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1 Tsallis entropies in quantum system

We denote ef = (1 + z\z)* and its inverse function Iny z = ﬁx‘—‘, for A € (0,1] and z > 0. The functions
€3 and In, z uniformly converge to e and logz as A — 0, respectively. Note that we have the following
relations:

5TV = eZel | Inyzy=1Inyz+Inyy+ Alny zlnyy. (1)

In this survey, we consider the linear bounded operator acting on the Hilbert space H, or simply n x n
complex matrix whose set is denoted by M,(C) in the finite quantum system. A Hermitian matrix A
is called a nonnegative matrix (and denoted by 4 > 0) if (z,Az) > Oforall z € C™. A nonnegative
matrix A is called a positive matrix (and denoted by 4 > 0) if it is invertible. The set of all density
matrices (quantum states) is represented by D, = {X € Mu(C): X20,Tr[X]=1}.For -I< X < I
and A € (=1,0) U (0,1), we denote the generalized exponential function by exp, (X) = (I + AX)Y*. As .
the inverse function of exp,(-), for X >0 and A € (~1,0) U (0, 1), we denote the generalized logarithmic
function by Iny X = —}'i Then the Tsallis relative entropy and Tsallis entropy for nonnegative matrices
X and Y are defined by

DAX|Y)=Tr (X' (Inx X -In,Y)], Sr(X) = —Da(X|I).

These entropies are generalizations of the von Neumann entropy (36] and the Umegaki relative entropy
[50] in the sense that
}ix%SA(X) = S(X) = -Tr[X log X]

and :
}i_z’% Dx(X|Y) = Do(X|Y) = Tr{X(log X — logY)).

See [37] and [1, 2, 21, 22] for details of the theory of quantum entropy and the Tsallis entropies, respec-
tively. Two Tsallis entropies have non-additivities such that

Sx (X1 ® X3) = Sx(X1) + Sx(Xa2) + ASa(X1)Sr(X2), 2

and
D(X1 ® X3Y1 ® Y2) = Dx(X1|Y1) + DA(X2|Yz) — ADx(X1[Y1)Da(Xa2|Y2), (3)

due to the non-additivity Eq.(1) of the function Iny. Thus the field of the study using these entropies is
often called the non-additive statistical physics and many research papers have been published in mainly
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statistical physics [49]. See our previous papers [21, 22] on the mathematical properties of these entropies.
See also chapter II written by A.K Rajagopal in [49], for the quantum version of Tsallis entropies and
their applications.

1.1 A uniqueness theorem Tsallis entropy in quantum system

As quite similar to the method in [14], we axiomatically characterize the Tsallis entropy in a finite
quantum system. Let T be a mapping the set G(H) of all density operators to the set R* of all positive
real values.

Axiom 1.1 ([23]) We give the postulates which the Tsallis entropy should satisfy.
(T1) Continuity: For p € &(H), Tx(p) is a continuous function on the eigenvalues z; of p.
(T2) Invariance: For unitary transformation U, T\(U*@U) = Ty(¢).

(T3) Generalized mizing condition: For p = kél Apron H = kél Hi, where 2 > 0,3 F_, 2k = 1,px €
G(H), we have the additivity: -

n
Ta(p) = Yz *Talor) + Ta(@1, -+, Tn),
=1

where (21, - -, %) represents the diagonal matrix (Zx0k;)k,j=1, - n-
Theorem 1.2 ([23]) If T), satisfies Axiom 1.1, then T}, is uniquely given by the following form
Ta(p) = urSa(p),

with a positive constant number u, depending on parameter A.

1.2 Properties of Tsallis relative entropy

Here we review some information-theoretical properties of the Tsallis relative entropy defined in quantum
system. For the quantum Tsallis relative entropy D) (p|o) and the quantum relative entropy U (plo), the
following relations are known.

Proposition 1.3 (Ruskai-Stillinger [43] (see also [37])) For density operators p and o, we have,
(1) D1-a(ple) < U(plo) < Dia(plo) for 0 < A < 1.
(2) Disa(ple) < U(plo) < Dy-a(plo) for —1 < A < 0.

