN
T=(3,%,...,Zn)=| . ) _

Inl ZTp2 °°° IpN

For each N,m € N and § >0 define the sets of microstates approximating X as follows:

A(X;N,m,8) := {x € (RV)" Zx.,szzk Zik — B(Xi Xip - X )| <6

forall1<4,...,i,<nand 1 _<_r§m}, (1.1)
Ar(X;N,m,8) := A(X; N,m,0) N ([-R,R]")".

Proposition 1.1. With the above definitions,

H(X) = Jim lim —1—~10gA®"(AR(X N,m 5)) (1.2)
N N—oo N

independently of the choice of R > maxX;<i<n || Xillco, where Ay is the Lebesgque measure
on RY,

The definition of Voiculescu’s microstate free entropy of an n-tuple of noncommu-
tative random variables is the matricial microstate version of the above formula for
H(X). '

Definition 1.2. Let M3 denote the space of all Hermitian matrices in My(C). Let
= (Xj,...,Xn) be an n-tuple of noncommutative self-adjoint random variables in a

tracial W*-probability space (M, 7). For each N,m € N and é > 0 define the set of

microstates approximating X by -

I(X; N,m,6)
= {A‘;— (Ala ce )An) € (Mﬁfa)n ; ItrN(AﬁAiz e 'Air) - T(XﬁXiz ) 'Xt'r) >
forall1<i,...,ir <nand1<r<m}, (1.3
Tr(X;N,m,8) :=T(X; N,m,8) N (Mg,




where (M3#)g = {A € M} : ||A”oo < R}. Furthermore, with the “Lebesgue measure
Ay on M (the measure induced via the isometric isomorphism My = R™) define

xr(X;m, 0) —hmsup(N2 logA®n(FR(X N,m,?)) + 5 logN), (1.4)

xr(X) = Jim_xp(X;m,8),
N0

x(X) = sup xr(X).
R>0

Then x()-(‘ ) is called the (microstate) free entropy of X.

The definition itself justifies that the free entropy x()? ) is the free probabilistic
analog of the Boltzmann-Gibbs entropy. The analogy between (1.1) and (1.3) becomes
clearer when we write

1 ' .
— in‘kx.-zk s Tik = t’.I’I\r(A,'l.A,‘2 s A,’r) fOI' Ai = Dlag(x,-l,:v,-z, N ,.’E"N).

Obvious differences of (1.4) from (1.2) are the scaling 1/N?, the term % log N and the
lim sup instead of lim. The 1/N2-scaling is quite natural since microstates are matrices
in M =~ R and the 2 Jog N-term is an appropriate renormalization from the choice
of the volume Ay. We must take limsup because the existence of limit is not at all
guaranteed in (1.4), which makes the microstate free entropy quite difficult to handle.
The following- are basic properties of x(X) ([16, 18]; also [7, Chapter 6]).
° x(X) = xr(X) for any R > || X |l := maxi<i<n || Xilloo-
2° (Single variable case) For every single X with the distribution measure p,

x(X) is equal to () := [[g. log |z —y| du(x) du(y) up to an additive constant, -

ie.,

3 1
x(X) = 2(u)+-—+—2-10g27r

Moreover, the limsup in (1.4) can be replaced by lim for the single variable

case.
3° (Upper bound)

= 2
X(R) < Frog(Er(xt + 4 X3)).

4° (Subadditivity) x(X,Y) < x(X) + x(Y) for all X = (X1,...,X,) and
Y=(Y,...Yn).
5° (Upper semlcontmulty) If X® = (x®), X,(,k)) k € N, are n-tuples of

self-adjoint random variables in (M, 7) such that X® — X in the distribution

sense (i.e., in the sense of moment convergence ) and supy || X X ()], < 400, then
X(X) > limsup x(X®).
k—00 :

6° (Change of variable formula by noncommutative power series) See
[16] for details.
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7° (Separate change of variable formula) Assume that x(X;) > —oo for
1<i<n If fi,..., fn are real increasing continuous functions on R, then

XA, -5 Fa(Xn)) 2 X(B) + D (x(filX:)) = x(X5))-
: i=1
Moreover, if fi,..., f, are strictly increasing, then

XU (X1, £a(Xn)) = x(X) + ) (x(£:( X)) = x(X:))-
=1 :
8° (Infinitesimal change of variable formula) If P,,..., P, € C(t,...,t,) are
noncommutative polynomials such that P* = F,, then the differential formula

n

3] xR+ ePD) = 3 07BR()

i=1

holds, where 8; is the free partial derivative with respect to X;.
9° (Additivity and freeness) If X;,..., X, are freely independent, then

x(B) = x(X1) + -+ + x(Xa).

