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In what follows, an operator means a bounded linear operator on a Hilbert space H.
An operator T is positive (denoted by T > 0) if (T'z,z) > 0 for all z € H, and strictly
positive (denoted by T > 0) if T is positive and invertible.

A real-valued continuous function f defined on an interval I C R is operator mono-
tone if A > B implies f(A) > f(B) for any self-adjoint operators A and B such that
o(A),o(B) C I. Let P.[a,b) be the set of all non-negative operator monotone functions
defined on [a, b), and P;[a,d) the set of increasing functions h defined on [a, b) such that
h([a,b)) = [0,00) and its inverse A~! is operator monotone on [0,00). Uchiyama [11]
introduces a new concept of majorization, and shows a quite interesting result named
“Product theorem” and its applications to operator inequalities.

Definition ([11]). Let h be a non-decreasing function on I and & an increasing function
on J. Then A is said to be majorized by k, in symbols A < k, if J C I and the composite
h o k~! is operator monotone on k(J).

Product theorem ([11]). Suppose —o0 < a < b < 00. Then
P,(a,) - P7'[a,b) C P7Y[a,b), P;'[a,b)-P;l[a,b) C P;l{a,b).

Further, let h; € P7'[a,b) for 1 < i < m, and let g; be a finite product of functions in
P,la,b) for 1 < j < n. Then for v;, ¢; € P,[0,0)

Hh,(t ng(t) € P_l[a b), H"/’z (hi(t) )H¢J(91(t)) = Hh (t)Hg,(t)

i=1 i=1 =1 j=1

Proposition A ([11]). Let h € P;'[0,00), and let h be a non-negative non-decreasing
function on [0,00) such that b < h. Let g be a ﬁmte product of functzons in P.[0,00).
Then for the function ¢ defined by p(h(t)g(t)) = h(t)g(t)

»(9(B)3h(A)g(B)?) > g(B):h(A)g(B)%,

A>B>0=> 1 1 L
{w(g(A)fh(B)g(A)i) < g(A)h(B)g(A)s.
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Theorem B ([11]). Let h € P;'[0,00), and let h be a non-negative non-decreasing func-
tion on [0,00) such that b < h. Let g, be a finite product of functions in P, [0, 00) for each
n, and let the sequence {gn} converge pointwise to g. Suppose g # 0 and g(0+) = g(0).
Then for the function ¢ defined by o(h(t)g(t)) = h(t)g(t)

1

h(A)g(B)?) > g(B)1h(A)g(B)?,
h(B)g(A4)t) < g(A)3h(B)g(4)1.

v(9(B)
v(g(A)

Proposition A and Theorem B are generalizations of the following result.

Laclai < T

AZBZO=>{

Theorem F (Furuta inequality [4]). ? @ +"fl =ptr
If A> B >0, then for each r > 0, ;

()  (BiA?BE)7 > (BEBPBY)s

g=1 p=q

and _
()  (A5APA%)7 > (ATBPAT)S A
0.0)
hold forp >0 andg>1 with (1 +r)g>p+r. @ Ficure

We remark that Léwner-Heinz theorem “A > B > 0 => A* > B* for any o € [0, 1)”
is the case r = 0 of Theorem F. Other proofs are given in [1][7] and also an elementary
one-page proof in [5]. It is shown in [9] that the domain of p, ¢ and r in Theorem F is
the best possible for the inequalities (i) and (ii) to hold under the assumption A > B.

We obtain extensions of Proposition A and Theorem B by weakening their hypotheses
from A > B to inequalities implied by it.

Proposition 1. Let h € P;![0,00), and let h and kb be non-negative non-decreasing
functions on [0,00) such that and h < h. Let g;(t) = 1_1 fi(?) where f; € P[0, 00) such
that fo(t) = ﬁ(t)g,,-l(t). Then for the functions v; and p; defined by

Ui (h(1)g;(8)) = h(t)g;(t) and ©;(h(t)g;(t)) = h(t)g;(t),
if A, B > 0 satisfy

Yn1(9n-1(B) h(A)gn-1(B)}) 2 h(B)ga_1(B),
then
#n(9n(B)h(A)gn(B)?) 2 fa(B)}0n-1(gn-1(B) h(A)gn-1(B)}) fa(B)}
holds. Particularly, 1, (gn(B)2h(A)ga(B)7) > h(B)gn(B) holds in case h < h.
Theorem 2. Let h € P7}[0,00), and let h be a non-negative non-decreasing function on