Note that the both sides in the both inequalities converge to U(p|o) as A — 0.
We next consider another relation on the quantum Tsallis relative entropy. In [12], the relative
operator entropy was defined by

S(A|B) = AY?10g(A~Y/2BA~V/2) 412,

for two strictly positive operators 4 and B. If A and B are commutative, then we have U (A|B) =
—Tr[S(A|B)]. For this relative operator entropy and the quantum relative entropy U (A|B), Hiai and
Petz proved the following relation :

U(A|B) < -Tr[S(A|B)), (4)

in [28] (see also [29)).
In our previous papers [53], we introduced the Tsallis relative operator entropy T(A|B) as a para-
metric extension of the relative operator entropy S(A|B) such as

A1/2(A—1/2BA—1/2)AA1/2 —A
A ’

T>\(4|B) =
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for 0 < A <1 and strictly positive operators A and B, in the sense that
iirrbT,\(AlB) = S(A|B). (5)

Also we now have that
lim Dx(A|B) = U(A|B). (6)

These relations Eq.(4), Eq.(5) and Eq.(6) naturally lead us to show the following theorem as a parametric
extension of Eq.(4).

Theorem 1.4 ([21]) For 0 < A <1 and any strictly positive operators A and B, we have
Di(A|B) < -Tr[Tx(A|B)) ™
Thus the result proved by Hiai and Petz in [28, 29] is recovered as a special case of Theorem 1.4 in

the limit A — 0. On the quantum Tsallis relative entropy D, (p|o) for density operators p and o, we have
the following properties.

Proposition 1.5 ([21, 1, 40]) For 0 < A < 1 and any density operators p and o, the quantum relative

entropy D) (p|o) has the following properties.
(1)‘ (Non-negativity) D (plo) > 0.
(2) (Non-additivity) Dx(p1 ® p3lor ® 63) = Da(p1lo1) + Da(p2loz) — ADx(p1]o1) Da(p2|o2).
(3) (Joint convexity) DA(L; As05l Ioj Aioj) < Xo; A1Da(psloy).

(4) (Unitery invariance) The quantum Tsallis relative entropy is invariant under the unitary transfor-
mation U :

DA\(UpU*|UaU*) = Dx(plo).
(5) (Monotonicity) For any trace-preserving completely positive linear map P, any density operators p
and o and 0 < X < 1, we have
D)(2(p)|®(2)) < Da(plo). 8)

Putting o = 11 in Eq.(8), we have the following corollary.

Corollary 1.8 For any trace-preserving completely positive linear unital map ®, any density operator
pand 0 < A <1, we have
Sx(2(p)) 2 Sa(p).

We note that Eq.(8) for the fixed ¢, namely the monotonicity of the quantum Tsallis relative entropy
in the case of ®(¢0) = o, was proved in [4] to establish Clausius’ inequality.

Remark 1.7 It is known [33] (see also [44]) that there is an equivalent relation between the monotonicity

for the quantum relative entropy and the strong subadditivity for the quantum entropy. However in our

case, we have not yet found such a relation. Because the non-additivity of \-logarithm function
Inzzy=Inyz+Inyy+Alnpzlnyy

disturbs us to derive the beautiful relation such as

Di(p(=,)lp(=)p(v)) = Sx(p(2)) + Sa(p(y)) — Sx(p(z,¥))

for the Tsallis relative entropy D (p(z, y)|p(z)p(y)), the Tsallis entropy Sx(p(z)), Sx (p(y)) and the Tsallis
Joint entropy Sy (p(z,y)), even if our stage is in classical system.
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1.3 Maximum entropy principle in Tsallis statistics

Here, we review the derivation of the maximum entropy principle for a density matrix in Tsallis statistics.

Theorem 1.8 ([16]) Let Y = Z; ' exp, (—H/||H|)), where Z) = Trlexp, (—H/||H]|)], for A € (-1,0) U
(0,1) and a Hermitian matrix H. We denote

Cr={X € D,,: Tr X'~ H] < Tr[Y'*H]}.
If X € C), then S\(X) < Sx(Y).