Moreover, the converse of the above holds true whenever x(X;) > —oc for
1<i<n. '

2. ORBITAL FREE ENTROPY (OR MICROSTATE MUTUAL FREE INFORMATION)

For N € N let yy(~) denote the Haar probability measure on the unitary group

U(N) of order N. For each a € MR? its distribution of o € MR}* with respect to try is
denoted by u., which is given by p, = % }:;V:l 0a; with the eigenvalues ay,...,an of
~ a with counting multiplicities. We also define the map én,q : U(N) — M}? by

Ena(U) :=UalU* for U € U(N).

Let. X = (Xy,...,X,) be an n-tuple of self-adjoint random variables in a tracial
W*-probability space (M, 7). For each 1 < ¢ < n we choose and fix a sequence
o;(N) € M§¢, N € N, such that p,,(v) converges to px, in moments as N — oo,
ie., try(a(N)™) — 7(X™) as N — oo for all m € N. Of course, one can choose
a;(N) so that ||ai(N)]|e < || Xilloo for all N and po vy — px, weakly as N — oo.
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For @(N) := (a1(N),...,an(N)) chosen above, we write &5y in short for the map

[T vy s UN)™ — (MFP)", ie.,
(@) = Ui (UL, ..., Unen(N)UZ) for O = (Us, ..., Un) € U™
Definition 2.1. With the above notations, for each N, € N and é > 0, define
| Toro(X|@(N); N,m, ) := E55 (T(X; N,m, §))



with T'(X; N, m, 8) given in (1.3). We then define

—

Xorb(X1; .. .3 Xn) == lim hmsup N2 log'yU(N (Corp(X|G@(N); N,m ,9)),

. B0
W X153 Xn) = —Xorb(X1; - -5 Xn)- _
We call xorb(X1; - - - ; Xr) the orbital free entropy of X since it is defined in terms of the
volume of some unitary orbital microstates. On the other hand, we call i(Xy;...; X,)

the microstate mutual free information of X.

The next proposition says that the above definition of Xorb is Well defined indepen-
- dently of the choices of &(N).

Proposition 2.2. xo(X1;...;Xn) is independent of the choices of ai(N) € M},
N € N, with po,w) — px; in moments as N — oo for 1 <i < n. '

The following are basic properties of the orbital free entropy Xorb. The corresponding
properties of ¢ are obvious.

" Proposition 2.3.
1° (Single variable case) xorb(X ) = 0 for a single variable X.
2° (Negativity) Xom(Xi;.. )
3° (Subadditivity) xorb(X 153 Xn
foreveryl <k <mn.
4° (Upper semicontinuity) If X® = (X®,... . X%¥)), k € N, are n-tuples of
self-adjoint random variables and X (k) X in distribution, then

Xorb(X1; -+ - ; Xn) > limsup xorb(ka); LX),
k—o00

< Xorb(Xl; e ;Xk) + Xorb(Xk+1; oo vXn.)

Theorem 2.4. ([6])

X(X) = Xorb(X1; -+ -3 Xn) + EX(X:')-
i=1
The theorem says that Xom(X1; - . . ; X,) is the free entropy for mutual relation among
X;’s disregarding x(X;) for each separate X;. To justify the terminology of i = —Xorb,
let us consider its analogy to the classical mutual information.
For two n-tuples X = (X1,...,X,) and Y = (;,...,Y,) of classical random vari-
ables, the (classical) mutual information I(X,Y) of X, Y is normally defined by

4 dpz 7)
I(X;Y):=8(u gy, bz ® Uy =/1 G O
( ) (AU'(X’Y) 25 ﬂ'y) ( og d( X®/J' ) p’(X Y)
which is also expressed as
I(X;Y)=-HX,Y)+ HX) + HY)

in terms of Boltzmann-Gibbs entropies whenever the latter expression is meanmgful
For two self-adjoint random variables X,Y Theorem 2.4 says that

i(X;Y) = —xen(X;Y) = =x(X,Y) +x(X) + x(¥) (2.5)
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as long as both x(X) and x(Y) are finite. An advantage of the orbital free entropy Xory
(or ) is that it can be defined (and often finite) for any self-adjoint random variables
X,Y while the right-hand side of (2.5) makes sense only when both x(X) and x(Y") are
finite. For example, the original x is meaningless for projections since x always takes
—o0 for them. In this connection, the exact formula of Xor(p; q) for two projections
p,q was obtained in [8] (see Example 4.9 in the last).