[0,00) such that h < h. Let g be a finite product of functions in P, [0,00) and 7, a finite
product of functions in {f € P,[0,00) | f(t) < h(t)g(t)} for each n, and let the sequence



{9(t)n(t)} converge pointwise to §(t). Suppose § # 0 and §(0+) = §(0). Then for the
functions ¥ and v defined by

Y(h(t)g() = h()g(t) and B(h(t)3(t)) = h()5(t),

if A, B > 0 satisfy
¥(9(B)*h(4)g(B)}) > h(B)g(B),
then
9(B)¥(3(B)in(A)5(B)1)g(B)* > §(B)tv(9(B)ih(A)g(B)})g(B)*
and hence $(g(B)1h(A)g(B)?) > h(B)§(B) hold.

Proof of Proposition 1. Define the function ¢ as ¢(A(t)gn—1(t)) = fa(t), then @ is operator
monotone by the assumption, so that

(Wn-1(9n-1(B) h(A)ga-1(B)7)) > $(A(B)gn1(B)) = fa(B),
and there exists a contraction X such that

X"6(n-1(D))} = $(n1(D)IX = £o(B)}
by Douglas’ theorem [3], where D = g,_,(B)$h(A)gn_1(B)3. Hence we have
©n(9n(B)2h(A)gn(B)?) = ¢u(fa(B)2ga-1(B) Th(A)gn-1(B)? fa(B)?)
= on(X* Do (¢n-1(D))X)
>X ‘cpn(DqS(d)n_l(D)))X by Hansen’s inequality [6]

= X*0n-1(D)d(Wa-1(D)) X
= fa(B)¥0n-1(gn-1(B) h(A) gn-1(B)?) fa(B)*.

O

In addition, the inequalities in Theorem F are known to be valid in case the parameters
are negative under certain conditions.

Theorem C ([2](8](10][12]). |
(i) AZB>0=>(B_T£A‘°B_T¢);_:% >B-tfor1>p>t>0andp> 3.
(i) A>B>0= (BTAPBF)~ > B~ for 1 >t >p >0 and } >p.
(iii) A>B>0= (B%-'APB'T‘)%%‘ > B?~ for & z'p >t2>0.

(iv) A>B>0=> (BT APBT) 5+ > B¥ 1t for 1 >t>p> L.
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We also obtain a generalization of (i) and (iii) of Theorem C in similar form to results
mentioned before.

Theorem 3. Let g(z), h(z), h(z) € P+[0 oo) such that %@ € P.[0,00) and J—L is a
finite product of functions in P, [0, 00) UPTH{0, 00). Then for the function ¢ deﬁned by

(1)Ko
9(z))  ¢(z)’
if there exists an integer m > 0 such that %,?,l € P,[0,00), then

A> B> 0= p(g9(B)Th(4)g(B)7) > g(B) T h(A)g(B)T > h(B)g(B)~".

Proof. It turns out by results in [11] that

h(z) (Z—E—g)a eP.[0,00) for0<a<m (1)
a”d o (h@))" f
) (9—(-’5;> €P.0,00) for2<a<m+1. ‘ (2)

Put D = g(B) 7 h(A)g(B)T. In case ‘%S’;’.l € P.[0,0), we have

(D) = D* p(9(B)T h(A)g(B)7 ) pn
(9(B)7 h(4)g(B) )
> pn v(g(B)* M(B)g(B)T)
( B) 7 h( B)g(B)T)

o 548" o
)

g ((:))2 (28

oy 9(B)ID* by (2) for a =2n

2(n—1)
= D" 1g(B)T h(A) (M) g(B)T D" 1,

h(A)
. 2(n-1) _
D" '¢(B)* h(B) (%E—g—;) g(B)'!J‘D"'1 by (1) for a = 2n — 2

_ ety MB) (gB\FTD

=@t e (fE))  e®)

1 , h(A A An-1) L pe
> D" g(B)? g((A))2 (%E—A-;-) - g(B):D™! by (2) fora=2n -2
2(n-2)
=Dt k) (B3) 7 em o
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In case ;ﬁ% € P, [0,00), we have

o(D) = pr LOEHABT)

(s(B)Fh(4)g(B)#) "

> D"g(B)7 g(A)?

(9(A) T h(A)g(4)7

(s F )9 F) "

- Dro()¥ i) (4

h(A)

by Hansen’s inequality [6]

)h(m?Dm

and the rest of the proof is as same as the former case.
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