Remark 1.9 Since —z!~*In, z is a strictly concave function, S is a strictly concave function on the set
Ci. This means that the maximizer Y is uniquely determined so that we may regard Y as a generalized
Gibbs state. Thus we may define a generalized Helmholtz free energy such by

F)\(X,H) = Tr{X'"*H] - || H|| $x(X).
This can be also represented by the Tsallis relative entropy such as
F)\(X,H) = ||H|| DA(X|Y) + Iny Z; ' TriX~ (| H|| - AH)].
We straightforwardly have the following corollary by taking the limit as A — 0.

Corollary 1.10 ([46]) Let Y = Z;'exp (—H/||H||), where Zy = Tr[exp (—H/| H||)], for a Hermitian
matrix H. If X € Cy, then

So(X) < So(Y).

2 Trace inequalities related to Tsallis entropies

2.1 A variational expression for Tsallis relative entropy

In this subsection, we review of the derivation of a variational expression for the Tsallis relative entropy
as a parametric extension of that of the relative entropy in Lemma 1.2 of [29]. A variational expression
of the relative entropy has been studied in the general setting of von Neumann algebras [41, 32].

In the below, we sometimes relax the condition of the unital trace for the matrices in the definition
of the Tsallis relative entropy D, (-|-), since it is not essential in the mathematical studies of the entropic
functionals.

Theorem 2.1 ({15]) For X € (0,1}, we have the following relations.
(1) If A and Y are nonnegative matrices, then
Iny Trief 12 Y] = max {Tr[X*~*4] - DA(X|Y) : X 2 0,Tr[X] = 1}.
(2) If X is a positive matrix with Tr[X] = 1 and B is a Hermitian matrix, then
Dx(X|eR) = max {Tr[X*~A] — In\ Trlef*5]: 4> 0}.

Taking the limit as A — 0, Theorem 2.1 recovers the similar form of Lemma 1.2 in [29] under the
assumption of non-negativity of A. If Y = I and B = 0 in (1) and (2) of Theorem 2.1, respectively, then
we obtain the following corollary.

Corollary 2.2 (1) If A is a nonnegative matrix, then
Iny Trlef] = max {Tr[X'~*4] + Sx(X) : X 2 0, Tr[X] =1}.
(2) For a density matrix X, we have
—8x(X) = max {Tr[X'~*A] — In) Trlef] : A > 0}.

Taking the limit as A — 0, Corollary 2.2 recovers the similar form of Theorem 1 in [6] under the assumption
of non-negativity of A.
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2.2 Generalized logarithmic and exponential trace inequalities

In this subsection, we derive some trace inequalities in terms of the results obtained in the previous
section. That is, the results of this subsection are derived by the application of a variational expression
for the Tsallis relative entropy. From (1) of Corollary 2.2, we have the generalized thermodynamic
inequality:

Inx Tr{ef] > Tr{D'=*H] + $,(D), (9)

for a density matrix D and a nonnegative matrix H. Putting D = Tﬁﬂ and H = Iny B in Eq.(9) for
A20and B > I, we have the generalized Peierls-Bogoliubov inequality (cf.Theorem 3.3 of [21)):

(Tr{A])*~* (Inx Tr[A] - Iny Tr[B]) < Tr[A'"*(In) A — In, B)], (10)
for nonnegative matrices A and B > I.
Lemma 2.3 The following statements are equivalent.
(1) FA(A) =1InyTrlef] is convex in a Hermitian matrix A.
(2) £r(2) =Iny Trlef**) is convex in ¢ € R.
Corollary 2.4 For nonnegative matrices A and B, we haye

Tr[B(ef)' ]

Iny TrieftB] — Iny Tref] > Tred)=> (11)

For nonnegative real numbers z,y and 0 < A < 1, the relations e*¥ < e2t¥+iav - e5e¥ hold. These
relations naturally motivate us to consider the following inequalities in the non-commutative case.