The expression (2.5) itself suggests that i(X;Y’) is the free analog of the classical
mutual information. The analogy can be more strongly justified as follows.

Remark 2.5. For N € N let 7s,, be the uniform probability measure on the symmetric
group Sy. For each a = (1,...,an) € RY we define the map x4 : Sy — RV by

Ena(0) = (1), Co(2), - - - yaa(N)) for o € Sn.

Let X = (Xi,...,X,) be an n-tuple of classical real bounded random variables and
for 1 < i < n choose a sequence a;(N) € RY, N € N, such that pa,w) — ux, weakly
as N — oo (here pq := N7} EN b, for o = (oq,...,an) € RY). We denote by &z(n)
the map [[7-; Envas(vy : (SN)™ — (RN )*. For N,m € N and § > 0 define

| - Agm(XIE(N); Nym, 8) = &zl (A(X; N,m, 0))
with A(X; N,m,6) given in (1.1). We then define

Hoym(X15.. .3 Xp) = Jim_ hmsup 1 log'y?;,'(Asym()—('I&(N);N,m,é)),
i N

Hopm(X1;. .03 Xn) == lim hmmf—ﬁlog'y (Asym(Xla( ); N,m,6)).
N0

As Proposition 2.2 it is easy to check that Heym(X1; ... ; Xn) as well as H (X155 Xn)
is independent of the choices of a;(N) € RV w1th Poy(N) — Mx;.- Moreover one can
-show that

H(X) = Hym(X1; .3 Xn) + }: H(X:) = Hyp(Xa; .1 Xn) + Y H(X,).
i=1 i=1
In particular, when X and Y are real bounded random variables with H(X) > —oco
and H(Y) > —oo, we have '
I(X’ Y) = _-H—Sym(X; Y) = _—H-sym(X; Y)

" In this way, the “classical analog” of ¢(X;Y") = —Xorn(X;Y') provides a new definition -

(a kind of “discretization”) of the classical mutual information /(X;Y).

- Next, let us generalize the quantity ¢ = _~Xorb to n-blocks (X (1) X’ (")) of non-
commutative random variables. Now, let X® = (x&, (’) X)) be a k -tuple of non-
. commutative random variables in a tracial W*-probab111ty space M,r)for1 <i<n.

Throughout the rest of this section we assume that, for each 1 < i < n, the von.

Neumann subalgebra W*(X®) generated by X is hyperfinite. Then one can choose
sequences @®(N) = (a O(Ny,..., (’i( )) of microstates in (M§#)*, 1 <4 < n, such
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- that @9 (N) converges to X in the distribution sense. (Such sequences of microstates
can be chosen whenever W*(X®), 1 < i < n, are embeddable into the ultraproduct
R of the hyperfinite II; factor R; however, the hyperfiniteness of W*(X®) will be
essential in our discussions below.) Define

fa(1>(N),...,a(ﬁ)(N) tU(N)* — H(lefa)ki

by
5&(1>(N),...,a(n)(1\})([7) = (@)U, for U= (Uy,...,Us) € UN)",
where '
UaO(N)U; = (U2, ..., U (N)UF), 1<i<n.
Definition 2.6. With the above nofcations,' for each N,m € N and é > 0, define
polock( XMW X™|gWO(N),...,aM(N); N,m,6)
| =&ho... _(,,)(N)'(r()'c‘(n, ., XM N m,é)).
We then define

Xorn(XW;. . ; X = Aim_lim sup
~ _ N0 N—soo
1 o o ._
773 108 W) (T (XD, ..., XW|aD(N), ..., @™ (N); N,m, 8)),

(X0 ... ;i(")) = —xorb(X( ). ;X(")).