Proposition 2.5 ([15]) For non-negative matrices X and Y, and 0 < A < 1, we have
TrleXtY] < Trlef YAy 2xvia),

Note that we have the matrix inequality :

ef\‘“’ < ef\c+Y+AY‘/’XY1/2
for A > 1 by the application of the Léwner-Heinz inequality [34, 27, 38].

Proposition 2.6 ([15]) For nonnegative matrices X,Y, and A € (0,1], we have
TrieftYHXY| < TrleXeY). (12)
Notice that Golden-Thompson inequality [26, 47],
TrleX*+Y] < TrleXeY)

which holds for Hermitian matrices X and Y, is recovered by taking the limit as A — 0 in Proposition
2.6, in particular case of nonnegative matrices X and Y.

Since Tr[HZHZ] < Tr[H*Z?] for Hermitian matrices H and Z [41, 10}, we have for nonnegative
matrices X and Y,

TrI+ X +Y +YV2XYY) < Tr[(I + X + Y + XY)?]
by easy calculations. This implies the inequality

X+Y+1/3yY3xy/s X+Y +1/2XY
Trley/ / 1 < Trleg /2 / )-

Thus we have :
Tr[ef/*z'yl < Triefzel)s] (13)
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from Proposition 2.5 and Proposition 2.6. Putting B = Iny/2Y and A = In;, Y~1/2XY~1/2 in (2) of

Theorem 2.1 under the assumption of I < Y < X and using Eq.(13), we have

Dyijp(X[Y) = Dyjp(X|ely?Y)

1/2
TrlX/24] - Iny /2 Tr[e‘f/“éB
Tr[X'2A] - Iny/; Trlefyzefs]
Tr(X?Iny /3 Y~V2XY ™3] ~ Inyyp Tr{Y /2 XY ~1/%Y)

Tr(X21ny,, Y-V2XY~1/?),

v ol

v

1

i

which gives a lower bound of the Tsallis relative entropy in the case of A=1/2and I <Y < X.

2.3 Hiai-Petz type trace inequalities

In this subsection, we consider an extension of the following inequality:
Tr{X(log X +log V)] < %Tr[X log X?/2Y?X*/2]
for nonnegative matrices X and Y, and p > 0.

Theorem 2.7 ([16])

(1) For positive matrices X and Y, p>1 and 0 < A < 1, we have
Tr{X'"*(iny X - In, Y)] £ =Tr[X Iny (X ~P/2yP X ~P/2)}/p],

(14)

(15)

(16)

(2) For positive matrices X and Y, 0 < p < 1 and 0 < A < 1, the following inequality dose not hold:

Tr(X'"*(Iny X - In, Y)] < =Tr[X In\(X~P/2yPX —?/2)1/7|
Corollary 2.8 (1) For positive matrices X and Y, the trace inequality
DA(X]Y) € =Tr{X Iny(X Y2y X~1/?))
holds.
(2) For positive matrices X and Y, and p > 1, we have the inequality (15).
2.4 A generalized Fannes’s inequality
We give an upper bound of the Tsallis entropy. To do so, we state a few lemmas.
Lemma 2.9 For a density operator p on H, we ha\}e
Sq(p) < Ingd,
where d = dimH < oo.
Lemma 2.10 If f is a concave function and f(0) = f(1) = 0, then we have
IF(t+ 8) - £(t)] < max{f(s), f(1~-9)}
for any s € [0,1/2] and ¢ € [0, 1] satisfying 0 < s+t < 1.

an

(18)

Lemma 2.11 For any real number u,v € [0,1] and ¢ € [0,2], if |u — v| < 4, then |ng(u) — ng(v)| <

nq(lu — v}), where ny(z) = Ef—_%.
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Theorem 2.12 ([23]) For two density operators p; and p; on H and g € [0, 2), if [lp1 — poll, < ¢/(1-9),
then

18g(p1) = Sq(p2)| < llor = pall{ Ing d + ng(llo1 ~ p2ll,)-
Where we denote [[A|; = Tr [(4*4)/?] for a bounded linear operator A.