The block-wise orbital free entropy xom(X®;. . .; X™) is well defined independently
of the choices of @ (N), 1 < i < n, as Proposition 2.2, and it has the same basic
properties as those of Xorb(X1; - . - ; X») given in Proposition 2.3. In pa.rtlcular note that
Xoro(X) = 0 for a single block X In fact, this is obvious because Iblock( ¥|&; N, m, 8)
is the whole U(NN) whenever N is large. :

The following theorem tells us that i(X;;. .. ; X,,) can be called the microstate mutual
free information of the n-tuple of hyperﬁnite subalgebras (W*(Xy),..., W*(X,)).

Theorem 2.7. ([6]) Let X&) = (X®,..., XP) and YO = (v?,...,¥,") be self-
adjoint random variables in (M,7) for 1 <i < n. If W*(X®) = W*(Y(')) and it is
hyperfinite for each 1 < i < n, then

xorb()?(l); LX) = xorb(?(l); e ;?")).

The “additivity theorem” for x., is presented as follows.

Theorem 2.8. ([6]) Let X®) = (X O X (i)), 1 <1 < n, be self-adjoint random
variables in (M,7) such that W*(X (')) is hyperfinite for each 1 < i < n. Then
XO, ..., X® are free if and only if xorm(X®; .. .; X™) =0 (or Xon(X®;...; X)) =
| 2,=1 xorb'()-f ®) since Xorb 8 zero for a single block).



In particular, when each X® is a single variable, the additivity theorem for x (i.e.,
property 9° in §1) directly follows from Theorems 2.4 and 2.8. Incidentally, the formula

XX, XY = 3o (RD; ("))+Zx G
i=1

is meaningless because both sides are —oo as long as W*()_(" @), 1 < i < n, are hyper-
finite and some X® is not single. Although Theorem 2.8 is an additivity theorem in
some sense, we should note that it has no contribution to the block-additivity problem
for y: if X and Y are free, then x(X,Y) = x(X) + x(¥)?

Remark 2.9. By restricting only to projections and by applying a change of variable
formula specialized to projections, the following pair block-wise additivity theorem was
shown in [9]: Let p1,¢1,..-,Dn,qn,T1,...,Tn be projections in (M, ). Then we have:

(a) If {p1, @1}, -- - {Pn,qn}, {r1}, - .., {rn'} are free, then
Xorb (P15 G153 - - -3 Pns Gns 713 - - -3 Tnr) = Xorb(P13@1) + * * * + Xorb(Pni Gn)-
(b) Conversely, if xorb(pi; ¢i) > —oo for 1 < ¢ < n and equality in (a) holds, then

{pr,q1}, -y {Pry @}, {11}, - .., {rn'} are free.
(c) In particular, Xorn(p1;---;pn) = 0 if and only if py, ..., p, are free.

The above (c) is of course a particular case of Theorem 2.8; however, (a) and (b) are
not covered by Theorem 2.8 since Xorb(Pi; q,) is not the orbital free entropy of a single
pair block (p;, ¢;).

3. FREE ENTROPY DIMENSION
First, recall the definition of the modified version of free entropy.

Definition 3.1. Let X = (X1,...,X,) and ¥ = (Y4,...,Y)) be self-adjoint random
variables in a tracial W*-probablhty space (M 7). Fr NmeN,§>0and R>0
define

(X YNm&)
= {A e (MP": (AB)eI‘R(XYNmé)forsomeBG(M"“)}

(i.e., the projection of Tr(X, Y;N,m,8) C (M$)™ x (M)} to the first n-components)

“and‘

XR(X:Y) lim hmsup< — log AZ"(Tr(X : ¥ N,m, 6)) + -logN)
5\0 N—oo N

Then the modified free entropy of X in the presence of Y is
x(X :Y) :=sup xr(X : Y).
" R>0

Definition 3.2. Let X = (Xi,...,X,) and § = (Sy,...,5,) be n-tuples of self-
adjoint random variables in (M, 7) such that S is a standard semicircular system free
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‘from X (i-e., a free family of self-adjoint variables S; with the standard semicircular



distribution). Write X + S 1= (X1 + €84,..., X, + €S,) for € > 0. Then, the free
entropy dimension §(X) and the modified free entropy dimension 8,(X) are defined by

> , x(X +¢€5)
0(X) := n + limsup =———,

S , x(X +¢5:8)
0o(X) :=n 4+ limsu :
,0( ) e\,Op l10g5|

It seems that the modified version dy is technically more convenient than 4. . The
following are some basic properties of § and dp ([16, 17] also (7, §7.3]).
1° (Trivial inequalities) 60(X ) < 6(X ) < n if X consists of n-vanables
2° (Subadditivity) §(X,Y) < 8(X)+6(Y) and &(X,Y) < 6(X) + &o(Y).
3° (Single variable case) Let X,S be self-adjoint random variables in (M, 7)
such that S is a standard semicircular free from X. If u is the distribution
measure of X, then ‘ :

jjm XX+ £5) ——Zu{t})2

o [loge[ - teR

and §o(X) = 6(X) = 1 = 3 ,cn u({t})".
4° (Lower semlcontlnulty in the single variable case) If X; — X in distri-

bution with sup,, || Xk|le < +00, then
X)) < hm 1nf O(Xk).

5° (Add1t1v1ty in the free case) If X;,..., X, are free, then
8o(X) = 6(X) = 6(Xy) + - -+ + 6(Xn).

Indeed, a slightly more stronger result hold: If X and asingle Y are free, then '

§(X,Y)=8(X)+6(Y), &(X,Y)=d(X)+8(Y).

~ The following properties from [16, 20] are useful to compute/estimate 6 and . Let
= (Xy,...,X,) and ¥ = (¥3,...,Y)) be in (M, 7). (For (a) and (b), see also
Proposition 3.5 below.) '
" (a) IfYCW‘(X) and x(X) > —oo, then §(X, Y) > 6(X) =n. A
(b) If Y c Alg(X ) (in fact, a weaker assumption is in [16]) and x(X) > —oo, then
5(X,7)=§(X) =n.
()Y C W*(X), then 5(X,Y) > 8(X).
(d) If Alg(X) = Alg(Y), then 8y(X) = &o(Y'), that is, &, is an algebraic invariant.
In [16] Voiculescu posed the question of whether § has the lower semicontinuity
property or not; namely, if X*) — X strongly in (M, 7), then

§(X) < l1m 1nf §(X®y?

Thanks to the above (a) and (b), the positive answer to this question 1mp11es the non-
isomorphism of free group factors: L(F,) % L(F,,) if n # m. Moreover, thanks to (c)
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and (d), the positive answer of the same question for do implies that 8o(X) = 6o(Y)
if W*(X) = W*(Y). Recently, Shlyakhtenko [14] gave a counter-example to the lower
semicontinuity question for § (also for §y). But, he posed some weaker versions of the
question, which are still sufﬁment to settle the non-isomorphism of free > group factors.
For example, if X® — X strongly in (.M 7) and W*(X®) = W*(X) = M, then
8(X) < liminfy_.oo 6(X*))?

Next, let us recall the notions of covering/packing numbers. Let (X, d) be a Polish

space and I' C X. Consider I as a metric space with the restriction of d on I'. For each

£ > 0 we denote by K.(I') the minimum number of open e-balls covering I', and by
P,(T") the maximum number of elements in a family of mutually disjoint open e-balls
~in T, where e-balls in I" are taken as subsets of I".

On the space (M3%)™ (2 R™M*) we consider the metric dy induced from the Hilbert-

Schmidt norm with respect to try = N"1Try:

. | . 1/2
(A B) = | A= Blaeey = (trN (zw - B»z)) |

i=1
In [11] Jung introduced another definition of free entropy dimension via the notions
of covering/packing numbers and proved its coincidence with the modified free entropy
dlmensmn do.

Definition 3.3. Let X = (X1,...,Xy) be an n-tuple of self-adjoint random variables
~ in a tracial W*-probability space (M, 7), and choose R > || X||o. Define the fractal
(or packing) free entropy dimension of X to be

K (X) P.(X)
8:(X) := limsu = limsu
() = B Tioge] = RS Tiogel’
where

Ke(X) := lim limsup — 12 log K.(Tr(X; N,m,9)),
NG N—oo N

P.(X) = Jim llmsupmlogP(I‘R(X N,m,$§)).
6\,0

In the above definition, K¢(X) and P.(X) should be written as K. z(X) and P, z(X)
to be precise. But, note ([3], [12]) that the definition of &, ()? ) above is independent of
the choice of R with R > || X||e permitting R = oo (i.e., no cut-off).
Theorem 3.4. (Jung [11]) For every X in (M, 1),

8(X) = 86:(X).