By taking the limit as ¢ — 1, we have the following Fannes’s inequality (see pp.512 of [35], also
(8, 5, 37]) as a corollary, since lim,_,; ¢'/(1=9) = 1

Corollary 2.13 For two density operators p; and p; on H, if |lp1 - p2l; < 1, then

—_ )
151(p1) = 81(p2)| < llo1 = pally Ind + m oy = pall,),

where S represents von Neumann entropy and m(z) = —zlnz.

3 Operator inequalities related to the Tsallis entropies

3.1 Properties of Tsallis relative operator entropy

In this subsection, we give several fundamental properties of Tsallis relative operator entropy defined in
Section 1:
Ta(A|B) = A2 Iny(A~Y/3BA-1/2)41/2,

for two positive operators A and B and A € (0,1). along the line of the paper [12]. Note that more
general operator has been introduced in [13], it was named solidarity and then several properties were
shown in (13, 11, 9]. :

Proposition 3.1 ([11, 9, 13])
(1) (Homogeneity) T (aA|aB) = oT), (A|B) for any positive number a.
(2) (Monotonicity) If B < C, then T\(A4|B) < Ty (A|C).
(3) (Superadditivity) Ta(A1 + A2|B1 + By) > Ta(A1]B1) + T (42| Ba).
(4) (Joint concavity) Tx(aA; + BAz|aB, + 8B,) > aTx(A1|B1) + BT\ (Az2|B;).

(6) (Unitary invariance)
TA\(UAU*|UBU*) = UT\(A|B)U*

for any unitary operator U.

(6) (Monotonicity) For a unital positive linear map ® from the set of the bounded linear operators on
Hilbert space to itself, we have

®(Tx(AIB)) < Ta(®(4)|2(B)).
(7) (Bounds) For any invertible positive operator A and B,0< A <1, we have
TA(A|B) < S(AIB) S TA(A|B), Th(A|B) < Hx(A) + 4> In, ||B,

and
#A < B =5 T5(A|B) 2 (In) p)A.

Moreover we have the following bounds for Tsallis relative operator entropy.

Lemma 3.2 For any positive real number z and 0 < A < 1, the following inequalities hold

l—lsln,\:cs:c~l.
T
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Proposition 3.3 ({13]) For any invertible positive operator A and B, 0 < A < 1,
A—AB"'A<T\(A|B) < -A+B. (19)
Moreover, TA(A|B) = 0 if and only if A = B.

Finally we prove the further bounds of Tsallis relative operator entropy with the A-power mean f.

Lemma 3.4 For any positive real number o and x and 0 < A < 1, the inequalities hold
x'\(l——l—)+ln,\lglngz$£—1—x"ln,\—1-. (20)
ax (0% o3 [

The equality of the right hand side of the above inequalities hold if and only if z = a. The equality of
the left hand side of the above inequalities hold if and only if z = 1.

Theorem 8.5 ([22]) For any invertible positive operators A and B, and any positive real number «,
the following inequality holds

AWB - ZAts-1B + (iny D)4 < T3(41B) < 2B 4— (my )4, (21)

The equality of the right hand side of the above inequalities holds if and only if B = oA. The equality
of the left hand side of the above inequalities holds if and only if A = aB. We have that T\(A|B) = 0 is
equivalent to A = B,

Remark 3.6 We note that Eq.(21) recovers the inequalities shown in [24] :
(1-loga)A - %AB‘IA <S(A|B)<(loga—-1)A+ %B
as A — 0. Moreover, if we put a = 1, then we have
A-AB 'A< S(AIB)<B-4A
which recover the inequalities of Corollary 5 in [13], cf. Eq.(19).

Teking account for the non-additivity (Eq.(2) and Eq.(3)) which are the typical features of Tsallis
entropies, we consider the Tsallis relative operator entropy of two positive operator of the tensor product
A1 ® Az and B; ® B;. To show our theorem, we state the following lemma for the convenience of the
readers.