In the following, we present a few more basic properties of §y based on the equality

50 = 51.

| Proposition 3.5. ([17, Proposition 6.10]) If x(X) > —oo, then §o(X) = n and hence
§(X) =n.
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Theorem 3.6. If X = (Xy,...,Xn) and 6(X) = n > 1, then W*(X) is a factor.
Hence, this is the case if x(X) > —oo (see [17, Corollary 4. 2]

Remark 3.7.

(1) Let X = (X, ..., X») be a free family of non-atomic variables X;. Then W* (X)
is isomorphic to the free group factor L(F,) (Voiculescu’s free Gaussian functor
theorem) and dy(X) = 6(X) = n by property 5°. But, x(X) = %, x(X;) can
easily be —oo so that the converse of Proposition 3.5 is not true.

(2) The first assertion of Theorem 3.6 seems new though it might be a folklore for
'specm.hsts It does not seem that there is a known example of X such that
8o(X) > 1 but W*(X) is not a factor.

(3) It might be natural to ) expect that the generated factor W*(X ) is similar to free
- group factors when X = (X1,...,X,) and 6(X) =n > 1 (or more strongly
x(X) > —oc). However, Brown [2] proved the existence of X =(Xy,...;Xn)
such that x(X) > —oo but W*(X) is not isomorphic to any (not nec&ssanly
unital) subalgebra of a free group factor.

In [10] J ung computed the modified free entropy dimension do (X) =6 (X) in the case
where W*(X ) is hyperfinite. Let X = (X,..., X,) bean n-tuple of self-adjoint random
variables in (M, 7). The generated von Neurnann algebra W*(X) is decomposed as

W*(X) = Mo & @Mkj(c)a
j=1

TlW"(X) = QoTo D @a,trkj,
j=1
where M, is a diffuse von Neumann algebra. (possibly Mo = {0}), s € {0,1,...,00},
ap > 0 (ap = 0 if Mo = {0}) and ; > 0 with 3 ;_oc; = 1. Then, the conclusion is:

Theorem 3.8. ([10]) If W*(X) is hyperfinite, then

a?

S(X)=1-Y_ k_;.
j=1 "

Remark 3.9. Obviously, Theorem 3.8 says that if (M, 7)isa hyperﬁmte tracial W*-
‘probability space, then do(X ) = 60(Y) of any two finite sets X and Y of self-adjoint
generators for M. In [4] Dykema introduced the notion of the free dimension fdim(M)
for a certain class of finite von Neumann algebras, including finite-dimensional algebras,
hyperfinite algebras and interpolated free group factors. It is worthwhile to note that
if W*(X) is hyperfinite, then the two notions of the modified free entropy dimension
and the free dimension coincide:

bo(X) = fdim(W*(X)).
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In [22] Voiculescu proved that if X3,...,X, are non-atomic self-adjoint random
variables in (M, 7) satisfying the consecutive commuting conditions X;X;,; = X;;1.X;
for 1 < i < n, then do(X) < 1. For example, when n > 3, there is a finite set
X = (Xi,...,Xp) of self-adjoint generators of the group algebra L(SL(n,Z)) with

the above property. (L(SL(n,Z)), n > 3, are typical examples of property T factors.)
Later, Ge and Shen [5] obtained a considerably stronger result that do(X) <1 for every
X in (M, 7) if M is generated by a sequence of Haar unitaries with some weakened
consecutive conditions. But, the problem on dy in the general case where W*()? ) is
a property 7' von Neumann algebra is recently settled by Jung and Shlyakhtenko as
follows.

Theorem 3.10. ([13]) Let X = (Xy,...,X,) be self- adjoint variables in (M, 7). If
W"(X ) is a property T von Neumann algebra, then 60(X ) < 1. Hence, if W*(X)
isa dzﬁuse and Property T von Neumann algebra which is embeddable into R¥, then
(X)) =1.

4. ORBITAL (OR MUTUAL) FREE ENTROPY DIMENSION

In §2 we proposed a somewhat new approach to free entropy theory called the orbital
approach. This can be performed also for the free entropy dimension theory as we
explain in this section. We adopt the generalized setting of n-blocks of noncommutative
random variables under the hyperfiniteness assumption as in the latter half of §2. To
introduce the orbital version of the modified free entropy dimension JO(X ), we first
need to define the modified orbital free entropy in the presence of some unitary random
variables.