Theorem 3.7 ({22]) For any 0 < A < 1 and any strictly positive operators A;, Az, By and Bs, we have
T)(A1® A2|B1 ® B;) = Ta(A1|B1) ® A2 + A1 ® Ta(Az2|B2) + ATx(A1|B1) ® Ta(A2|B2).  (22)
Taking the limit as A — 0 in Theorem 3.7, we have the following corollary.

Corollary 8.8 For any strictly positive operators A;, A2, B; and B;, we have
S(A1 ® A2|By ® By) = S(A1]1B)) ® Az + A1 ® S(Az|B3).
Since we have T)(A4|B) > 0 for any B > A, T)\(A|B) < 0 for any B < A and we have X ® Y > 0 for

any X > 0 and Y > 0, Theorem 3.7 implies the following corollary.
Corollary 8.9 (1) Forany 0 < A <1 and 0< 4; < B;, (i = 1,2), we have the following inequalities.

(a) TA(A‘]_ ® AZIBI ® Bz) > ATA(A]_'B].) ® TA(Alez)

(b) Ta(A1 ® A2|B; ® B;) > Ta(A1|By) ® Az + A ® Th(Az|By).

(2) Forany 0 < A <1and 0 < B; < A, (i = 1,2), we have the following inequalities.

(C) T,\(Al ® A2|B; ® By) < ATA(AllB;[) ® T,\(Aleg).
(d) Tx(41 ® Az2|B1 ® Bz) 2 Ta(41]B1) ® Az + A1 ® Ta(A3|Ba).
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3.2 Generalized Shannon inequalities based on Tsallis relative operator en-
tropy

The fundamental properties of T (A|B) are shown in the previous subsection. In this subsection we give
the Shannon type operator inequality and its reverse one satisfied by Tsallis relative operator entropy.
To do so, we need the following lemma.

Theorem 3.10 ([53]) Let {A;,As,...,An} and {By, By,... ,Br} be two sequences of strictly positive
n n

operators on a Hilbert space H. If Z Aj = Z B; =1, then
j=1 j=1

(T30 4587 45) . 7

02 Ti(4lB)) > 5

i=1

We also obtain the operator version of the Shannon inequality and reverse one given by Furuta [25]
as a corollary of Theorem 3.10 in the following.

Corollary 3.11 ([25]) Let {41, 43,..., 45} and {By, B,,...,Bn} be two sequences of strictly positive
n n

operators on a Hilbert space H. If Z A; = Z Bj =1, then
j=1 j=1

n n
02 ) A" (log 47"/°B;47"/%) 4)% > ~1og (Z A,-B;lAj) :

j=1 i=1
Actually the above Corollary 3.11 is a part of the Corollary 2.4 in [25].

4 Applications of Tsallis entropies

Finally we review the application of the Tsallis relative entropy as a measure of entanglements. The
concept of entanglement has been important in ‘quantum information theory, especially quantum tele-
portation and quantum computing and so on. Therefore it is important to quantify the degree of en-
tanglement, in order to scientifically treat the concept of entanglement. Here we give the definition of a
separable (disentangled) state and an entangled state in the following [45, 39, 31, 30).

Definition 4.1 A state « acting on the composite system H; ® M3 is called a separable (disentangled)
state if it is represented by

K=Y pri®xh, pi 20, Y pi=1,
i i

for states x{ and «} acting on the subsystems %, and HM,, respectively. It is also called an entangled
state if a state is not a separable state.

When we quantify the entanglement, we should pay the attention whether the considering entangled
state is pure or mixed. For pure entangled states, it is easily calculated by the von Neumann entropy of
the reduced states. For mixed entangled states, we have several measure of entanglements.

Definition 4.2 ([7]) For mixed entangled states o = 3, p;c(*), where ";p; = 1, p; > 0 and ¢ =

|#:){(¢s| are pure entangled states on H; ® M3, the entanglement of formation is defined by
EF(¢) = min Z 2:5(ct)
i
as & minimum of the average of the von Neumann entropy S(ag‘)) of the reduced states a&’l) for the

pure entangled states o(¥), where the minimum is taken over all the possible states ¢ = 3, pic® with
() _ @)
0y’ =try,o\V,
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Definition 4.3 ([52]) For mixed entangled states o on H; ® Hz, the relative entropy of entanglement
is defined by
E®(0) = minU(c|p),
pED

where the minimum is taken for all p € D, where D represents the set of all separable (disentangled)
states on H; ® Hs.

This measure is a kind of distance (difference) between the entangled states o and the separable
(disentangled) states p. They also proposed the conditions that the entanglement-measure E (o) for any
entangled states o on the total system H; ® Hy should satisfy. It is given in [52] by

(E1) E (o) = 0 « o is separable.
(E2) E (o) is invariant under the local unitary operations:
E (o) = E(Uy® UsoUf @ U3),
where U;, (i = 1,2) represent the unitary operators acting on H;, (i = 1,2).

(E3) The measure of entanglement E (o) can not be increased under the trace-preserving completely
positive map given by ®. That is,
E(®0) < E(0).

As a measure satisfying the above conditions, a special case of V.Vedral’s definition, we introduced
the entanglement degree due to the mutual entropy and then applied it to the analysis of the Jaynes-
Cummings model in [20, 18, 19].

Definition 4.4 ([20, 18, 19]) For mixed entangled states o on H; ® Ha, the entanglement degree due
to the mutual entropy is given by

EM(0) = Trlo(log o — log o1 ® p2)],
where p) = try,0 and pg = try, 0.

In the above definition, we fixed the separable (disentangled) state such as p = try, o ® try, o, because it
was difficult to find the separable (disentangled) state attaining the minimum value of the relative entropy
of entanglement. The separable (disentangled) state chosen by p = tr3,0 ® tr3, o is nontrivial state but
our measure contains both quantum and classical entanglement. That is, our measure takes greater value
than V.Vedral’s one. That is, from the definitions, we easily find ER(c) < EM (o). For example, for pure
entangled states, by the above Araki-Lieb’s triangle inequality, we easily find that our measure is equal
to the twice of von Neumann entropy, namely E™ (¢) = 2E®(c) for pure entangled states o, since E*(o)
becomes von Neumann entropy for pure entangled states [51]. However it was sufficient to get the rough
degree of entanglement for the analysis of the time development of the Janeys-Cummings model.

In the previous paper, we adopted a parametrically extended entanglement-measure due to the Tsallis
relative entropy which is a generalization of our previous entanglement-measure.

Definition 4.5 ([3, 17]) For mixed entangled states o on H; ® Ha, the entanglement-measure due to
the Tsallis relative entropy is given by

. al=A A
E{(U)E T'r[a o A(/’l@PZ) ]’

where 0 < A < 1, p; = try,0 and pg = try, 0.

Note that the above entanglement-measure is a special version of the generalized Kullback-Leibler measure
of quantum entanglement introduced in [3]. In addition, the above entanglement-measure for a non-trivial
example was studied in [3]. From the definition, we easily find that lim,—; ET (¢) = EM(0).

In the below, we show the equality condition of the inequality ((1) of Proposition 1.5) in the properties
of the Tsallis relative entropy.
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Lemma 4.6 For A € [~1,0) U (0, 1] and density operators p and ¢, we have
D,\(pla) 20,
with equality if and only if p = 5.

Proposition 4.7 ([17]) For 0 < A < 1, ET satisfies the conditions (E1), (E2) and (E3)

We also have the following proposition.

Proposition 4.8 ([17])
(1) For any entangled states o on H; ® Hz, we have ET (o) = 0.
(2) There exists A in (0, 1] such that Ef(c) = E®(c) for any entangled states o on H; ® H,.
(3) For any entangled states o and o’ on H; ® M2, and any 0 < A < 1, we have the subadditivity:
Ef(c®d’) < E (o) + EL (o).

We note that we have the additivity EM(c® ') = EM(0) + EM(¢”) as A — 0. In addition, we should
note that our measure E () takes 0 when A = 1, although o is not separable (disentangled) state.
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