Definition 4.1. ,

(1) Let X = (Xi,...,Xs) be a k-tuple of self-adjoint random variables and 7 =
(v1,...,u) an l-tuple of unitary random variables in (M, 7). For Nym € N
and § > 0 we denote by [(X;7; N,m, 6) the set of all (4,V) = (Ai,..., A,
Wi,..., Vi) € (M§#)* x U(N)* such that |trN(h(A V)) — (WX, D) < 5 for
all *-monommls h with degree <m, and by I"(X ¥; N,m,d) the set of all
A € (M2#)* such that (A V)e F(X 7, N, m, §) for some V € U(N)\.

(2) Moreover, let (XM, ..., X™) be noncommutative self-adjoint random variables
in (M, 1) as stated before Definition 2.6, that is, for 1 < ¢ < n, X% =
(X", ® X (')) is a k;-tuple of variables such that W*(X®) is hyperfinite. Let
"(’)(N) (@ (N),...,ad(N)), 1 < i <, and Exmw),._ame : UN)® —
ITi (M§)k be also as S stated before Definition 2.6. Define

rolock(X M) XM|gD(N),...,&"(N): %N, m,a)'

= g(ln(zv) ..... 5(n)(N)(F(X“),...,X("):U;N,m,a)),
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and define the block-wise modified orbital free entropy in the presence of ¥ by

xorb(f(l);. L XM 7) := Aim_limsup
\0 N—oo

1 ock ( v v(n)| = =(n -,
—Nglog'y{e}("N)(ngbk(X(l),...,X( NaW(N),...,a™(N): 5N, m,0)).

To define the orbital version of 8,(X), we also need the notion of free unitary Brown-
ian motion introduced by Biane [1]. A free unitary Brownian motion is a noncommuta-
tive process v(t), t > 0, of unitary random variables satisfying the following properties:

(i) v(t) has free left multiplicative increments, i.e., if 0 <ty < ¢; < -+ < iy, then
v(t;)v(ti—1)*, 1 < i < n, are freely independent.

(ii) v(t) is stationary, i.e., the distribution of v(t)v(s)* for every 0 < s < ¢ is
determined by t — s. ’

In the following we always assume that v(0) = 1. The distribution measures v; :=
Moty € Prob(T), t > 0, satisfy the semigroup condition: vy = d; and v, By, =v,4,.

Definition 4.2. Let (X, ..., X(®) be as in the above definition, and let o(t) =

(v1(2),...,va(t)), t > 0, be an n-tuple of free unitary Brownian motions with v;(0) = 1
which are free each other and moreover free from XM, ..., X™  (We may always
assume that such extra variables are taken in (M, 7)). We write v;()X Dy (t)* :=
(u(0) X {’)v,-(t)*, U)X, ,g:)v,-(t)") and define the block-wise (modified) orbital free en-
tropy dimension of (XM, ..., X)) by
Bo,orb(XD; ... X))
‘ v (1) ... v (n) * .52
.= 2lim sup Xorb(V1(6) X My (€)*;- - - 5 va(e) X ™un(e)* U(E)).
e\ | log &|

Note that the multiplicative perﬁurbation by unitary free Brownian processes is used in
the above definition of &y b While the additive perturbation by semicircular processes
is used for 4.

-

It is easy to show as Proposition 2.2 that the definition of §pon(X(;...; X™)
is independent of the choices of @¥(N), 1 < i < n, such that @)(N) — X0 in
distribution as N — oo.

The next proposition gives basic properties of do,orb.

Proposition 4.3.
1° (Single variable case) 60,0,1,()2 ) = 0 for a single block X.
2° (Negativity) 8on(X®;...; X™) <0,
3° (Subadditivity) For every1 <k <n,
60,orb()-(’(l); v ;X(n)) S 60,orb()_{’(1); ceey X(k)) + 50,orb()—(’(k+l); ceey X’(n))_
4° (Zero in the free case) IfY is free from X, ..., X™) then

Boan(XD;. X 7) = G e (X ;.5 X),
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Hence, if X, ..., X®™) are free, then Soorn(XD, ..., XM) = 0.

~ The next theorem says that oo (X X (1) . ¢ ")) can be regarded as the (modlﬁed)
orbital free entropy dimension of the n-tuple of hyperfinite subalgebras (W*(X my,...,

W*(X™)).

Theorem 4.4. ([6]) Let X9 = (XP,..., X®) and YO = (¥,..., YY) be seif-
adjoint random variables in (M,7) for1 < i <n. If W*(X®) = W*(Y®) and it is
hyperfinite for each 1 < ¢ < n, then

50,0,b()?(1); s X")) = 50,0,5(}7(1); e ;}7")).
By adapting Proposition 3.5 to the case of unitary microstates, we have the following:
. Proposition 4.5. If xorn(X®;. .. ;X(")) > —00, then So,orb(f(l); . ;)-(‘("5) =0
Next, we introduce the orbital version of the fractal free entropy dimension 4, (X).

Definition 4.6. Let (X®,...,X™) and @(N), 1 < i < n, be as in Definition
4.1(2). For each € > 0 define the block-wise orbital fractal free entropy dimension of
(XD, X™) by

- — K X(l) . X(n) "'(1). . —‘(n)
al’orb(x(l); A ;X(ﬂ)) = hm Sup ( ) - lim Sup PE(X ) ,X )
: eN\o I lOg E] £\0 I log E|

’

. where A
‘KE(X‘“’;'.-..;X("))
logK(I‘bl°°k(X(1) ., X®|GD(N),. .., @™ (N); N,m,6))

= lim limsup —; orb

"3\0 N-—oo N2

and P,(X®;. X X (™) is similar with P, in place of K. Once again, it is easy to
check that the deﬁmtlons of K (XW;...; X™) and P,(XM;...; X™) (hence that of
S1omp(XD;...; X)) are 1ndependent of the choices of @?(N), 1 < i < n.

The main result of this section is now stated as follows.

Theorem 4.7. ([6]) For every n-blocks ()-f M, ..., X™)Y of self-adjoint random vari-
ables in (M, 1), the following hold true:

(1) : | o
Soorb(XW;. s XM) = 8 o (XD;..; XY —
(2)

n
Go(XM, ..., XM < 8o o (XM;...; X)) +-Z 5o(X ).

i=1
(3) If W*(X®) is finite-dimensional for each 1 < i < n, then equality holds in (2).
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Problem 4.8. On a parallel with Theorem 2.4, it may be strongly expected that the
equality

oKD, .., RO = By (X5 K) £ 3 8o(K)

i=1

holds true for general X® with hyperfinite W*(X®).

Example 4.9. (Two projections) The simplest example of non-commuting ran-
dom variables is a pair of projections. Let p,q be two projections in (M,T) with
‘o := 7(p) and B := 7(g). The von Neumann algebra generated by p, g is represented
as .

W*(p,q) = (L®((0,1),v) ® My(C)) ®C(p A q) ®C(pAg") ® Clp* Ag) ©C(p™ Aq")

With 7|we(p.q) = (V®tr2) ® 11 B 1o ® o @ oo, Where oy 1= T(PAQ), 10 1= T(PAGY),
aog = 7(p* A q) and ag := 7(pt A ¢t). Then by Theorem 3.8,

8(p) =20(1-a), &(g)=24(1-0),

So(p,q) =1- Z of — = Z v({t})?,

i,j=0 te(o 1)

from which we can explicitly compute 8o orb(p; ¢) by Theorem 4.7 (3).
On the other hand, as a consequence of the large deviation principle for two random
projection matrices in [8], it is known that if agoa11 = api0ne = 0 or equivalently

oy1 = max{a + 8 — 1,0},
ag = max{l — a — §,0},
a0 = max{a — 3, 0},
ap; = max{f — «, 0},

then
xel2i0) = 250) + 222 [ ogzan(a)
2 (o,l)
2 ©,1) |

where C is a constant depending on « and 8 only. Otherwise, Xorb(Pp; g) = —00. Thus,
when xo(p; g) > —00, v is non-atomic so that we get '

5o(pq) =1— (a+ B -1+ (a— B)? = 2a(1 —a) + 28(1 - B) = 6(p) + (g)

so that do,orb(p; ¢) = 0 as Proposition 4.5 generally says.
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